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Background: Methotrexate (MTX) is the first line treatment of rheumatoid arthritis (RA),
and methylation changes in bulk T cells have been reported after treatment with MTX. We
have investigated cell-type specific DNA methylation changes across the genome in naïve
and memory CD4+ T cells before and after MTX treatment of RA patients. DNA
methylation profiles of newly diagnosed RA patients (N=9) were assessed by reduced
representation bisulfite sequencing.

Results: We found that MTX treatment significantly influenced DNA methylation levels at
multiple CpG sites in both cell populations. Interestingly, we identified differentially
methylated sites annotated to two genes; TRIM15 and SORC2, previously reported to
predict treatment outcome in RA patients when measured in bulk T cells. Furthermore,
several of the genes, including STAT3, annotated to the significant CpG sites are relevant
for RA susceptibility or the action of MTX.

Conclusion: We detected CpG sites that were associated with MTX treatment in CD4+

naïve and memory T cells isolated from RA patients. Several of these sites overlap genetic
regions previously associated with RA risk and MTX treatment outcome.

Keywords: Rheumatoid arthrit is, T cel ls, CD4 memory, CD4 naïve, DNA methylation, RRBS,
epigenetics, methotrexate
org November 2021 | Volume 12 | Article 7136111

https://www.frontiersin.org/articles/10.3389/fimmu.2021.713611/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.713611/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.713611/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.713611/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.713611/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.713611/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:linejo@ous-hf.no
https://doi.org/10.3389/fimmu.2021.713611
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.713611
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.713611&domain=pdf&date_stamp=2021-11-18


Guderud et al. Methotrexate Influence on DNA Methylation
INTRODUCTION

Rheumatoid arthritis (RA) is an autoimmune inflammatory
disease leading to joint destruction, disability, systemic
complications, shorter life expectancy and increased
socioeconomic costs. RA can be divided into two major groups
based on the presence or absence of antibodies to citrullinated
peptide antigens (ACPA) (1). The RA incidence in Norway is 25
per 100 000 per year (2), and the majority of these patients will
start treatment with one or more disease-modifying
antirheumatic drugs (DMARDs), with the most extensively
used being methotrexate (MTX) (2). The mechanisms of action
of MTX are not fully understood, but are shown to involve
reduced cell proliferation, increased apoptosis of T cells,
increased endogenous adenosine release, altered expression of
cellular adhesion molecules, changes in cytokine production,
humoral responses and bone formation (3). Recently, the low-
dose MTX modulation of inflammatory conditions was
suggested to act through suppression of JAK/STAT signaling
pathways (4). MTX shows good efficacy in a proportion of
patients, but beyond two years after starting MTX, a study
showed that only 53-71% of RA patients in close clinical
follow-up remained on MTX monotherapy (5). A substantial
number of patients do not respond adequately to MTX alone,
and it is necessary to either discontinue or combine MTX with
other drugs to achieve remission. The consequence of
suboptimal treatment and delayed remission might be
irreversible joint damage (6). Therefore, a treat-to-target
approach, consisting of frequent clinical consultations and a
quicker introduction of more potent drugs to reduce the
disease activity, has been introduced (7). Additionally,
biomarkers to predict treatment response is warranted, since
the effect of first treatment is strongly associated with long-term
outcome in RA patients (8).

The heterogeneity of the underlying biological mechanisms
involved in RA is likely influencing the variable treatment
outcome. RA is caused by a complex, and yet poorly
understood, interplay between genetic, epigenetic and
environmental factors. Smoking is, as of yet, the most
important environmental risk factor (9, 10), and more than
100 different loci with single nucleotide polymorphisms (SNPs)
alleles associated with increased risk of RA (11). Genetic variants
have also been reported to be associated with MTX treatment
(12) and MTX response in RA (13, 14) and juvenile idiopathic
arthritis (JIA) (15).

Already in 1996, Kim et al. showed that inflammatory
arthritis was associated with a significant degree of global DNA
Abbreviations: ACPA, Anti-citrullinated protein antibody; ACR, American
College of Rheumatology; CpGs, CpG sites; CRP, C-reactive protein; DAS28,
Disease activity score 28; DMARD, Disease modifying antirheumatic drugs;
DMPs, Differentially methylated positions; ESR, Erythrocyte sedimentation rate;
EULAR, European League Against Rheumatism; FDR, False discovery rate;
GWAS, Genome-wide association studies; JIA, Juvenile idiopathic arthritis;
mRRBS, Multiplexed reduced representation bisulfite sequencing; MTX,
Methotrexate; NOR-VEAC, The Norwegian Very Early Arthritis Clinic;
PBMCs, Peripheral blood mononuclear cells; RA, Rheumatoid arthritis; RF,
Rheumatoid factor; SNPs, Single nucleotide polymorphisms.
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hypomethylation in peripheral blood mononuclear cells (PBMC)
that was reversed with MTX treatment (16). In 2015, global DNA
hypomethylation, which was reversed with MTX, was confirmed
in bulk T cells from patients with RA (17). However, irrespective
of disease, the overall degree of DNAmethylation differs between
T cell subsets, and a global loss of DNA methylation naturally
occurs during differentiation of CD4+ memory cells from CD4+

