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Abstract
Cancer development and progression result from somatic evolution by an accumulation of

genomic alterations. The effects of those alterations on the fitness of somatic cells lead to

evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered

anticancer drug responses. However, there are few general mathematical models to quanti-

tatively examine how perturbations of a single gene shape subsequent evolution of the can-

cer genome. In this study, we proposed the gene gravity model to study the evolution of

cancer genomes by incorporating the genome-wide transcription and somatic mutation pro-

files of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad

gene network. We found that somatic mutations of a cancer driver gene may drive cancer

genome evolution by inducing mutations in other genes. This functional consequence is

often generated by the combined effect of genetic and epigenetic (e.g., chromatin regula-

tion) alterations. By quantifying cancer genome evolution using the gene gravity model, we

identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and
SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these

genes had a higher mutation density at the genome level compared to the wild-type groups.

Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on

inactive X chromosomes is a general feature in female cancer genomes. In summary, this

study sheds light on the functional consequences and evolutionary characteristics of

somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution,

which would provide new perspectives for cancer research and therapeutics.
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Author Summary

Cancer genome instabilities, such as chromosomal instability and microsatellite instability,
have been recognized as a hallmark of cancer for several decades. However, distinguishing
cancer functional somatic mutations from massive passenger mutations and non-genetic
events is a major challenge in cancer research. Massive genomic alterations present
researchers with a dilemma: does this somatic genome evolution contribute to cancer, or is
it simply a byproduct of cellular processes gone awry? In this study, we developed a new
mathematical model to incorporate the genome-wide transcription and somatic mutation
profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a
broad gene network. We found that cancer driver genes may shape somatic genome evolu-
tion by inducing mutations in other genes in cancer. This functional consequence is often
generated by the combined effect of genetic and epigenetic alterations (e.g. chromatin reg-
ulation). Moreover, we provided statistical evidence that hypermutation of cancer driver
genes on inactive X chromosomes is a general feature in female cancer genomes and found
a putative X-inactive specific gene STAG2 in uterine cancer. In summary, this work illus-
trates the functional consequences and evolutionary characteristics of somatic mutations
during tumorigenesis through driving adaptive cancer genome evolution.

Introduction
Cancer development and progression are mediated by the accumulation of genomic alter-
ations, including point mutations, insertions and deletions, gene fusions, amplifications, and
chromosomal rearrangements [1,2]. The majority of the somatic mutations found in tumor
cells are ‘passenger’ rather than ‘driver’mutations [3]. In 1976, Peter Nowell wrote a landmark
perspective for the clonal evolution model of cancer and applied evolutionary models to under-
stand tumor growth and treatment failure [4]. He proposed that most neoplasms arise from a
single cell, and tumor progression results from acquired genetic variability within the original
clone, allowing sequential selection of more aggressive sublines. He also noted that genetic
instability, occurring in tumor cells during disease progression, might enhance this process.
This view now has been widely accepted [4,5]. Somatic cell evolution leads to adaptive cancer
cell survival, including increased proliferative, angiogenic, and invasive phenotypes [2]. How-
ever, understanding how somatic cell evolution drives tumorigenesis remains a great challenge
in cancer research.

