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ABSTRACT: Methicillin-resistant Staphylococcus aureus (MRSA)

is a growing concern for human lives worldwide. Anti-MRSA I p— w COHIT =

peptides act as potential antibiotic agents and play significant role SNCBI = Sequence dnttycutoff - — :

to combat MRSA infection. Traditional laboratory-based methods ant-vicrobial peptives patabank pepiae Database % Redundant Removal Refine Database

for annotating Anti-MRSA peptides are although precise but quite  pEETETN
challenging, costly, and time-consuming. Therefore, computational ‘

methods capable of identifying Anti-MRSA peptides accelerate the

drug designing process for treating bacterial infections. In this o & A

study, we developed a novel sequence-based predictor “iM- — o g »03:20» “ e MW

RSAPred” for screening Anti-MRSA peptides by incorporating
energy estimation and physiochemical and sequential information.
We successfully resolved the skewed imbalance phenomena by
using synthetic minority oversampling technique plus Tomek link
(SMOTETomek) algorithm. Furthermore, the Shapley additive explanation method was leveraged to analyze the impact of top-
ranked features in the prediction task. We evaluated multiple machine learning algorithms, i.e., CatBoost, Cascade Deep Forest,
Kernel and Tree Boosting, support vector machine, and HistGBoost classifiers by 10-fold cross-validation and independent testing.
The proposed iMRSAPred method significantly improved the overall performance in terms of accuracy and Matthew’s correlation
coefficient (MCC) by 5.4S and 0.083%, respectively, on the training data set. On the independent data set, iIMRSAPred improved
accuracy and MCC by 3.98 and 0.055%, respectively. We believe that the proposed method would be useful in large-scale Anti-
MRSA peptide prediction and provide insights into other bioactive peptides.

HistGBoost

Dimension]

B INTRODUCTION identification of Anti-MRSA peptides is crucial in developing
new weapons as antibiotic drugs.

Over the past years, laboratory-based methods, i.e, mass
spectrometry, fluorescence-based, microdilution-based, and
rational design method, etc. have been devoted to screening
and analyzing Anti-MRSA peptides. However, these bioassays
are formidable, costly, and time-consuming, particularly for
analyzing a large number of Anti-MRSA peptides. Therefore,
computational methods more specifically machine learning
(ML)- and deep learning-based methods are used for more
accurate prediction of the Anti-MRSA peptide.

To the best of our knowledge, SCMRSA is the only ML-
based predictor available in the literature for classifying Anti-
MRSA and non-Anti-MRSA peptides.® This tool used scoring
card methods with optimized dipeptide composition and

The challenge of antibiotic resistance continues to pose a
significant health threat on a global scale, prompting the World
Health Organization (WHO) to call upon various research
domains to address this complex issue. One of the most
hazardous pathogens is Methicillin-resistant Staphylococcus
aureus (MRSA), killing thousands of peoples both in the
developed and developing countries every year."” These
infections are fatal in numerous conditions, including
bacteremia (15—60%) and staphylococcal pneumonia (30—
40%).> The current clinically approved treatment for MRSA
infection includes the use of antibiotics such as teicoplanin,
vancomycin,*® etc. Nevertheless, the effectiveness of these
antibiotics on patients may be compromised due to the
emergence of drug resistance in anti-MRSA medications. Thus,
options to using other antibiotic drugs to treat MRSA are
desperately needed.” Due to the continuing antibiotic
resistance, antimicrobial peptides have gained attention as
potential therapeutic options with quick and broad-spectrum
antibacterial activity, including antibiotic-resistant germs such
as MRSA.” Thus, owing to the biological applications as
therapeutic agent to combat bacterial infections, the
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Figure 1. Workflow of the proposed iMRSAPred method. (A) Collection of data set and refinement of sequences, (B) feature extraction from the
data set and handling imbalance data distribution using SMOTETomek, and (C) ML model development and evaluation.