naïve T cells (18). Furthermore, even though global DNA
methylation changes have been reported during MTX
treatment in RA patients, no specific genomic regions or loci
have been identified yet. However, at diagnosis, DNA
methylation levels at 21 CpGs, assessed in T cells using
Infinium 450k array, have been reported to be associated with
subsequent response to diverse DMARDs, and 1/3 of these
patients received MTX monotherapy (19).

In the current study, we aimed to reveal genetic regions where
DNA methylation is influenced by MTX treatment in T cell
subsets from RA patients. To do this, we conducted an
ep igenome-wide as soc i a t ion s tudy us ing reduced
representation bisulfite sequencing (mRRBS) in naïve and
memory CD4+ T cells isolated from newly diagnosed RA
patients before and after MTX treatment to identify
differentially methylated positions (DMPs).
MATERIAL AND METHODS

Subjects
The cohort consists of nine RA patients diagnosed according to
the 2010 American College of Rheumatology/European League
Against Rheumatism (ACR/EULAR) RA classification criteria
(20). Eight patients were included at Diakonhjemmet hospital
and one at Martina Hansen’s Hospital between 2014 and 2016 in
a clinical cohort; The Norwegian Very Early Arthritis Clinic
(NOR-VEAC) observational study (ISRCTN05526276) (21). All
RA patients were recruited at the day of diagnosis (newly
diagnosed), followed by blood sampling and CD4 T cells
isolation on the same day. The patients had not been treated
with any DMARDs nor steroids at baseline.

Clinical Data
All patients were clinically examined and gave a blood sample at
two timepoints, baseline and a follow-up. The timepoint for the
follow-up was three months for N=6 patients and six months for
N=3 patients, and they were all clinically examined by a
rheumatologist at the time of blood sample withdrawal. The
patients’ disease activity was monitored with Disease activity
score 28 DAS28 (22), a composite score which includes the
clinical assessment of 28 joints, blood values of inflammatory
parameters and a score (0–100) from both the clinician and the
patient. Depending on the values, the patients were categorized;
>5.1: high disease activity, >3.2, but ≤ 5.1: moderate disease
activity and ≤ 3.2: low disease activity. If the patient had DAS28 ≤
2.6, clinical remission was achieved. The EULAR response
criteria were used to classify the patients as non-, moderate or
good responders to MTX, depending on change and level of the
November 2021 | Volume 12 | Article 713611
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patients’DAS28 score (23). DAS28 and EULAR response criteria
are used to monitor response to treatment and in this study, the
disease progression between the two blood withdrawals.

Available clinical data included 28 and 32 swollen joint count,
28 and 32 tender joint count, patient global health, DAS28,
rheumatoid factor-status, ACPA-status, c-reactive protein
(CRP), erythrocyte sedimentation rate (ESR), gender, age,
smoking status and medication (Table 1) at both time points.
Radiographs of hands and feet were taken at baseline and
follow-up.

Isolation of Immune Cells and
DNA Extraction
The isolation of T cells from all samples was initiated within 30
minutes after blood sampling. 200 ml whole blood was collected
using a blood bag (Fresenius Kabi, Oslo, Norway) pre-filled with
2 ml 0.5M EDTA (Thermo Fisher Scientific Inc, Massachusetts,
USA) and directly diluted in 300 ml PBS (PBS without MgCl,
Thermo Fisher Scientific Inc) with 1 ml 1mM EDTA (1 mM) and
10 ml 2% foetal bovine serum (BioNordika, Oslo, Norway). The
blood-PBS solution was transferred to 50 ml SepMate™ tubes
(STEMcell Technologies, Vancouver, British Columbia, Canada)
pre-filled with 14 ml Lymfoprep (Alere, Massachusetts, USA)
and centrifuged following the company’s recommendations. The
PBMC enriched cell suspension was washed with PBS (0.4% 2
mM EDTA). The CD4+ cells were isolated using EasySep™

Human CD4+CD25+ T Cell Isolation Kit (STEMcell
Technologies) with enrichment of CD4+ cells, followed by
depletion of CD25+ cells. The CD4+ CD25low cells were
separated into CD4+ memory (CD8-, CD14-, CD16-, CD19-,
CD20-, CD36-, CD56-, CD123-, TCR gamma/delta, CD66b,
Frontiers in Immunology | www.frontiersin.org 3
glycophorinA, CD25-, CD45RO+) and CD4+ naïve (CD8-,
CD14-, CD16-, CD19-, CD20-, CD36-, CD56-, CD123-, TCR
gamma/delta, CD66b, glycophorinA, CD25-, CD45RO-) T cells
(EasySep™ PE Selection Kit and CD45RO-PE (BioLegend, San
Diego, USA). Isolated cells were tested for purity and viability by
using BD Accuri™ C6 Cytometer (BD Biosciences, New Jersey,
USA). We used Fluorescence Minus One to set the gates.

