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Abstract
The decline of coral reefs has fueled interest in determining whether mesophotic 
reefs can shield against disturbances and help replenish deteriorated shallower reefs. 
In this study, we characterized spatial (horizontal and vertical) and seasonal pat-
terns of diversity in coral recruits from Dabaisha and Guiwan reefs at Ludao, Taiwan. 
Concrete blocks supporting terra-cotta tiles were placed at shallow (15m) and meso-
photic (40m) depths, during 2016–2018. Half of the tiles were retrieved and replaced 
biannually over three 6-month surveys (short-term); the remainder retrieved at the 
end of the 18-month (long-term) survey. 451 recruits were located using fluorescent 
censusing and identified by DNA barcoding. Barcoding the mitochondrial cytochrome 
oxidase I (COI) gene resulted in 17 molecular operational taxonomic units (MOTUs). 
To obtain taxonomic resolution to the generic level, Pocillopora were phylotyped 
using the mitochondrial open reading frame (ORF), resolving eight MOTUs. Acropora, 
Isopora, and Montipora recruits were identified by the nuclear PaxC intron, yielding 
ten MOTUs. Overall, 35 MOTUs were generated and were comprised primarily of 
Pocillopora and, in fewer numbers, Acropora, Isopora, Pavona, Montipora, Stylophora, 
among others. 40% of MOTUs recruited solely within mesophotic reefs while 20% 
were shared by both depth zones. MOTUs recruiting across a broad depth distribu-
tion appear consistent with the hypothesis of mesophotic reefs acting as a refuge 
for shallow-water coral reefs. In contrast, Acropora and Isopora MOTUs were struc-
tured across depth zones representing an exception to this hypothesis. This research 
provides an imperative assessment of coral recruitment in understudied mesophotic 
reefs and imparts insight into the refuge hypothesis.
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1  | BACKGROUND

Climate change and other human disturbances have propelled an on-
going decline in coral reefs worldwide, and the outlook of reefs re-
mains bleak (Hoegh-Guldberg et al., 2018; Hughes et al., 2017; Van 
Hooidonk et al., 2016). Mesophotic coral ecosystems (MCEs)—coral 
reefs between 30 and 150m—may shelter against disturbances which 
affect shallower reefs (< 30m) and may propagate larvae to recruit 
on impacted shallow reef ecosystems (Baird et al., 2018; Bongaerts 
et  al.,  2010; Bongaerts & Smith,  2019). Reproduction in corals is 
induced by environmental cues, such as the synergic properties 
of increasing light and temperature (reviewed in Harrison (2011)). 
Because these signals attenuate with depth (Kahng et  al.,  2019), it 
is plausible that patterns of recruitment in mesophotic corals may 
contrast from corals in shallow reefs (Prasetia et al., 2017; Shlesinger 
et al., 2018). Most mesophotic corals studied to date (9 of 11) have 
exhibited reduced fecundity and gamete size compared to shallow-
water conspecifics, resulting in diminished larval supply (Eyal-Shaham 
et al., 2016; Holstein et al., 2016; Prasetia et al., 2016, 2017; Shlesinger 
et al., 2018; Smith et al., 2016). Studies examining genetic connectiv-
ity in Montastraea cavernosa (Brazeau et al., 2013; Eckert et al., 2019; 
Serrano et  al.,  2014), Porites astreoides (Serrano et  al.,  2016), and 
Agaricia fragilis (Bongaerts et al., 2017) reveal population structures 
partitioned across shallow and deep zones, indicating that verti-
cal genetic exchange is restricted. In contrast, similar analyses in 
Stephanocoenia intersepta (Bongaerts et  al.,  2017), Agaricia lamarcki 
(Hammerman et al., 2018), and Pocillopora verrucosa (de Palmas, 2020) 
support well-mixed cohorts. Interpreted together, these results sug-
gest that larval exchange across vertical gradients is likely location- 
and/or species-specific.