Genome instabilities, such as chromosomal instability and microsatellite instability, have
been well studied in cellular systems [2,6,7]. For example, Teng et al. found that in yeast a
mutation on a single gene may cause genomic instability, leading to adaptive genetic changes
[8]. Whether and how human tumor genomes are genetically unstable, induced by single gene
alterations, has been debated for decades [9–12], but has recently gained much support. For
instance, Emerling et al. found an amplification of PIP4K2B inHER-2/Neu-positive breast can-
cer with its co-occurrence with mutations in TP53 [11]. They showed that a subset of breast
cancer patients had a high level of gene expression of PIP4K2A and PIP4K2B and provided evi-
dence that these kinases are essential for growth in the absence of p53. Liu et al. found that
POLR2A (encoding the largest and catalytic subunit of the RNA polymerase II complex) was
deleted together with TP53 in cancer cell lines and primary tumors in human colon cancer
[13]. Additionally, the DNA cytidine deaminase APOBEC3B-catalyzed genomic uracil lesions
are responsible for a large proportion of both dispersed and clustered mutations in multiple
distinct cancers [12]. These lines of evidence show that single gene alterations may induce the
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mutations of other genes in a cancer genome that drive tumorigenesis and tumor progression
[9–13]. Thus, a quantitative assessment of whether the perturbation of any single gene in a can-
cer genome is sufficient to drive genetic changes would help us better understand tumorigene-
sis and tumor evolution through genomic alterations. However, distinguishing functional
somatic mutations from massive passenger mutations and non-genetic events is a major chal-
lenge in cancer research. Massive genomic alterations present researchers with a dilemma: does
this somatic genome evolution contribute to cancer, or is it simply a byproduct of cellular pro-
cesses gone awry [14]?

Cells consist of various molecular structures that form complex, dynamic, and plastic net-
works [15]. In the molecular network framework, a genetic aberration may cause network
architectural changes through affecting or removing a node or its connection within the net-
work, or changing the biochemical properties of a node (protein) [16–18]. The abundance of
next-generation sequencing data of cancer genomes provides biologists with an unprecedented
opportunity to gain a network-level understanding of tumorigenesis and tumor progression
[15,19–22]. However, how to integrate large-scale molecular networks with cancer genomic
aberrations is highly challenging [9,10]. The development of a mathematical model will be
helpful to understand how genetic aberrations perturb the molecular network architecture and
manifest the effects during tumorigenesis.

In this study, we proposed a novel mathematical model, namely gene gravity model, derived
from Newton’s law of gravitation to study the evolution of cancer genomes. The gene gravity
model detects a gene-gene pair that two genes are co-mutated and highly co-expressed simulta-
neously in a given cancer type based on several previous evidences [8,11,13]. As proof of princi-
ple, we applied the model to approximately 3,000 tumors’ transcription and somatic mutation
profiles across 9 cancer types from The Cancer Genome Atlas (TCGA) project. We found that
cancer driver genes may shape somatic genome evolution by inducing mutations in other
genes during tumorigenesis. We identified six putative cancer genes by quantifying the gene
gravity model. Furthermore, we found a higher somatic mutation density related to cancer
driver genes on the X chromosome in comparison to the whole autosomes, suggesting that
hypermutation in inactive X chromosomes is a general feature in females. In summary, this
study would provide new insights into adaptive cancer genome evolution shaped by somatic
mutations in cancer.

Results

Overview of the gene gravity model
The gene gravity model postulates that if two genes have high mutation density and strong
gene co-expression in a given cancer type, they should have a higher G score and related to a
higher risk of inducing mutations to other genes; this postulation is based on several previous
observations [8,11,13]. We developed the gene gravity model by incorporating ~3,000 tumors’
transcription and somatic mutation profiles across 9 cancer types from TCGA under molecular
network architecture knowledge (Fig 1). These 9 cancer types consist of breast invasive carci-
noma (BRCA), colon adenocarcinoma (COAD), glioblastoma multiforme (GBM), head and
neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), lung adeno-
carcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian serous cystadenocarci-
noma (OV), and uterine corpus endometrial carcinoma (UCEC). First, we collected 3,487
tumor transcription profiles (RNA-Seq) for the 9 cancer types. Then, we constructed 9 co-
expressed protein interaction networks (CePINs) for the 9 cancer types (S1 Table) respectively
by incorporating the transcription profiles into a large-scale protein interaction network (PIN)
in S2 Table and Fig 1A. Each CePIN contained ~100,000 edges connecting ~12,000 genes.
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Second, we collected 277,370 nonsynonymous somatic mutations identified from 2,946 tumor
exomes across 9 cancer types from TCGA (S1 Table). For each cancer type, we projected the
somatic mutations onto PIN to construct a somatic mutation PIN via a network propagation
algorithm (Fig 1B and 1C). We then derived a G score for each gene-gene pair in the 9 cancer
types, using Newton’s law of gravitation (Fig 1C). Then, we examined the G score for seven
gene sets: cancer driver genes, cancer gene census (CGC) genes (experimentally validated can-
cer genes), tumor suppressor genes (TSGs), oncogenes, DNA repair genes, chromatin regula-
tion factors (CRFs), and essential genes (Fig 1D). Finally, we investigated the pattern of
hypermutation of the inactive X chromosome in female versus male cancer genomes by quanti-
fying cancer genome evolution using the gene gravity model (Fig 1E).