DNA was isolated from CD4+ memory and CD4+ naïve T
cells using RNA/DNA/Protein Purification Plus Kit (Norgen
Biotek Corp, Ontario, Canada), and cleaned using QIAamp
DNA Micro Kit (Qiagen, Hilden, Germany). The extracted
DNA from the CD4+ naïve cells was treated with proteinase K
and RNase A (Master-Pure Complete DNA & RNA Purification
kit, Epicentre) and we performed clean-up using 1.8x Agencourt
Ampure XP beads (Thermo Fisher Scientific). The extracted
DNA from CD4+ memory cells was treated with 10 mg/ml
proteinase K (Sigma-Aldrich, Missouri, USA) and cleaned with
Genomic DNA Clean & Concentrator Kit (Zymo Research,
California, USA). Extracted and Proteinase K-treated DNA
from both cell types was quantified and qualified by Qubit 2.0
fluormeter dsDNA HS Assay Kit (Thermo Fisher Scientific Inc)
and NanoDrop (Model ND1000, software v3.0.0, Thermo Fisher
Scientific Inc).

Library Preparation for Multiplexed
Reduced Representation Bisulfite
Sequencing
The DNA extracted from the CD4+ naïve cells was prepped for
multiplexed reduced representation bisulfite sequencing
(mRRBS) on Illumina HiSeq3000 according to the Boyle et al.
mRRBS protocol (24), using the Diagenode Premium RRBS kit
TABLE 1 | Patient characteristics at baseline and follow-up (months).

Patient Time of
blood
sample

Gender Age Smoking
status

RF ACPA CRP ESR TJC
28/32

SJC
28/32

Pat
GA

Phys
GA

MTX DAS28 DAS28
change

DAS28
Response

Disease
activity

A Baseline Male 50 Earlier 15 103 2 17 13/17 14/16 89 40 6.3 High
Follow-up (3) 51 1 10 5/5 5/5 50 40 25 4.2 -2.1 Moderate Moderate

B Baseline Female 40 Never 37 124 4 19 3/3 3/4 10 18 3.7 Moderate
Follow-up (3) 40 3 6 1/3 0/1 0 2 20 2.2 -1.4 Good Remission

C Baseline Male 58 Earlier 25 191 17 19 10/14 9/11 85 70 5.9 High
Follow-up (3) 58 2 4 0/0 0/0 8 4 20 1.1 -4.8 Good Remission

D Baseline Male 73 Earlier 107 >340 21 45 6/6 3/3 61 35 5.4 High
Follow-up (3) 73 1 7 7/7 0/0 9 13 20 3.0 -2.4 Good Low

E Baseline Female 68 Earlier 32 >340 9 48 9/11 9/11 71 46 6.2 High
Follow-up (6) 69 3 32 14/16 1/1 63 40 15 5.7 -0.5 No

improvement
High

F Baseline Female 73 Never 21 2 108 68 27/29 27/29 99 98 8.7 High
Follow-up (3) 73 6 15 0/0 0/0 57 20 2.7 -6.0 Good Low

G Baseline Female 57 Present 7 310 14 44 3/3 4/4 30 50 4.6 Moderate
Follow-up (6) 58 1 6 0/0 0/0 41 10 15 1.8 -2.8 Good Remission

H Baseline Female 60 Earlier 86 142 17 41 4/4 3/4 34 40 4.7 Moderate
Follow-up (3) 60 4 26 1/2 0/0 22 15 20 3.2 -1.5 Good Low

I Baseline Female 50 Earlier >300 162 8 18 1/1 1/1 45 30 3.5 Moderate
Follow-up (6) 51 1 10 0/0 0/0 7 2 20 1.7 -1.8 Good Remission
N
ovember
 2021 | Vo
lume 12 | Arti
Time of blood sample, number of months in brackets; RF, rheumatoid factor (IgM); U/mL. Positive ≥25; ACPA, Anti-citrullinated protein antibodies; U/mL. Positive ≥10; CRP, C-reactive
protein; mg/L; ESR, Erythrocyte sedimentation rate; TJC, Tender joint count; SJC, Swollen joint count; Pat GA, Patient global assessment. Score 0-100; Phys GA, Physician global
assessment. Score 0-100; MTX, Methotrexate; mg; DAS28, Disease activity score with 28 joint count; Disease activity, DAS28 >5.1; High; >3.2 but ≤5.1; Moderate; ≤3.2; Low; ≤2.6
Remission.
cle 713611
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(Diagenode, Seraing, Belgium) (25). The mRRBS libraries
(N=18) were sequenced with indexes from the Diagenode
Premium RRBS kit as 50 base pair, single end reads with 20%
PhiX spike control and 6 samples per lane.