Artificial units of recruitment (AURs) have been employed by 
researchers to assess coral recruitment for more than 100  years 
(Mundy, 2000), and their application to collect and study recruits has 
seen widespread use (Field et al., 2007; Hill & Wilkinson, 2004). Yet, 
the availability of research targeting recruitment decreases inversely 
with depth, constrained by the technical challenges associated with 
working beyond the recreational scuba depth limit. Historically, few 
studies have examined patterns of recruitment at depths beyond 
30m (Bak & Engel,  1979; Birkeland,  1977; Birkeland et  al.,  1981; 
Hughes & Tanner, 2000; Rogers et al., 1984; Vermeij et al., 2011). 
As of 2017, only 1% of research targeting MCEs had examined re-
cruitment (Turner et  al.,  2017); however, improved availability of 
diving and ROV technology and the development of new methods 
to study MCEs are accelerating this research. For example, Turner 
et al. (2018), innovated an approach to examine patterns of recruit-
ment at 40m depth in Western Australia which foregoes diving. Also, 
Kramer et al.  (2019) used technical diving to describe recruitment 
dynamics at 50m depth in the Red Sea. Albelda et al.  (2020) used 
conventional scuba to compare juvenile and adult assemblages down 
to 40m depth in the Philippines. Despite recent progress, our knowl-
edge of recruitment in MCEs remains limited and many geographic 
areas have never been studied, emphasizing the need for more 
research.

Another challenging aspect of studying the early-life history 
of corals lies in locating small recruits and identifying them based 
on few useful morphological characters (Green & Edmunds, 2011). 
During settlement, spats metamorphose into their benthic life 
stage and begin accretion of the corallite matrix (Gilis et al., 2014), 
on which discrimination of microstructural characters is based 
(Budd & Stolarski, 2011). Fluorescence has proven useful for locat-
ing and identifying corals during this developmental stage (Baird 
et  al.,  2006; Eyal et  al.,  2015; Hsu et  al.,  2014; Roth et  al.,  2013); 
nevertheless, identification of recruits based on morphological traits 
is mainly limited to the family level (Babcock et al., 2003; Green & 
Edmunds, 2011; Nozawa et al., 2013). This limitation is particularly 
important in locations where diversity is high and traits converge 
between confamiliar taxa (Baird & Babcock,  2000), such as the 
Indo-Pacific. An inability to identify recruits complicates ecological 
assessments and hinders our ability to deduce the outlook of threat-
ened coral communities (O’Cain et al., 2019), particularly when con-
familiar species fulfill divergent functional roles within an ecosystem 
(Denis et al., 2017). Therefore, leveraging molecular typing toward 
improving the taxonomic resolution of early-life stage communities 
(Hsu et al., 2014; O’Cain et al., 2019; Shearer & Coffroth, 2006) can 
yield new insights.

This study details a census and comparison of coral recruitment 
in shallow and mesophotic reef communities at Ludao, an island 
off southwestern Taiwan. Shallow and mesophotic communities at 
Ludao have been shown to possess distinctive communities, de-
spite similarities in coral assemblages (Lin & Denis,  2019). In the 
past, assessments of recruitment in Taiwan were conducted above 
15m (Edmunds et al., 2014; Ho & Dai, 2014; Nozawa et  al., 2013; 
Soong et al., 2003) and all have identified recruits morphologically, 
except Hsu et al. (2014) which identified recruits by barcoding. Here, 
we employ technical scuba diving and a sampling design in which 
tiles are fixed to blocks to survey recruitment within shallow and 
mesophotic zones. We censused recruits with the aid of fluorescent 
and white light and then barcoded their DNA using three molecular 
markers to identify recruits and generate molecular operational tax-
onomic units (MOTUs).

2  | MATERIAL S AND METHODS

Recruitment was surveyed off the coast of Ludao Island, situated 
33 km southeast of Taiwan, during April 2017–October 2018. Two 
shallow (14–16 m; hereafter 15m) and two mesophotic sites (38–42 m; 
hereafter 40m) were selected according to habitat composition, fa-
vorable wind, wave and current conditions, and accessibility: Guiwan 
15m (22°36'35.57" N, 121°28'57.10" E), Guiwan 40m (22°38’24.59" 
N, 121°28’51.89" E), Dabaisha 15m (22°38'11.86" N, 121°29'31.24" 
E), and Dabaisha 40m (22°38'09.08" N, 121°29'21.44" E). Shallow 
reefs at Guiwan and Dabaisha consist of fringing reef structures 
which are subjected to high-energy hydrodynamic transport (Lau 
et  al.,  2015). These benthic communities are characterized by ar-
borescent, bushy, and tabular hard corals, clustered octocorals, and 
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encrusting actinarians (Lin & Denis,  2019). MCEs at Guiwan and 
Dabaisha exhibit limited hard substrates interspersed with sediment 
and rubble (Denis et al., 2019). Communities at mesophotic sites are 
denoted by unattached hard corals, bushy and encrusting octocor-
als, massive sponges, encrusting ascidians, filamentous cyanobacte-
rians, and bushy hydrozoans (Lin & Denis, 2019).