amino acid (AA) properties to achieve 92.70% accuracy. We
believe that this level of accuracy can be improved as the data
imbalance problem hampered the prediction results of
SCMRSA with a high error rate. Second, the energy estimation
and biochemical properties contained in Anti-MRSA peptides
were not considered. The aforementioned problems motivated
us to construct a novel method iMRSAPred for characterizing
and predicting Anti-MRSA peptides with higher accuracy. We
extracted the energy estimation-, sequential- and physicochem-
ical-based properties of AAs by considering pairwise residue
contact-energy matrix transformation (RCEMT),” dipeptide
deviation from expected mean (DDE) and extended form of
pseudoamino-acid composition (ExPseAAC), respectively.
The imbalanced data set issue in the training data set was
tackled by using synthetic minority oversampling technique
plus Tomek link (SMOTETomek) algorithm.'” We deployed
several state-of-the-art ML classifiers such as Cascade Deep
Forest (CDF), combined Kernel and Tree Boosting
(KTBoost), CatBoost, histogram-gradient Boost (HistG-
Boost), support vector machine (SVM), and combined
extreme gradient-boost random forest (XGBoost-RFC).
Among these classifiers, CDF and CatBoost achieved the
best results using proposed features both on 10-fold cross-
validation (CV) and independent testing (IND). The
schematic workflow of the proposed iMRSAPred method is
illustrated in Figure 1.

In short, the contribution of our work can be summarized as
follows:

(a) We captured the physicochemical-based and interaction
energy estimation-based local and global properties of
AAs from given peptide sequence using ExPseAAC,
RCEMT, and DDE descriptors.

2875

(b) We employed the SMOTETomek algorithm as an
effective solution to overcome the challenges of
imbalanced data sets in this particular problem.

(c) We proposed CatBoost and CDF as the best classifiers
for predicting Anti-MRSA peptides with outstanding
performance both on training and testing data sets
obtaining improved accuracy compared to existing state-
of-the-art tool for the same purpose.

(d) We investigated relative importance of the proposed
features using Shapley additive explanation (SHAP) and
t-SNE algorithms. This provides insights on the impact
of features as well as the interpretability of the proposed
model.

B MATERIALS AND METHODS

Benchmark Data Sets. The collection of valid data set is
the key to developing an efficient computational model."' ™"
For this purpose, we considered the same benchmark data set
in the paper® for fair comparison. The benchmark data set
contains experimentally verified peptides (including 444 Anti-
MRSA and 9898 Non-Anti-MRSA), which were originally
retrieved from antimicrobial peptide database (APD3)."* The
collected peptide sequences were split into two subsets at an
8:2 ratio for training (CV) and evaluation (independent) of
the proposed iMRSAPred method. We provided both training
and testing data set instances in Table 1.

Feature Encoding Schemes. Feature encoding schemes
are challenging task used to convert a biological sequence into
fixed length numerical feature.'> In this research, the energy
estimation, sequence, and physiochemical-based properties
were considered for encoding Anti-MARSA peptides. The
details of each feature descriptor are explained below.

Extraction from Pairwise Contact Energy Matrix. The
pairwise energy-derived properties of AAs provide deep

https://doi.org/10.1021/acsomega.3c08303
ACS Omega 2024, 9, 2874—-2883


https://pubs.acs.org/doi/10.1021/acsomega.3c08303?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08303?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08303?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08303?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c08303?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

i |

Table 1. Dataset Summary

data set total sequence (Pos, Neg)“
AMRSA,;, 796 (118, 768)
AMRSA . 199 (30,169)

“Neg and Pos represent the total number of Non-Anti-MRSA and
Anti-MRSA peptides, respectively.

insights to understand the peptide structure and function.'®

Peptides’ structural stability relies on extensive interactions
among internal residues.” These interactions can be estimated
using an energy function, typically derived from known
structures, to assess the energy contribution of these residue
interactions."” However, in the case of peptides, or
unstructured proteins with unknown conformation, the energy
function is unable to calculate the cumulative energies due to
the lack of the defined structure. As a result, this energy
function is not applicable to peptides, or unstructured proteins
lacking a specific structural arrangement.'® Motivated by this,
we utilized the derived predicted energy estimation-based
properties, i.e., pairwise contact-energy matrix (RCEM)’
provided in Table S2, to extract significant information that
is inherently associated with interactions among AA residues
and intrinsically disordered regions. The RCEM is a matrix
with dimensions of 20 X 20, where each row and column
corresponds to one of the 20 standard AAs.” The RCEMT can
be represented in the matrix form as

St S Sy S120
RCEMT = |S21 S22 S23- S220
SL,1 L2 SL3ee Sp20 (1)

where, within each group, the sum of the RCEM values in each
column is calculated and forms 400 dimension features. The
readers are referred for the further details to a study by Mishra
et al."”