The CD4+ memory cells were prepped for mRRBS on
Illumina HiSeq2500 at Institute of Clinical Molecular Biology,
Christian-Albrechts-University of Kiel, using an in-house
protocol based on Boyle et al. (24) and Gu et al. (26). The 18
libraries were sequenced as 50 base pair single end reads with
10% PhiX spike control and 6 samples per lane.

Achieved Phred quality score was >28 in all reads used from
mRRBS sequencing, for both cell populations.

One sample (technical replicate) was sequenced on both
platforms (HiSeq 2500 and HiSeq 3000) and was compared to
determine how the different sequencing platforms would impact
the results. The correlation was 0.9341 for this sample, and hence
we found the results to be comparable.

DNA Methylation Analysis
Sequencing Alignment and Quality Control
DNAmethylation analyses were carried out using a combination
of the programming languages Unix, Python, Java and R (27)
with Bioconductor (v2.10) (28). Fastq-files were pre-trimmed
and aligned to the current Human Genome version 19 (hg19)
with a maximum of two mismatches per read length using
BSMAP (29). The methratio.py script was used to calculate
DNA methylation percentage per loci. Quality control
of sequencing reads was initially performed using FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc).
After alignment, the alignment efficiency and specificity
of the reads were assessed using the HsMetrics and
RrbsSummaryMetrics (Piccard tools, http://broadinstitute.
github.io/picard). To reduce the possibility of bias in the
analyses, we removed both CpGs on the sex chromosomes and
Frontiers in Immunology | www.frontiersin.org 4
overlapping SNPs, and RnBeads were used for further QC
analysis, including manual inspection of the diagnostic QC
plots. The list of potentially polymorphic CpGs has been
generated using the 2011051 release of the 1,000 Genomes
project (30). Computational threshold for inclusion when
analysing the mRRBS data were set to include CpGs with ≥ 10
reads to enable identification of minimum 10% difference in
DNA methylation. Further, we set the minimum number of
samples in each comparison to ≥ 5 samples in both baseline and
follow-up samples. To minimize the number of false positives, the
data was, in addition to the former filtering, we used false
discovery rate (FDR) adjusted p-value ≤ 0.05 (Figure 1).
Annotation was done using the R package AnnotatR (31) from
Bioconductor. All genome positions are given according to
Genome build 37/hg19. We investigated whether genes
annotated to our DMPs were among genes carrying genetic
variants involved in MTX treatment efficiency or toxicity (12–15).

Differential DNA Methylation
To identify DMPs associated with disease activity and response
to MTX, we performed a paired-samples analysis in RnBeads
(32). DNA methylation was calculated individually within each
patient. Then, baseline DNA methylation was tested against
DNA methylation from the follow-up sample individually, and
these results were then combined as a mean DNA methylation
change across all patients. The regression model was adjusted for
known covariates; gender, age, smoking status and ACPA. We
performed analyses in naïve and memory CD4+ T cells
separately. P-values for the DMP level were calculated using
the limma method (33) and fitted using an empirical Bayes
approach. FDR-adjusted P-values ≤0.05 were considered
statistically significant. QQ (quantile-quantile) plots with
lambda-values and standard errors were generated in the R
packages ggplot2 and QQperm.
FIGURE 1 | Filtration criteria for identification of differentially DNA methylated CpG sites in both CD4+ naïve and memory T cells. SNPs, Single nucleotide polymorphisms.
November 2021 | Volume 12 | Article 713611
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Overlap between reported RA risk GWAS loci and the
significant DMPs observed in our study was investigated using
a window size of maximum +/- 500 kb surrounding the SNPs
reported by Yarwood et al. (34).
RESULTS

Characterization of Patients
All nine patients had active joint inflammation when the baseline
blood sample was drawn, and they were all treatment naïve for
DMARDs and steroids (Table 1), however four patients were
taking regular medications for other chronic illnesses
(Supplementary Table S1). The majority of patients were
female (N=6) and ACPA positive (N=8). At baseline, the
patients had a mean DAS28 of 5.4, and five patients had high
disease activity according to DAS28 (>5.1). Three patients had
erosions on radiographs of the hands and/or feet at baseline.