Artificial units of recruitment (AURs) were constructed from 
concrete blocks drilled to accept 12 stainless steel concrete sleeve 
anchors: six on the superior surface and three on each oppos-
ing lateral surface (Figure 1a). A labeled terra-cotta tile measuring 
12.5 × 12.5 × 1 cm (total surface area 362.5 cm2/tile) was fastened 
to each sleeve using a stainless steel washer and nut, resulting in an 
arrangement of 12 plates per block. Plates were fixed at a height 
of approximately 7 cm from the face of the block. Six seasonal and 
six long-term tiles were distributed between the superior and lateral 
faces of the block using a Latin square design, producing an arrange-
ment of three vertical long-term tiles, three vertical seasonal tiles, 
three horizontal long-term tiles, and three horizontal seasonal tiles. 
AURs were deployed during 4–8 April 2017, a few days prior to the 
mass coral spawning date, expected between 1 and 11 days after the 
full moon (full moon: 11 April 2017). In total, 20 AURs were deployed 
during the survey: five AURs were deployed at shallow, and upper 
mesophotic zones at Guiwan and Dabaisha (Figure 1b), respectively. 
Seasonal tiles were deployed and retrieved at three 6-month in-
tervals [Season 1 (S1): April–October 2017, Season 2 (S2): October 
2017–April 2018, Season 3 (S3): April–October 2018]. Long-term 
(LT) tiles remained in place throughout and were retrieved at the end 
of the study period (April 2017–October 2018). Seasonal sampling 
consisted of 30 tiles per depth, per site, per season. Retrieved tiles 
were organized in numbered resealable bags and maintained in bins 
filled with circulating seawater to preserve them until processing. 
Coral recruits, defined as individuals that successfully settled and 
survived until the time of collection, were detected by visually in-
specting tiles under fluorescent light, according to the methodology 
described in Hsu et al. (2014). Spats were located and photographed 
under fluorescent blue light (Night Sea BB67), filtered through long-
pass barrier (>500  nm wavelength) filter glasses (Night Sea VG1). 
An additional survey under white light verified that weakly fluo-
rescent and nonfluorescent spats were collected. All tile surfaces: 
top, bottom, and four sides, were inspected for recruits. Spats were 
removed by scraping with a small chisel and preserved in tagged 

vials containing 99% ethanol. Tiles and remaining assemblages were 
tagged, bleached, and dried for storage as vouchers.

DNA was extracted using DNEasy Blood and Tissue kits (Qiagen) 
following the manufacturer's instructions but with slight modifica-
tions to increase DNA yield. Samples were incubated overnight in 
lysis buffer/proteinase K solution, and an additional centrifugation 
was performed (16,000g for 3  min) before DNA elution in order 
to completely dry the filter column. DNA concentration and pu-
rity were verified using a NanoDrop Spectrophotometer (Thermo 
Scientific). DNA was serially diluted to achieve a concentration ap-
proximating 10 ng/ml. PCR was amplified using 15 μl Taq 2X Master 
Mix (Amplicon) diluted to achieve a 30  μl total reaction volume. 
Coral spat DNA was phylotyped using primers which amplify the 
mitochondrial cytochrome oxidase subunit I (COI) region, commonly 
used to differentiate metazoan invertebrates (Folmer et al., 1994). 
COI primers: LCO1490: 5′-GGT CAA CAA ATC ATA AAG ATA TTG 
G-3′ and HCO2198: 5′-TAA ACT TCA GGG TGA CCA AAA AAT CA-
3′. Thermal cycling for COI entailed an initial heating at 95°C for 
3 min followed by 30 cycles at 95°C for 60 s, 45°C for 60s, and 72°C 
for 90s, and a final elongation step of 7 min at 72°C. Spats identi-
fied as Pocilloporidae were further resolved using the mitochondrial 
open reading frame (ORF) region as described in Chen et al. (2008). 
ORF primers: FATP6.1:5′-TTT GGG SAT TCG TTT AGC AG-3′ and 
RORF: 5′-SCC AAT ATG TTA AAC ASC ATG TCA-3′. Thermal cycling 
for ORF comprised an initial heating at 94°C for 3 min followed by 
40 cycles at 94°C for 30 s, 53°C for 30 s, and 72°C for 90 s, and a 
final elongation step of 7 min at 72°C. Spats placed by COI within 
the Acroporidae were subjected to additional PCR using the nuclear 
PaxC 46/47 intron (van Oppen et al., 2011). PaxC primers: PaxC_in-
tron-FP1: 5′-TCC AGA GCA GTT AGA GAT GCT GG-3′ and PaxC_
intron-RP1: 5′-GGC GAT TTG AGA ACC AAA CCT GTA-3′. PCR 
protocol for PaxC consisted of a 95°C denaturation step for 3 min, 
followed by 5 cycles of 30 s at 94°C, 30 s at 50°C, 1 min at 72°C, 
followed by 26 cycles with an annealing temperature of 56°C, and a 
final elongation of 7 min at 72°C. Reactions were verified using 2% 
agar gel electrophoresis and fluorescent gel staining prior to out-
sourcing for Sanger sequencing.