Benchmark evaluation of the gene gravity model
To verify the gene gravity model, we investigated the enrichment of somatic mutations on
protein-protein interaction (PPI) pairs as well as unfiltered interactions relative to the same
number of random pairs based a previous study [23]. We found that PIN is significantly
more enriched for high mutation density than random pairs across the 9 cancer types
(q< 2.2 × 10−16, Wilcoxon rank-sum test corrected by Benjamini-Hochberg multiple testing,
S1 Fig). We first examined the distribution of G score for two benchmark gene sets: DNA
repair genes and CRFs. The CRFs modulating the epigenetic landscape have emerged as poten-
tial gatekeepers and signaling coordinators for the maintenance of genome integrity [24]. The
enzymes encoded by DNA repair genes continuously monitor chromosomes to repair damaged
nucleotide residues generated by exposure to carcinogens and cytotoxic agents (e.g., anticancer
drugs) [25]. Thus, both CRFs and DNA repair genes are of critical importance for the mainte-
nance of the genetic information in the cancer genome. In this study, we collected two high-
quality gene sets: 153 DNA repair genes [26] and 176 CRFs [27] (S3 Table). We defined a DNA
repair gene-gene pair gravitational interaction as one or two genes in a pair is/are DNA repair
genes. A non-DNA repair gene-gene pair gravitational interaction was defined as neither of the
two genes in a pair is a DNA repair gene. We applied the same definition for the remaining 6
gene sets: cancer driver genes, CGC genes, TSGs, oncogenes, CRFs, and essential genes. We
then investigated the complementary cumulative G score (S2–S10 Figs). We found that the
DNA repair gene cumulative G score is higher than that of non-DNA repair genes in 8 cancer
types, except BRCA. Furthermore, the CRF cumulative G score is higher than that of non-
CRFs in all of the 9 cancer types (S2–S10 Figs). Collectively, these observations demonstrated
that we could use the gene gravity model to quantitatively examine how perturbations of a sin-
gle gene shape subsequent evolution of the cancer genome based on evidence in several previ-
ous biological studies [8,11,13].

Fig 1. Diagram of a gene gravity model and its application to pan-cancer analysis. The gene gravity model postulates that if two genes had high
mutation rates and strong gene co-expression in a given cancer type, they would exhibit a higher gravitation score (G) and create a higher risk of inducing
mutations to other genes. (A)Construction of co-expressed protein interaction network (CePIN) using tumor transcription profiles from 3,487 tumors across 9
cancer types (S1 Table). (B)Construction of somatic mutation protein interaction network (mutation PIN) by incorporating somatic mutation profiles from
2,946 tumors across 9 cancer types in a large-scale protein interaction network. (C)Gene gravity model diagram. First, we used the network propagation
algorithm to propagate the somatic mutations from each cancer type into PIN (I to II). We then calculated the gene-gene gravitational interaction by
incorporating CePIN and mutation PIN (II to III). (D) Quantitatively measuring the genomic instability risk using the gravitation (G) score for five gene sets:
Cancer driver genes, Cancer Gene Census, Chromatin regulation factors, Essential genes, and DNA repair genes, using glioblastoma multiforme (GBM) as
an example. (E) Hypermutation of the cancer driver genes on the inactive X chromosome versus all autosomes in the female cancer genomes based on the
G score. BRCA: breast invasive carcinoma, COAD: colon adenocarcinoma, HNSC: head and neck squamous cell carcinoma, KIRC: kidney renal clear cell
carcinoma, LUAD: lung adenocarcinoma, LUSC: lung squamous cell carcinoma, OV: ovarian serous cystadenocarcinoma, and UCEC: uterine corpus
endometrial carcinoma.