Extended Pseudo Amino Acid Composition (ExPseAAC).
TExPseAAC is widely used feature encoding descriptor
proposed by Chou and Cai,*® for formulating biological
proteins/peptide sequences. Unlike, the simple alignment-free
amino-acid composition method ExPseAAC considers both
the compositional and correlation physicochemical character-
istics of peptides.”’ Motivated from our previous study, we
extended the concept of PseAAC for encoding Anti-MRSA
peptides by using new biochemical properties of AAs, namely,
irreplaceability, hydrophobicity, rigidity, hydrophilicity, and
flexibility.”' We listed the values of these physicochemical
properties for 20 AAs in Table S1. A peptide sequence is
represented as an array of short length (5—30) AA residues

typically denoted as

Al, Az; A3r A4' AS’ o AL (2)

The correlation factors can be defined as

2876

Ll
o, = -1 Z 5(A; Aigr),
i=1
] L2
0, = —— O0(A;, Aps),
2 L —2 g ( i 1+2)
=
8y = > 5(Ay Ayy), L — 4
L-3/=

1 L-2
o = —i Z 5(Air Ai+/1)
— = (3)

In eq 3, 0, corresponds to the first-rank of correlation factor
and represents the consecutive AAs sequence order informa-
tion, 6, corresponds to the second-rank factor and represents
the second-order correlation of the entire second consecutive
AAs, and so forth. Consequently, we can define the correlation
factor as

o4, 4) = { S104) - H(4))

+ (Hz(Aj) - Hz(Ai)) ]} (4)

where H;(A;) and H,(A;) present the derived biochemical
value of AAs A,

 H -3 H0
Hl(l) = > - 20 ]
Yo (H -3 Hj/20)
20
1 =
’ J T2 (H, - 3 1/ 20)
20 ©)

Given an index j, the primary AA residues of the peptide can
be formulated into a P, feature space

P'=[R, B, B, .., By, Pt Byl (6)
where
T,
u 1 <u<20)
20 2 i’ ( =7 =
Zmzlfm + Zi:lai}
P, = ,
5
= ——— (20 + 1 <u<20+2)
Zmzlfm + Zi:lai}
(7)

where f,, denotes the frequency of 20 AAs in peptide and &/ is
the i-tier sequence correlation factor. The first 20 elements
denote the effect of the AAC, and the elements from 20 + 1 to
20 + A denote the effect of sequence order.

Generally, ExPseAAC can be formulated as

ExPseAAC = [f, . fy0) frop1r = Frgusd 0 (A <N)  (g)

where the first 20 attributes denote the frequency information
on 20 natural AAs in the peptide sequence and the 21st feature
vector, ie., f,y, denotes the additional correlation factor
related to first tier sequence, the 22nd factor to the second tier,

https://doi.org/10.1021/acsomega.3c08303
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and so on.”” In this study, after experimental analysis, we kept
the value for encoding Anti-MRSA peptides. Thus, the
resultant feature space is (20 + 2 X § = 30) dimensions.

Dipeptide Deviation from Expected Mean. The DDE is an
effective protein feature representation method proposed by
Saravanan et al,** for linear B-Cell Epitope prediction. DDE
considers the consecutive pairs (local sequence information) of
AA in peptides and generates 400-dimension feature vector.
These dipeptides have an associated properties that influence
the protein’s function and structure. The working principle of
the DDE descriptor relies on three parameters: DPC,
theoretical mean (T,), and theoretical variance (T,).** To
compute DPC, the following mathematical expression can be
used

M
DPC(a, b) = . ab

,ab € {AA, AC, AD, ..YY
b el )

where M, is the number of dipeptides denoted by AA types a
and b and L is the length of peptide sequence. T,,(a, b), the
theoretical mean, is formulated as follows

G

X_

T(a, b)) = -

Ca
C. (10)
where in the given peptide dipeptide “ab”, C,, and C, denotes
the number of codons coding for the first and second residue
and C; is the total number of all possible codons except three

stop codons. T,(a, b), theoretical variance is given as follows

1—T,(a, b)]

Tv(“l b) = Tm(a, b)( -1

(11)

Finally, using eqs 9, 10, and 11, DDE (a, b) can be
mathematically expressed as follows™

DPC(a, b) — T, (a, b)
JT.(a, b) (12)