Raw forward and reverse sequences were screened by querying 
the NCBI BLAST database (Megablast) (Altschul et al., 1990), and se-
quences not matching scleractinian corals were excluded from fur-
ther analysis. Using UGENE v.1.31 (Okonechnikov et al., 2012), DNA 

F I G U R E  1   a. Experimental design. 
Artificial unit of recruitment (AUR): a 
concrete block filled with cement for 
ballast and anchored to the seafloor with 
a rebar. Each block supports 12 plates: 6 
in vertical orientation and 6 in horizontal 
orientation. Plate shading identifies 
seasonal and long-term plate placement. 
b. Schematic of blocks on reef (not to 
scale)
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sequences were assembled, and consensus sequences were created 
from forward and reverse reads and aligned using the MUSCLE al-
gorithm (Edgar, 2004). COI sequences were compared to GenBank 
sequences of the same marker matching the search terms “sclerac-
tinia” (Benson et al., 2005). PHYLIP neighbor-joining trees consisting 
of sample and reference sequences were generated under the F84 
distance matrix model in UGENE (Felsenstein, 2004). Molecular op-
erational taxonomic units were generated using a furthest neighbor 
clustering algorithm defining MOTUs on 5% dissimilarity. Sequences 
identified with COI as Pocilloporidae underwent additional phy-
lotyping of the ORF region and those identified as Acroporidae 
were typed with PaxC. PaxC and ORF sequences were aligned with 
GenBank reference sequences which matched the search terms 
“acroporidae” and “pocilloporidae,” respectively. MOTUs for these 
markers were assigned following the same protocol used for the 
COI marker. Finalized phylogenetic trees were rendered using the 
interactive Tree of Life (iTOL) (Letunic & Bork, 2019). Pearson's chi-
squared tests were performed using the “stats” package in R version 
3.4.2 (R Core Team, 2013).

3  | RESULTS

We collected 518 coral-like spats and identified 451 coral spats 
through the combined barcoding of COI, ORF, and PaxC. Recruitment 
averaged 19.1  ±  80.0 recruits/m2 throughout the study period. 
55.5% of spats originated from shallow AURs and 44.5% from meso-
photic AURs. 65.3% of spats recruited on horizontally oriented tiles 
and 34.7% recruited on vertically oriented tiles. Sixty-seven samples 
were excluded from our analysis, representing 7.7% of the overall 
collection: 37 specimens phylotyped as nonscleractinian inverte-
brates, 22 spats for which no PCR product was obtained, or which 
did not return any matches in BLAST database searches, 5 pocil-
loporid samples which did not amplify ORF, and 3 acroporid samples 
which did not amplify PaxC. Recruitment was more abundant dur-
ing S1 (150 recruits) and S3 (126 recruits), largely exceeding S2 (24 
recruits).

Phylogenetic analysis of COI sequences (Figure 2) distinguished 
complex and robust clades. We identified 348 Pocilloporidae: 346 
Pocillopora spp. and two Stylophora pistillata. Thirty-one recruits 
were classified as Acroporidae: 17 Isopora spp., nine Acropora spp., 
four Montipora spp., and a single Astreopora sp. We also collected 
five Agariicid recruits: four Pavona sp. (I) and another Pavona sp. of 
a different haplotype (II). Also, two Astrocoeniidae haplotypes: one 
Stylocoeniella sp. (I) and one Stylocoeniella sp. (II) and three Fungiidae 
genera were recovered: Lobactis sp., Cycloseris sp., and Sinuorota 
sp. Poritidae were represented by two individual haplotypes: 
Porites sp. (I) and Porites sp. (II) Single individuals represented the 
Dendrophyllidae, Merulinidae, Psammocoridae, and Lobophyllidae 
families, respectively: Dipsastraea sp., Goniastrea sp., Psammocora 
sp., and Lobophyllia sp., Leptastreidae sp. is temporarily unclassi-
fied (Scleractinia incertae sedis). A single azooxanthellate coral, 
Dendrophyllia sp., was also identified.