Two patients started treatment with MTX monotherapy, and
seven with MTX and prednisolone combined. TheMTX start dose
was 15 mg/week for all patients, except one who started with 20
mg/week. At follow-up, four patients were in clinical remission
(DAS28 ≤2.6) and the mean DAS28 was 2.8. At the time of the
second blood sample, the patients either received MTX
monotherapy (N=5) or MTX with prednisolone (N=4). Dosage
of prednisolone and MTX varied slightly between patients at
follow-up (Table 1 and Supplementary Table S1). At follow-up,
seven patients had a good response, one patient had a moderate
response and one patient had no improvement to MTX according
to the EULAR response criteria (23) (Table 1).

Data Generation and Quality Assessment
Flow cytometry showed that the mean purity was 94% (range 85
to 99%) for CD4+ memory T cells (CD4+CD45RO+) and 82%
(range 68 to 95%) for CD4+ naïve T cells (CD4+CD45RA+)
(Supplementary Figure S1). The bisulfite conversion rate
was ≥97.2% for CD4+ naïve T cells, and ≥99.5% for CD4+

memory T cells (Supplementary Table S2). The number of
aligned mRRBS reads was >13.1 million for each subset of
samples (divided by cell type), and the mean CpG coverage
was >9.5 per sample (Supplementary Table S2). The on target
base count was >331 million across the samples, and the mean
10x coverage ranged from 15.9 – 24.3%. Altogether, 1,303,122
and 855,972 CpG sites were investigated in CD4+ naïve and
CD4+ memory T cells, respectively (Figure 1). The tested CpGs
were generally not covered by the CpGs tested using Infinium
450k or EPIC microarray technologies.

MTX Treatment Influenced DNA
Methylation Levels at Multiple CpG Sites in
Both CD4+ Naïve and Memory T Cells
The mean DNA methylation across all CpGs throughout the
genome was higher in CD4+ naïve T cells (0.639) than in CD4+

memory T cells (0.557) (Supplementary Table S3). The
distribution of the significant (PFDR adj <0.05) DMPs across
chromosomes is shown in Figure 2, and information about the
Frontiers in Immunology | www.frontiersin.org 5
sites is found in Supplementary Table S4. Q-Q plots showed a
deviation of the observed from the expected, providing evidence of
DNA methylation differences before and after MTX treatment
(Supplementary Figure S2), but with low inflation (lambda=1.06
for CD4+ naïve and lambda=0.84 for CD4+ memory T cells).

In CD4+ naïve T cells, MTX treatment was associated with
226 significant DMPs, whereas 142 DMPs (62.8%) showed
decreased DNA methylation. The 226 DMPs were annotated
to 174 genes (Figure 1), and the genes for the most significant
DMP (PFDR adj <5x10

-5) were ZNF793, DNAAFS, TRIM15,
TRIM10 and USP37 (Supplementary Table S4).

In CD4+ memory T cells, MTX treatment was significantly
associated with DNA methylation differences at 188 DMPs with
111 DMPs (59.0%) displaying increased DNA methylation. The
188 DMPs represented 135 genes, with WDR81, NXNRD1,
GRAMD2B, TRAF2, SPART, HDAC4 and NR2E1 annotated to
the most significant DMPs (Supplementary Table S4).

Altogether, 593,509 sites were tested in both cell types, but
none of the significant DMPs overlapped. However, one gene,
PCDH17, was found to harbor significant DMPs in both CD4+

naïve and memory T cells after MTX treatment. In CD4+ naïve T
cells, the mean DNAmethylation value for the PCDH17 CpG site
was decreased from 57.5% to 32.0% after treatment with MTX,
while the mean DNA methylation increased from 4.3% to 5.5%
in CD4+ memory T cells.

Next, we investigated the DNAmethylation at genes annotated
to the 21 DMPs identified by Glossop et al. to be differentially
methylated in T cells collected before treatment from responders
vs non-responders (19). Interestingly, two of the genes, SORCS2
and TRIM15, were found to harbor CpGs that significantly
changed their methylation levels after MTX treatment. The
intronic CpG in SORCS2 showed variable mean DNA
methylation before treatment (96.5%), but was completely
methylated in CD4+ memory T cells after MTX treatment
(Figure 3A). All patients with successful measurements of DNA
methylation for SORCS2 at both time points (N=5) had a good
response to MTX and had low disease activity (DAS28 ≤ 3.2) at
follow-up, but three of the five patients were not in clinical
remission (DAS28 ≤ 2.6) (Table 1). The CpG located in the
promoter of TRIM15 showed a mean decrease in DNA
methylation in CD4+ naïve T cells from 98.9% before treatment
to 95.0% after MTX. Seven of the nine patients hadmeasures at the
CpG in TRIM15 at both time points (Figure 3B). All the seven
patients had a good response to MTX and low disease activity
(DAS28 ≤ 3.2) after treatment (Table 1). Two patients did not
show individual decrease in DNA methylation before and after
MTX. These two patients were among the three patients who
achieved remission (DAS28 ≤ 2.6) at the follow-up time point. The
remaining four patients with decrease in DNA methylation did
not achieve clinical remission (Table 1).