Learning from Imbalanced Data. In ML and bioinfor-
matics, one of the inevitable challenging tasks is handling
imbalance class distribution.”*”** The performance of classical
ML models, especially SVM, Decision Tree, AdaBoost, K-
Nearest Neighbor, etc, detrimentally is affected due to
ignoring the minority class and exhibits a bias toward the
majority class.”” Sampling methods can broadly be divided into
two main groups: oversampling and under-samplin$ techni-
ques.”” Synthetic minority oversampling (SMOTE)®" consid-
ers the minority class while in contrast random under-samplin.
considers the majority class to equalize the class distribution.’
Thus, to take the advantages of both imbalance techniques, in
this research we utilized SMOTETomek.”> SMOTETomek is a
hybrid sampling technique that combines the oversampling
(SMOTE) and undersampling (Tomek Links) method and
has widely been acknowledged in many domains such as
software defect prediction,”> medical data (diabetes),** for
balancing the skewed data. In other words, the key concept of
using this algorithm is to combine SMOTE method as data
samplin% and Tomek link as data cleaning method proposed by
Tomek™ to address the issue of imbalance data set. The
pseudo code of the SMOTETomek algorithm is presented in
below steps: SMOTETomek Algorithm:

1. Identify the minority class samples and the majority class
samples in the imbalanced data set.

DDE(a, b) =

2877

2. Apply the SMOTE algorithm to oversample the minority
class

Xgnth = % + (Xpeighbor — %) X random_number

where random_number is a random value between 0 and 1.

(a) Select a minority class sample, denoted as x.

(b) Determine the k nearest neighbors (NN) of x from the
minority class, denoted as NN(x).

(c) Randomly select a neighbor, denoted as x
NN(x).

(d) Generate a synthetic sample, denoted as x4, by
interpolating between x and «,

neighbors from

neighbor*
(e) Repeat steps 2b-2d for each minority class sample to
generate the desired number of synthetic samples.

3. Use the Tomek Links technique to identify and remove
potentially noisy samples:

(a) Construct a distance matrix between all samples in the
data set.

(b) Identify the Tomek Links, which are pairs of samples
from different classes that are each other’s nearest
neighbors.

(c) Remove the samples involved in the Tomek Links. This
step removes samples that are potentially misclassified or
overlapping.

4. Repeat steps 2 and 3 until the desired class balance or
desired number of iterations is reached.

Classification Algorithms. Classification is a type of
supervised learning used to make predictions on categorical
instances. In this research, we implemented six ML algorithms
for predicting Anti-MRSA peptides: KTBoost,”® SVM,”’
CatBoost,?'8 Hist—GBoost,39 CDF,40 and XGBoost-REC.*!
The implementation of all these classifiers was based on the
Scikit-learn,** gcforest,40 and KTBoost® packages.

Performance Evaluation Metrics. The performance
predictions of machine-learning and deep-learning models
can be measured by different metrics. We use the commonly
used indices, i.e., sensitivity (Sn), specificity (Sp), Matthew’s
correlation coefficient (MCC), and accuracy (Acc) for
computing the overall performance of the proposed
iMRSAPred predictor. These measures can be expressed by
mathematical notation as follows

Sn = il
- tP +fn (13)

Sp = b
htf, (14)

(t, +t,)
CC =
(tp+tn+fp+fn) (15)
(t, X t, —f X f.)
MCC = P

V1) + )+ )4 + ) (16)

In the above eqs 13—16, t, denotes correct positive
prediction, t, denotes correct negative prediction, f, denotes
the incorrect negative prediction, and f, denotes the incorrect
prediction of positive samples, respectively. In addition, for
model robustness we used area under the receiver operating

https://doi.org/10.1021/acsomega.3c08303
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Table 2. Performance of Different Features Using ML Classifiers over Both 10-Fold CV and Independent Tests without

independent test

ACS Omega
SMOTETomek”
10-fold CV test
features descriptor classifier Acc (%) Sn (%) Sp (%)
DDE KTBoost 88.57 34.09 98.08
Hist-GBoost 90.08 48.63 97.34
SVM 96.93 30.93 96.76
XGBoost-REC 86.68 17.07 98.82
CatBoost 88.57 26.43 99.41
CDF 91.95 55.98 98.23
RCEMT KTBoost 92.96 66.81 97.49
Hist-GBoost 94.46 73.78 98.08
SVM 87.43 28.18 97.78
XGBoost-RFC 92.21 66.21 96.75
CatBoost 94.21 69.39 98.52
CDF 94.09 76.28 97.19
ExPseAAC KTBoost 94.59 71.13 98.67
Hist-GBoost 94.84 71.13 98.96
SVM 92.95 57.42 99.11
XGBoost-REC 93.84 58.48 98.99
CatBoost 94.09 72.04 99.11
CDF 94.21 77.12 97.19

“Best results are highlighted in bold.