Using the ORF marker, we barcoded 399 samples comprising 
346 recruits classified with COI as Pocillopora, and an additional 53 
samples which were unidentifiable with COI but which amplified 
with the ORF marker. Additionally, the identities of two recruits 
typed with COI as Stylophora pistillata were verified. Phylogenetic 
analysis of the ORF marker (Figure 2b) identified eight Pocillopora 
MOTUs. Overall, the most abundant MOTU retrieved in this study 
was Pocillopora verrucosa, comprising 282 recruits, and represent-
ing 62.5% of all identified recruits and 70% of all pocilloporids. 
We also identified 76 Pocillopora grandis, 27 Pocillopora acuta, nine 
Pocillopora sp. (Type 7), two Pocillopora sp. (Type 2), and three 
unique taxa: Pocillopora damicornis, Pocillopora sp. (Type 1), and 
Pocillopora sp. (Type 8).

Thirty recruits typed with COI as Acropora, Isopora, or Montipora 
were resolved further with the PaxC marker and resolved into ten 
MOTUs (Figure 2c). Isopora sp. (I), likely I. palifera, was the most abun-
dant taxon (n = 14), comprising almost half of acroporids found. PaxC 
genotyping also confirmed three Isopora sp. (II), four Montipora sp. (I), 
two Acropora sp. (III), two Acropora sp. (IV), two Acropora sp. (V), and 
four unique MOTUs: Acropora sp. (I), Acropora sp. (VI), Acropora sp. 
(II), and Montipora sp. (II).

Overall, we identified 35 MOTUs from coral recruits barcoded 
COI, ORF, and PaxC markers, (Figure  3): 17 MOTUs derived from 
the COI marker, eight MOTUs were obtained from ORF barcoding, 
and ten MOTUs from PaxC. 15 MOTUs recruited only within the 
shallow zone, while 13 were found only in the mesophotic zone 
and seven MOTUs recruited at both depths (Figure  3). Thirteen 
MOTUs recruited during S1, 9 MOTUs during S3, and 8 MOTUs in 
S2. Seasonality (χ2 = 152.6, p < .005), site (χ2 = 50.8, p = .03), and 
depth (χ2 = 88.6, p < .005) significantly impacted the distribution 
of MOTUs in this study. When acroporids were excluded, depth 
(χ2 = 65.4, p < .001), and season (χ2 = 123.3, p < .001) remained 
significant but sites did not (χ2 = 34.2, p = .079).

4  | DISCUSSION

We collected and identified 451 recruits, comprising 35 MOTUs and 
13 coral families. Many recruits—the smallest of which possessed a 
diameter of 0.7mm—were too small to reliably identify morphologi-
cal characters which would enable identification beyond the family 
tier. Unidentified samples composed 4% of our overall collection 
and reflect a marked improvement compared to a similar study 
using a high-salt DNA extraction method (9.7%)(Hsu et al., 2014). 
At least 328 scleractinian coral species inhabit the reefs of Taiwan 
and 8 MOTUs identified in this study have been found in previous 
diversity surveys (Dai & Horng, 2009a, 2009b; Denis et al., 2015, 
2019; de Palmas et al., 2018; Huang et al., 2015). Past synonymiza-
tion of “Pocillopora damicornis-like” coral morphologies (Poquita-Du 
et  al.,  2017; Schmidt-Roach et  al.,  2014) has obscured the diver-
sity of Pocillopora acuta in previous surveys of Taiwan, explaining 
its absence in species catalogs. Nevertheless, recent studies have 
begun addressing this deficiency. Their presence could indicate 
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long-distance larval transport and/or undocumented diversity in 
Taiwan; however, more intensive surveys are required to verify this 
inference. Ninety-six scleractinian coral species have been found 
to inhabit Taiwanese mesophotic reefs to date (Denis et al., 2019), 
of which our survey found three: P. damicornis, P. eydouxi, and P. ver-
rucosa. Because these species can also be found on shallow reefs, 
vertical larval transport seems plausible. Denis et al. (2019) also list 
ten coral species known to inhabit the mesophotic zone exclusively, 
yet none were identified in our survey.