DMPs Associated With MTX Treatment
That Overlap With Genetic RA Risk Loci
Next, we wanted to investigate if any of the DMPs associated
with MTX treatment in RA patients were in regions overlapping
genetic RA risk loci (34), since the genes annotated for SNP risk
November 2021 | Volume 12 | Article 713611
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variants already have been implicated in RA susceptibility and
pathogenesis. One could envisage that genes influencing disease
development (either through methylation changes or as risk
SNPs influencing gene expression levels) also could be involved
in the MTX treatment process, especially when patients respond
to the treatment. Given that few RA risk loci have been fine
mapped, we searched for DMPs located +/- 500 kb from the lead
RA risk SNP (Supplementary Table S5). In CD4+ naïve T cells,
11 DMPs were in the proximity of genetic RA risk loci, and for
Frontiers in Immunology | www.frontiersin.org 6
the SYNGR1 gene, two DMPs were detected. In CD4+ memory
cells, 16 DMPs were found near RA risk SNPs, and CCR6 had
two DMPs located within the gene. The only instance where the
same gene was annotated for both the risk SNP and the DMP,
was for the WDFY4 gene. WDFY4 has one significant DMP in
CD4+ memory T cells before and after treatment, and a trend of
increased overall mean methylation in the RA patients after
treatment with MTX was seen across several sites (Figure 4).
DNA Methylation Changes in Genes
Involved in MTX Response
Interestingly, among the genes annotated to significant DMPs
were several solute carrier (SLC) transporters (Supplementary
Table S4). These transporters play a role in transport of
substrates across biological membranes, which is important in
the absorption of drugs. Changes in DNA methylation after
MTX treatment at CpGs annotated to SLC6A5, SLC9B1,
SLC25A3, and SLC29A1 in CD4+ naïve T cells, and SLC30A5
and SLC38A1 in CD4+ memory T cells (Table 2). Mainly
increased (SLC6A5, SLC25A3, SLC30A5 and SLC38A1), but
also decreased DNA methylation (SLC9B1 and SLC29A1) was
observed at these sites after MTX treatment.

We also investigated whether genes implicated through SNPs
found to be associated with MTX response in either RA (13, 14) or
JIA (15) were among the genes annotated to CpGs showing
differential DNA methylation after MTX treatment in the RA
patients (Table 2). Indeed, DMPs identified in naïve CD4+ T cells
were annotated toROBO2,CASC15,HAND1,CACNA1,MAGI2 and
CSMD1 genes. The DMPs in the two latter genes showed increased
A B

FIGURE 3 | Spaghetti plots showing the change in DNA methylation in RA
patients at a DMP located in (A) SORCS2 and (B) TRIM15 between baseline
and follow-up. RA; Rheumatoid arthritis, DMP, Differentially methylated
position; SORCS2, Sortilin Related VPS10 Domain Containing Receptor 2;
TRIM15, Tripartite Motif Containing 15.
A

B

FIGURE 2 | Modified Manhattan plots showing mean DNA methylation differences on the y-axis and genomic positions on the x-axis. Green dots represent
significant DMPs with increased DNA methylation at follow-up. Red dots represent significant DMPs with decreased DNA methylation at follow-up. (A) CD4+ memory
T cells (Increased DNA methylation: 111 DMPs. Decreased DNA methylation: 77 DMPs). (B) CD4+ naïve T cells (Increased DNA methylation: 84 DMPs. Decreased
DNA methylation: 142 DMPs). DMPs, Differentially methylated positions.
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DNA methylation, while the first four showed decreased DNA
methylation between the two sample points. For the significant
DMPs in CD4+ memory T cells, only ADARB2 (PFDR adj=0.04)
and EBF3 (PFDR adj=0.03) harbored genetic MTX response variants,
and they both showed increased DNA methylation.

Given the suggested role of JAK/STAT signaling pathway
involved in MTX treatment, as well as a central role in RA (35),
we checked whether genes encoding any of the four JAK proteins
(JAK1, JAK2, JAK3 and TYK2) or the seven STAT proteins
Frontiers in Immunology | www.frontiersin.org 7
(STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and
STAT6) were among the genes annotated to the significant
DMPs (Supplementary Table S4). One DMP was found in the
promoter region of STAT3 (Table 2 and Figure 5A) and showed
an overall mean increase in DNA methylation after treatment
with MTX in CD4+ naïve T cells (Figure 5B). Interestingly, in
contrast, the two patients with moderate or no improvement in
DAS28 after treatment with MTX showed decrease in DNA
methylation of STAT3 after treatment (Figure 5B).
FIGURE 4 | DNA methylation at CpGs overlapping the RA susceptible WDFY4 gene. DNA methylation at CpGs (N=41) overlapping the WDFY4 gene. Smoothed
lines show mean DNA methylation values for the two patient sampling time points (baseline methylation values in green and follow-up values in blue). The red dotted
vertical line marks the position of the DMP, and the grey dotted line marks the RA risk SNP. RA, Rheumatoid arthritis; WDFY4, WD Repeat and FYVE Domain-
Containing Protein 4; SNP, Single nucleotide polymorphism.
TABLE 2 | DMPs annotated to genes previously reported to be relevant to MTX function or treatment response in RA or JIA.