MCC AUC Acc (%) Sn (%) Sp (%) MCC AUC
0.464 0.876 90.45 56.66 94.44 0.594 0.917
0.552 0.865 93.46 66.66 98.22 0.726 0.964
0.372 0.898 90.95 46.66 98.81 0.598 0.957
0.293 0.882 89.94 40.00 98.81 0.543 0.929
0.434 0.897 88.94 46.66 97.63 0.552 0.949
0.646 0.940 94.97 70.00 99.40 0.791 0.986
0.703 0.944 94.47 76.66 97.63 0.776 0.987
0.768 0.951 96.48 83.33 98.81 0.858 0.988
0.364 0.804 87.93 33.33 97.63 0.433 0.818
0.676 0.924 92.46 73.33 95.85 0.701 0.977
0.753 0.961 97.48 86.66 99.40 0.899 0.992
0.765 0.965 95.47 80.00 98.22 0.817 0.991
0.772 0.951 95.47 76.66 98.81 0.814 0.986
0.780 0.960 94.97 76.66 98.22 0.795 0.987
0.693 0.936 94.97 66.66 99.00 0.793 0.988
0.735 0.953 93.96 63.33 99.40 0.746 0.990
0.793 0.967 95.97 76.66 99.40 0.835 0.993
0.768 0.963 97.48 90.00 98.81 0.900 0.994

Table 3. Performance of Different Features Using ML Classifiers over Both 10-Fold CV and Independent Test with

independent test

SMOTETomek”
10-fold CV test
features descriptor classifier Acc (%)  Sn (%) Sp (%)

DDE KTBoost 96.02 95.43 96.60
Hist-GBoost 96.24 95.14 97.33
SVM 92.10 84.21 100.00
XGBoost-RFC 95.43 93.67 97.19
CatBoost 96.90 96.02 97.78
CDF 97.71 98.38 97.0S

RCEMT KTBoost 97.82 97.49 95.15
Hist-GBoost 97.63 98.68 96.60
SVM 96.30 97.49 95.11
XGBoost-RFC 92.39 94.10 90.70
CatBoost 97.41 98.97 95.86
CDF 96.01 97.08 94.98

ExPseAAC KTBoost 97.0S 98.23 95.87
Hist-GBoost 96.67 99.11 96.22
SVM 90.30 80.61 100
XGBoost-RFC 93.84 58.48 100
CatBoost 98.15 99.41 96.90
CDF 96.09 96.46 95.71

“Best results are highlighted in bold.

MCC AUC Acc (%)  Sn (%) Sp (%) MCC AUC
0.924 0.990 89.94 66.66 94.08 0.607 0.936
0.930 0.993 90.95 53.33 97.63 0.606 0.949
0.853 0.997 90.04 36.66 100.00 0.574 0.986
0.941 0.990 89.94 63.33 94.67 0.596 0.913
0.941 0.995 93.46 73.33 97.04 0.735 0.956
0.955 0.997 95.97 76.66 99.40 0.835 0.980
0.936 0.996 96.48 93.33 97.04 0.869 0.991
0.949 0.997 94.47 80.00 97.04 0.781 0.991
0.927 0.992 95.97 90.00 97.04 0.847 0.991
0.848 0.981 90.95 80.00 92.89 0.667 0.966
0.950 0.997 96.98 93.33 97.63 0.886 0.994
0.921 0.993 93.96 90.00 94.67 0.787 0.987
0.941 0.997 95.47 90.00 96.44 0.831 0.991
0.953 0.999 93.97 86.66 97.63 0.842 0.989
0.822 0.999 95.47 83.33 97.63 0.821 0.982
0.735 0.953 93.96 63.33 97.89 0.746 0.990
0.963 0.999 97.48 93.33 98.22 0.903 0.996
0.923 0.995 95.97 93.33 96.44 0.853 0.992

characteristic (ROC) curve (AUC) values as an independent
evaluation metric.