Pocilloporidae were abundantly represented throughout our 
study, comprising 401 individuals and nine MOTUs including the 
Pocillopora and Stylophora genera. This pattern is consistent with 
other Taiwanese surveys where Pocilloporidae were the most 
proliferous group (Edmunds et  al.,  2014; Ho & Dai,  2014; Hsu 
et al., 2014; Kuo & Soong, 2010; Soong et al., 2003). The Pocillopora 
genus comprised 88% of overall recruitment but contributed only 
27% of overall MOTUs. Pocillopora is a genus notoriously difficult 
to identify solely based on morphology and its diversity might be 

F I G U R E  2   Neighbor-joining tree of a. COI, b. ORF, and c. PaxC barcoded recruits. Collapsed branches in a. represent Acropora and 
Pocillopora, respectively
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underestimated when forgoing genetic identification (de Palmas 
et  al.,  2018; Soto et  al.,  2018). For example, the synonymization 
of “Pocillopora damicornis-like” coral morphologies (Poquita-Du 
et al., 2017; Schmidt-Roach et al., 2014) has obscured the diversity of 
Pocillopora acuta in previous surveys of Taiwan. This issue which has 
only been addressed recently (Mayfield et al., 2018) and may explain 
the absence of P. acuta in older species catalogs but its detection by 
genetic assays. In Ludao, P. verrucosa exhibits a wide bathymetric 
distribution and constitutes one of the dominant corals structur-
ing shallow and mesophotic seascapes. In addition, P. verrucosa is a 
functionally competitive species, capable of sustained recruitment 
(Kayal et al., 2018), explaining its position as the most copious re-
cruiter here.

Acroporidae was the only taxonomic group to exhibit clear bathy-
metric structuration, and only one MOTU, Acropora sp. (III), was 
present at both depth zones. At least 90 Acroporidae species are cur-
rently documented in Taiwan and this family yielded relatively high 
richness (11 MOTUs), but low abundance (n = 31). Some acroporids 

are shallow-dwelling and rapid-growing species and exhibit compet-
itive life-history traits (Darling et al., 2012). In a study of northern 
Taiwan, Acroporidae were the most abundant family in long-term 
surveys and formed the largest spats, suggesting superior survivor-
ship compared to other families (Ho & Dai, 2014). Another study in 
Ludao found vertically structured distribution in acroporid recruit-
ment, recruiting abundantly at 5m, but not at 15m, where pocillo-
porid and poritid recruits dominated instead (Nozawa et al., 2013). It 
is therefore plausible that greater diversity of Acroporidae may have 
been captured by surveying shallower. In addition, acroporids are 
vulnerable to physical disturbances such as storms (Madin,  2005), 
which have severely impacted local populations (Chen & Dai, 2004; 
Kuo et al., 2011, 2012). It is possible that low acroporid coral cover 
locally (Ribas-Deulofeu et al., 2016) may have led to scarce recruit-
ment in our study, as recruitment in this group is subject to density-
dependent effects (Kayal et al., 2015, 2018).

Poritidae were significant recruiters in previous surveys around 
Taiwan (Edmunds et  al.,  2014; Ho & Dai,  2014; Hsu et  al.,  2014; 

F I G U R E  3   Summary of MOTUs generated from barcoded COI, ORF, and PaxC markers, sorted by seasons, sites, and depth zones, in 
alphabetical order
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Kuo & Soong,  2010; Nozawa et  al.,  2013), but were rare in ours. 
Massive Indo-Pacific poritids and many merulinids are associated 
with a stress-resistant life-history strategy characterized by slow 
growth, long generation times, and sustained recruitment (Darling 
et al., 2012). However, these types of corals can survive long periods 
in the absence of recruitment (Hughes & Tanner, 2000); therefore, 
low recruitment in those taxa, while unusual, is not entirely unchar-
acteristic of this type of life history.

The potential for MCEs to reseed shallow reefs may apply to 
species with wide depth distributions which inhabit both depths 
(Bongaerts & Smith,  2019). Of 20 MOTUs found recruiting within 
the mesophotic zone, 14 (40%) recruited solely within deeper reefs 
and only in low abundances. Only seven MOTUs (20%) recruited at 
both depth zones and four of these were Pocillopora (Pocillopora sp. 
(Type 7), P. acuta, P. eydouxi, P.verrucosa). Research supports genetic 
connectivity in Pocillopora verrucosa across a shallow–mesophotic 
gradient (de Palmas,  2020), indicating compatibility with the deep 
reef refuge hypothesis (Bongaerts et  al., 2010). Therefore, we hy-
pothesize that the other Pocillopora MOTUs, which recruit at both 
depth zones, may be genetically connected across this depth gradi-
ent as well; however, additional research aimed at discriminating pat-
terns of population genetics is required. Pavona sp. (I) and Montipora 
sp. (II) also recruited at both depths; however, sparse recruitment 
limits the interpretation of these patterns. Based on the evidence 
presented here, the potential for refuge in Ludao is apparent in only 
a handful of MOTUs; therefore, we emphasize that individual spe-
cies should be scrutinized prior to generalization to the community 
level. Nevertheless, connectivity over timescales exceeding this 
18-month study period cannot be ruled out, as long-distance dis-
persal of migrants over ecological timescales (Noreen et al., 2009; 
van Oppen et  al.,  2008) or step-wise transgenerational dispersal 
(Holstein et al., 2015; Vaz et al., 2016) may be sufficient to establish 
connectivity.