MTX relevance CD4+ T cell subtype Chr CpG position Mean methylation P-value (FDR adj) Annotated gene

Baseline Follow-up

SLC genes
Naïve 11 20631810 0.0327 0.0388 0.0007 SLC6A5
Naïve 4 103840647 1.0000 0.9060 0.0006 SLC9B1
Naïve 6 44186687 0.9218 0.7896 0.0004 SLC29A1
Memory 5 68391268 0.9585 0.9896 0.01 SLC20A5
Memory 12 46660724 0.0071 0.0457 0.003 SLC38A1

Genes harbouring SNPs associated with MTX response in RA
Naïve 3 77184757 0.9753 0.9632 0.003 ROBO2
Naïve 6 21941902 1.0000 0.9799 0.0006 CASC15
Memory 10 1454376 0 0.0607 0.04 ADARB2

Genes harbouring SNPs associated with MTX response in JIA
Naïve 5 153856041 0.0750 0.0620 0.0006 HAND1
Naïve 22 40082539 1.0000 0.9433 0.0006 CACNA1
Naïve 7 77649488 0.0511 0.1329 0.0003 MAGI2
Naïve 8 3773745 0.9442 0.9752 0.008 CSMD1
Memory 10 131747160 0.9080 0.9223 0.03 EBF3

JAK/STAT genes
Naïve 17 40540820 0.0753 0.1973 0.0002 STAT3
No
vember 2021 | Volume 1
RA, Rheumatoid arthritis; JIA, Juvenile idiopathic arthritis; MTX, Methotrexate; Chr, Chromosome; FDR, False discovery rate; SLC, Solute carrier; JAK, Janus kinase; STAT, Signal
transducer and activator of transcription.
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DISCUSSION

By using mRRBS, we identified significant DNA methylation
changes associated with MTX treatment, and these changes were
distinct in naïve and memory CD4+ T cells from RA patients.
After MTX treatment, the majority of significant sites showed
increased DNA methylation in CD4+ memory T cells and
decreased DNA methylation in CD4+ naïve T cells, compared
to the samples drawn from the same patients at the time of
diagnosis before DMARD treatment. Some of the DMPs were
located in genes earlier described to be differentially methylated
in responders and non-responders to MTX in bulk T cells from
RA patients before treatment (19), i.e. TRIM15 and SORCS2. In
our study, we found that MTX treatment influenced the CpG for
TRIM15 in CD4+ naïve T cells, while for SORCS2 in CD4+

memory T cells.
The DNA methylation levels varied largely at the same CpGs

between CD4+ naïve and memory T cells. Globally, we observed
higher methylation in CD4+ naïve T cells than in CD4+ memory
T cells, which is in line with the previously described global loss
of DNA methylation in heterochromatic parts of the genome
during differentiation from CD4+ naïve to memory T cells (18).
These findings highlight the importance of investigating DNA
methylation profiles for CD4+ naïve and memory T
cells, separately.

DNA methylation is known to be cell type specific and
important for regulation of genes, but the exact mechanism is
still unknown. In general, DNA methylation at gene promoter
regions is negatively correlated with gene expression, but this is
not always the case. Naïve and memory CD4+ T cells have
different immune functions and disruption of cell type specific
cellular processes as a result of altered DNA methylation may
lead to phenotypic alterations. DNA methylation is, in addition
and in tight interaction with histone modifications, believed to
influence DNA accessibility and binding of e.g. the
transcriptional complex including transcription factors and
Frontiers in Immunology | www.frontiersin.org 8
cofactors. Unfortunately, gene expression data is not available
for these samples, which makes it difficult to draw any
conclusions about the functional consequences of decreased
DNA methylation on gene expression and thereby the
biological implications for RA.

The design of our study aimed to reduce potential noise in the
compared methylation profiles by 1) using a clinically well-
described cohort of treatment naïve, newly diagnosed patients,
2) sampling the same patients before and after treatment with
MTX, 3) methylation profiling of CD4+ naïve and memory T
cells, separately, 4) using mRRBS to generate high resolution and
genome-wide DNA methylation, and finally, 5) adjusting for
gender, age, smoking status and ACPA in the statistical analyses
to reduce influence of known covariates on DNA methylation.