Model Assessment and Evaluation. CV is the widely
used performance evaluation method of the ML and DL
models.** CV provides precise and accurate estimation of the
prediction system by splitting the whole set of data into the
training and testing part: the training part can be used to
build/develop the model and the testing part to assess the
generalization capability of the trained model. Thus, k-fold
deem to be the simplest CV technique in developing the
computational model.*® The data set, in this strategy, is divided
into k-folds or fixed-sized subsets. The predictive model is then
trained on k — 1 of the subsets and tested on the rest of the

subset. The process is k times iteratively repeated, with each
subset serving as the testing set exactly once. The average
efficacy of the developed predictor is then calculated by
summing the across all k iterations. In our study, we used the
10-fold CV method for designing the proposed iMRSAPred.
Furthermore, we also performed independent tests to better
estimate the generalization efficacy of the proposed Anti-
MRSA protocol on unseen peptides.

B RESULTS AND DISCUSSION

Classifiers Performance Using Different Feature
Encoding Schemes without Applying SMOTETomek.
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Figure 3. Feature analysis and contribution of the top ranked attributes using the SHAP method.

In this section, we analyze the predictive performance of six
ML classifiers, namely, KTBoost, HistGBoost, SVM, XGBoost-
RFC, CatBoost, and CDF algorithms, using three effective
feature encoding schemes, i.e., DDE, RCEMT, and ExPseAAC
feature vectors in Anti-MRSA prediction. The ML algorithms
were evaluated on 10-fold CV and independent tests without
applying the SMOTETomek method. The classifiers perform-
ance on imbalance data along with the evaluation indexes Acc,
Sn, AUC, Sp, and MCC are reported in Table 2. It can be seen
from Table 2 that in the case of DDE feature vector, CDF
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classifier achieved the highest performance in terms of Acc =
91.9S and 94.47% and MCC = 0.646 and 0.791 are on training
and testing data sets, respectively. In case of RCEM descriptor,
Catboost classifier attained the better overall outcomes
compared to other ML algorithms. Similarly, using the
ExPseAAC encoding method in conjunction with CDF
Classifier improved the Acc 1.51% and MCC 0.060 compared
to CatBoost Classifier on testing data. Thus, the aforemen-
tioned investigation reveals several observations: first, the PCP
and energy estimation-based attributes in combination with
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Figure 4. t-SNE visual depict of Anti-MRSA (green) and Non-Anti-MRSA (red) peptides for the training data set (A—C) and independent data
sets (D—F) in a two-dimensional feature-vector: DDE-TR (A), RCEMT-TR (B), ExPseAAC-TR (C), DDE-TS (D), RCEMT-TS (E), and

ExPseAAC-TS (F).
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Figure S. Performance comparison of our proposed methods with the SCMRSA tool on training (A,B) independent data set.

different ML classifiers generate better results over the training
and independent data sets. This demonstrate that RCEMT and
ExPseAAC feature-space effectively contribute in discriminat-
ing Anti-MRSA and Non-Anti-MRSA peptides. Second, due to
skewed data, the learning models predict the inconsistent and
bias results, ie., specifically balance Acc and MCC on the
independent test. To solve this problem, we motivated to apply
SMOTETomek algorithm to achieve more stable and high
Anti-MRSA predictions.

Classifiers Performance Using Various Feature En-
coding Schemes after Applying SMOTETomek. In the
present subsection, we examine the classification performance
of Anti-MRSA peptides by applying the SMOTETomek
method. In Table 3, we report the success rates of different
ML algorithms against three feature representation methods.
The anticipated prediction score shows that the ML classifiers
particularly KTBoost, CDF, and CatBoost models enhanced
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the average performance in terms of all evaluation indicators
on training and testing samples. As can be seen from ROC
curve in Figure 2, the CatBoost model is outperformer using
the ExPseAAC encoding scheme. The highest obtained Acc is
98.15 and 97.48% on training and independent test,
respectively. The second best performer is the CDF model
which obtained relatively lower prediction rates, i.e., 2.06% Acc
and MCC of 0.004. Interestingly, KTBoost, Hist-GBoost, and
XGBoost-RFC produced impressive results on training data
but performed poorly on the blind test (independent data set).
Consequently, the observed evidence indicates that the ML
models on balanced data consistently predict the unbiased
outcomes. The ROC curve for the best models was created for
both the training and independent sets. The results, as
depicted in Figure 2, indicate that the ExPseAAC feature
representation method achieved the highest AUC values of
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Table 4. Performance Comparison against the Existing Method for Benchmark Data Set”

training data set

independent data set

predictors Acc (%) Sn (%) Sp (%)
SCMRSA® 92.70 86.50 98.80
iMRSAPred* (proposed) 96.09 96.46 95.71
iMRSAPred® (proposed) 98.15 99.41 96.90

“Best results are highlighted in bold.