Pelagic larval duration (PLD) varies among coral species and pos-
itively correlates with dispersal distance (Shanks et al., 2003). Coral 
larvae are notoriously poor swimmers and exhibit limited ability to 
outmaneuver prevailing currents (Hata et al., 2017). Nevertheless, 
larval traits such as swimming behaviors, lipid content, energy 
availability, zooxanthellate acquisition, and buoyancy character-
istics can profoundly impact dispersal potential (Harii et al., 2002; 
Richmond,  1987; Shanks,  2009; Szmant & Meadows,  2006). 
Pocillopora damicornis planulae are zooxanthellate and swim ac-
tively, enabling a long PLD of up to 212  days (Harrigan,  1972). In 
contrast, its sister species, P. acuta, is characterized by brief PLD, 
which leads to localized recruitment (Bahr et al., 2020). PLD is a crit-
ical trait for estimating connectivity and is available for many fish 
and other commercially important species; however, the PLDs of 
many coral species are still unknown. We hypothesize that extensive 
PLDs in Pocillopora may explain the widespread distribution of this 
genus in our survey. PLD could be a critical characteristic defining 
species which can disperse broadly and find refuge, and this pos-
sibility should be researched further. The prevalence of traits and/
or behaviors which facilitate dispersal could explain the absence or 

low abundance of coral taxa restricted to one particular habitat in 
our experiment.

Reproductive modalities may also influence the dispersal of lar-
vae tends to be associated with dispersal ability, although excep-
tions exist. Brooded larvae often settle soon after they are released 
which limits their ability to disperse (Nozawa & Harrison,  2005; 
Sakai, 1997; Warner et al., 2016) and short competency periods in 
brooded larvae may be responsible for producing localized dispersal 
patterns observed in high-latitude communities (Tioho et al., 2001). 
In spawners, gametes may remain planktonic for several days, en-
hancing their potential for dispersal (Nozawa & Harrison, 2008). The 
larvae of spawners A. millepora, A. tenuis, and M. digitata possess a 
high lipid content which makes them buoyant, enabling dispersal by 
wind and currents and provides energy storage during periods of 
extended dispersal (Arai et al., 1993; Richmond, 1987); however, this 
trait is not present in all spawners. Nevertheless, brooders exhibiting 
high connectivity across vertical gradients (Hammerman et al., 2018; 
Serrano et al., 2016) and spawners possessing strong vertical genetic 
partitioning have been documented (Eckert et  al.,  2019; Serrano 
et al., 2014).

The S1 and S3 periods (April–October) spanned the main coral 
spawning period at Ludao (Dai & Fan, 1992; Nozawa et al., 2013). 
Most corals in Taiwan do not spawn during October–April, and ob-
served patterns were consistent with expectations. Pocillopora dom-
inance persisted during S1 and S3, but not during S2, when their 
abundance was comparable to other taxa. Kuo and Soong (2010) 
found variable pocilloporid recruitment during wet (May–September) 
and dry seasons (November to March) and observed similar patterns 
interannually. Fan et al. (2006) observed larval release in Stylophora 
pistillata and Pocillopora damicornis in Taiwan during winter months 
(February–March), providing the most likely explanation for the 
presence of these species. In Ludao, P. damicornis is uncommon 
while P. verrucosa is abundant (Y. Nozawa, personal communication). 
Recently, P. verrucosa has been found to brood in nearby Philippines 
(Villanueva et al., 2008) that wintertime P. verrucosa recruits could 
actually be brooded; however, further study is required. Several 
other pocilloporids can reproduce asexually, which could provide 
an alternative explanation for winter recruitment: Pocillopora acuta 
may generate planula asexually in the absence of sperm (Nakajima 
et al., 2018; Smith et al., 2019), and P. damicornis may produce clonal 
larvae, although this behavior may vary along latitudinal gradi-
ents (Miller & Ayre, 2004). Additionally, clonal reproduction in this 
species may be undertaken in response to disturbances (Sherman 
et al., 2006; Yeoh & Dai, 2010). Corals of the Montipora genus typ-
ically spawn between April and June in Taiwan, but may be subject 
to interannual variability (Lin & Nozawa, 2017); the small spat size 
(2.1mm) of the Montipora sp. (II) spat collected during S2 suggests it 
spawned late during this season, potentially explaining its retrieval 
during our winter survey. Lastly, it is possible that larvae with ex-
tended larval development released during the regular spawning 
season may remain viable to recruit during wintertime.