This approach, however, reduced the number of patients
included. Due to limited cohort size, we could not
systematically assess CpGs that could be markers for response
to MTX treatment. Future studies regarding treatment response
are warranted, and such studies are further motivated by the
observation that two of the genes (TRIM15 and SORCS2) with
CpGs being influenced by MTX treatment were also reported by
Glossop et al. to harbor epigenetic markers for treatment
response to several DMARDs (19). Encouragingly in this
respect, molecular signatures have been reported to accurately
predict anti-TNF treatment response, but with distinct DNA
methylation and transcriptomic profiles for RA patients treated
with adalimumab and etanercept (36).

A recent study of DNA methylation and gene expression,
associated with RA, in bulk CD4+ T cells found that 22% of the
differentially methylated regions and the differentially expressed
genes overlapped the same topologically associated domains
(37). A number of these were also linked to genetic RA risk
variants through expression or methylation quantitative traits.

The functional relevance of the genes annotated for our
significant DMPs is supported by the notion that these genes
have been reported to either influence RA risk (34) or in MTX
A B

FIGURE 5 | DNA methylation at CpGs overlapping the RA susceptible STAT3 gene. (A) DNA methylation at CpGs (N= 73) overlapping the STAT3 gene. Smoothed
lines show mean DNA methylation values for the two patient sampling time points (baseline methylation values in green and follow-up values in blue). The red dotted
vertical line marks the position of the significant DMP. (B) Intra-individual changes in DNA methylation between baseline and follow-up for the significant DMP in
STAT3. RA, Rheumatoid arthritis; STAT3, Signal transducer and activator of transcription 3; DMP, Differentially methylated position.
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treatment response or pathways (4, 13). Among the genes
annotated for DMPs were several SLC transporters, which
facilitate the transport of a wide array of substrates across
biological membranes, including the absorption of drugs (38).

The most robust methylation differences, i.e. with more than
one significant DMP detected, were for SYNGR1 in CD4+ naïve T
cells and for CCR6 in CD4+ memory T cells. SYNGR1 and CCR6
have been identified as RA susceptibility loci in large GWAS
studies (39, 40). Inhibition of ccr6, by monoclonal antibodies in
mice, has been reported to supress arthritis (41). We also
detected increased DNA methylation after MTX treatment in
CD4+ memory T cells at a CpG located in the WDFY4 gene,
which is a gene reported to harbour SNPs associated with several
rheumatic diseases, i.e. systemic lupus erythematosus, JIA and
RA (34, 42–44).

We found an overlap between our DMPs and eight regions
harboring SNPs found to predict response to MTX treatment in
RA (13, 14) and JIA (15). Our finding of MTX also influencing
the DNAmethylation at such loci suggest a role for genes in these
regions, both genetically and epigenetically, during MTX
treatment. Our DMPs draw attention to CD4+ naïve and
memory T cells being important.

Furthermore, we detected a significant DMP in STAT3 in
CD4+ naïve T cells showing increased DNA methylation in RA
patients after treatment with MTX, which is of particular interest
given the described role of the JAK/STAT pathway in MTX
treatment (4). Recently, a study analyzing differential DNA
methylation levels in naïve and memory CD4+ T cells in RA
patients, also detected a central role for JAK1/STAT3/IL6 in
these cell subtypes (45). This points to the importance of using
anti-IL6 and JAK-inhibitors early in the disease development in
RA. Suppression of the JAK/STAT pathway has been suggested
to represent one of the principal anti-inflammatory and
immunosuppressive mechanism of action of low-dose MTX
(46). Expression of the STAT3 gene has been found to
correlate with synovitis and modulation of Th17 differentiation
in RA patients (47), while STAT3 inhibition has been reported to
mediate chemokine expression in RA synoviocytes (48). A link
between STAT3, HIF1a and Notch-1 signalling in regulation of
pro-inflammatory mechanisms in RA has also been described
(49). Interestingly, when we looked at individual DNA
methylation values for STAT3 in our RA patients, we found
that the two patients who obtained moderate or no clinical
improvement according to their DAS28 score, showed
decreased DNA methylation after treatment with MTX.
Obviously, our study is too small to draw any conclusion, but
given STAT3 role as a mediator of inflammatory mechanisms
and that methylation changes can alter STAT3 expression, this is
an interesting observation that should be explored further in
larger patient cohorts.
CONCLUSION

We detected CpG sites with DNA methylation levels associated
with MTX treatment in CD4+ naïve and memory T cells isolated
Frontiers in Immunology | www.frontiersin.org 9
from RA patients. Several of these CpGs were annotated to genes
previously implicated in RA or MTX treatment, including
TRIM15, SORCS2, CCR6, SYNGR1, WDFY4, and in particular
STAT3 given its role of the JAK/STAT pathway in
MTX treatment.
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