MCC Acc (%) Sn (%) Sp (%) MCC
0.880 93.50 90.00 97.00 0.848
0.923 95.97 93.33 96.44 0.853
0.963 97.48 93.33 98.22 0.903

0.996 and 0.992 using CatBoost and CDF models on
independent data set.

Feature Ranking and Contribution Analysis. The
prediction power of a model can be analyzed by examining
the contribution of each feature vector.® To do so, in this
research, we considered the well-known algorithm named
SHAP" to interpret the prediction of developed iMRSApred
model. The SHAP method, assigned each extracted attribute a
SHAP value in the descending order, indicating the impact of
each feature-space on the classification of each sample.**

Figure 3 shows the top 25 high-ranked discriminative
properties extracted from three descriptors, ie., RCEMT,
ExPseAAC, and DDE. In the context of corresponding feature-
space, the color scatterplot represents the influence of specific
feature. Thus, overall energy estimation-based (RCEMT_75,
RCEMT_46, RCEMT 172, and RCEMT _40), physicochem-
ical (ExPseAAC 26, ExPseAAC 22, and ExPseAAC 21), and
sequential-based properties (DDE_262, DDE 218, and
DDE_149) contributed well in predicting accurate Anti-
MRSA peptides.

In order to further explain the contribution of engineered
features, we used two dimension scatters plot t-SNE,* as
shown in Figure 4A—F. The red dots denote the Non-
AntiMARSA, and green dots denote the Anti-MRSA peptide
samples.

Comparison against Existing Methods. For evaluation
purposes, we compare the prediction performance of our
proposed methods with the existing SCMRSA tool® for
identifying Anti-MRSA peptides. Figure S illustrates the
comparative scores of developed Anti-MRSA predictors on
training (A) and testing (B) data sets, respectively.

The comparison outcomes between our developed computa-
tional methods for Anti-MRSA activity prediction and the
SCMRSA predictor are noted in Table 4. We denoted the best
success rates for the respective evaluation indicators Acc, Sn,
Sp, and MCC with a bold face in Table 4. We can observe that
iMRSAPredb is the best performer in terms of all performance
measures both on training and independent data sets.
iMRSAPredb improved the balance Acc by 5.45% and MCC
by 8.3% on training data set and Acc of 3.98% and MCC of
5.5% on independent test compared with SCMRSA. However,
our proposed methods are relatively lower than the existing
model in terms of Sp which are not great powerful. The second
best predictor outperformed the existing tool on training and
testing data set by Acc of 3.39 and 2.47%, respectively. Thus,
the comparative discussion indicates the capability of the
iMRSAPredb protocol to accurately discriminate Anti-MRSA
peptides.

B CONCLUSIONS

Owning to the biological applications as a therapeutic agent to
combat bacterial infections, the identification of Anti-MRSA
peptides is crucial in developing new weapons as antibiotic
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drugs. In this study, we developed iMRSAPred, a novel ML
predictor for targeting Anti-MRSA peptides. The proposed
model outperformed the existing state-of-the-art SCMARSA
predictor and achieved well-balanced results in terms of all
performance metrics. We extracted the biological features from
AA residues considering their physiochemical-, energy
estimation-, and sequence-based descriptors. Finally, we
applied the SMOTETomek algorithm to achieve better results
compared with the existing method in the literature. Our work
has some limitations that need to be highlighted. We tested our
model on only one data set. Based on the availability of other
data sets, we will extend this work for further improvement. In
future, we will build a publicly accessible web server for
recognizing large-scale therapeutic peptides having Anti-MRSA
activity and other activities, i.e., anticancer activity, antimicro-
bial activity, antiviral, antibacterial activity, antifungal, anti-
hypertensive, cell-penetration activity, etc.
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