We emphasize the limitations in making inferences of the dis-
tribution of corals based on recruitment patterns; therefore, our 
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conclusions warrant caution. Substrate choice is one of the most 
important factors determining the survival of coral larvae (Ritson-
Williams et al., 2009) and larvae may select locations that maximize 
their chances of surviving (Martinez & Abelson, 2013). We hypoth-
esize that tile choice may influence results by providing a more 
favorable habitat to some while detracting others from settling. 
Indeed, Harriott and Fisk (1987) found the composition of acropo-
rid and pocilloporid larvae settling on artificial substrates diverged 
from natural surfaces. Likewise, Burt et al. (2009) found recruitment 
densities varied among settlement substrate types. In some cases, 
diverging preferences may apply to close relatives: in azooxanthel-
late corals, Tubastraea tagusensis settles more densely on concrete 
substrates, while Tubastraea coccinea exhibits no such preference 
(Creed & De Paula, 2007). In addition, the date of initiation of the 
experiment could bias results toward MOTUs with later spawning 
dates if settlement tiles have not accumulated sufficient biofilm to 
promote metamorphosis (Webster et al., 2004). However, uncured 
terra-cotta tiles do not have this effect on Acropora millepora larvae, 
indicating that some species are less selective than others (Heyward 
& Negri, 1999).

Fluorescent censusing enhanced our ability to find recruits 
of small size. The application of fluorescence as an aid for recruit 
censusing was partly successful, but we observed variable intensity 
within MOTUs and between depths. It is well documented that not all 
coral species are fluorescent (Alieva et al., 2008; Gruber et al., 2008; 
Kenkel et al., 2011; Roth et al., 2015); however, a thorough registry of 
fluorescent corals does not exist. Additionally, in fluorescent types, 
intraspecific variation may occur (Eyal et  al.,  2015; Wangpraseurt 
et  al.,  2019). We were unable to quantitatively measure variation 
in fluorescence in our recruits, but we hypothesize that variation 
across shallow and deep light environments, in combination with 
differences in light exposure due to settlement location (i.e., ver-
tical/horizontally oriented tile and top/bottom of the tile) could 
induce variation. The intensity of fluorescence may be influenced 
by light climates, such as depth (Scucchia et al., 2020) and shading 
surrounding the coral (Lesser & Gorbunov, 2001; Ralph et al., 2002). 
Eyal et  al.  (2015) showed that fluorescent signals in some species 
are completely independent of light exposure, while in others, fluo-
rescence may be lost in dark environments. Alternately, fluorescent 
signals may be impacted by coral health (Wangpraseurt, Larkum, 
et al., 2019) and dimmed fluorescent responses may indicate stress 
(Roth et al., 2015). Further study into interspecific and bathymetric 
variation in coral fluorescence during early-life stages is warranted.

Our AUR design resulted in a simple, affordable, and convenient 
tool to study recruitment. Tiles can be fixed to the block in advance 
and lowered into place by divers, forgoing drilling underwater to fix 
recruitment tiles directly to the substrate. This is advantageous in 
mesophotic settings where bottom time is limited and fieldwork is 
expensive; however, carrying heavy blocks at depth can be phys-
ically taxing on divers. Because the design is modular, scaling the 
quantity of blocks and tiles to tailor this method to individual re-
quirements is feasible. This study fulfills a need for information on 
mesophotic recruitment and how it contrasts with shallow reefs. 

These insights into local coral recruitment processes highlight the 
importance of early-life stage dynamics on mesophotic coral reef 
demographics. In few MOTUs recruiting abundantly across a wide 
depth distribution, our results are consistent with the mesophotic 
depth acting as a refuge for shallow-water communities. However, 
based on the evidence currently available, this tenet does not apply 
to most MOTUs which recruit scarcely and within their endemic 
depth range, warranting caution on generalizing this hypothesis at 
the community level. Nevertheless, connectivity over long times-
cales cannot be discredited and warrants further examination. More 
research is required to further expand our knowledge of recruitment 
and connectivity at depth, while delving into the physiological and 
environmental processes which affect them. As higher resolution 
molecular markers are developed, the resolution of molecular tax-
onomy will improve accordingly. Still, the present work represents 
a noteworthy improvement over traditional recruit identification. 
Future studies should strive to explore understudied geographical 
areas while developing innovative ways to overcome the challenges 
of surveying recruitment at depth.
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