doi:10.1371/journal.pcbi.1004497.g001
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High somatic evolutionary pressure for the mutated cancer driver genes
We investigated “high somatic evolutionary pressure” for a particular gene that tends to be co-
mutated and highly co-expressed with other genes in a given cancer type. We hypothesized
that if a gene has a higher somatic evolutionary pressure, this gene may increase subsequent
genetic changes [8,11,13]. We compiled a high-quality, mutated cancer driver gene set (614
cancer driver genes, S3 Table) from four pan-cancer genomic analysis projects [3,28–30]. We
found that the cancer driver gene cumulative G score is significantly higher than that of non-
cancer driver genes in all of the 9 cancer types (q< 2.2 × 10−16, Wilcoxon rank-sum test, S2–
S10 Figs). These observations suggest that cancer driver mutations may increase subsequent
genetic changes based on the previous studies [8,11,13]. We also studied CGC genes, which are
well curated and have been widely used as a reference cancer gene set in many cancer-related
studies [31,32]. As expected, we found that the CGC gene cumulative G score is higher than
that of non-CGC genes in 6 cancer types: BRCA, COAD, GBM, HNSC, KIRC, and UCEC (S2–
S6 and S10 Figs).

However, the CGC gene cumulative G score is slightly higher than that of non-CGC genes
in 3 cancer types: LUAD, LUSC, and OV (S7–S9 Figs). A previous study indicated that an aver-
age mutation frequency in smokers is more than 10-fold higher in never-smokers in non-small
cell lung cancer [33]. We next separated TCGA patients into smokers and never-smokers in
LUAD and LUSC, and reexamined the CGC gene cumulative G score. As expected, the CGC
gene cumulative G score is significantly higher than that of non-CGC genes in LUAD and
LUSC never-smokers (q< 0.05, S11 Fig). However, the CGC gene cumulative G score is
slightly higher than that of non-CGC genes in LUAD and LUSC smokers (S11 Fig). Thus, het-
erogeneous mutation frequencies and gene transcription profiles in the combined smokers and
never-smokers in LUAD or LUSC may influence the performance of the gene gravity model
[33]. For OV (S9 Fig), high genomic instability of the ovarian cancer genome may cause this
slight gene cumulative G score between CGC and non-CGC genes [34]. Finally, we considered
essential genes. We compiled 2,719 essential genes (S3 Table) from the Online GEne Essential-
ity database [35]. S2–S10 Figs showed that the essential gene cumulative G score is higher than
that of non-essential genes across 9 cancer types. Remarkably, the cancer driver gene-gene G
score is higher than that of essential genes (q< 0.01) in all of the 9 cancer types (S2–S10 Figs).

Tumorigenesis is dependent on the accumulation of one or multiple driver mutations that
activate oncogenic pathways or inactivate tumor suppressors [36,37]. Oncogenes often posi-
tively co-expressed with interacting partners due to gain-of-function mutations; while TSGs
often negatively co-expressed with interacting partners due to lose-of-function mutations [38].
Thus, we defined attractive gravitation (AG) as two genes that have positive gene co-expressed
correlation and repulsive gravitation (RG) as two genes that have negative gene co-expressed
correlation in a specific cancer type. We compiled 477 oncogenes and 1,040 TSGs (S3 Table),
and then examined the AG and RG score for oncogenes and TSGs, respectively. We found that
the oncogene AG cumulative distribution is higher than that of non-oncogenes in 5 cancer
types: BRCA, COAD, KIRC, OV, and UCEC (S12 Fig). However, as shown in S13 Fig, the
oncogene RG cumulative distribution is similar or slightly higher than that of non-oncogenes
in all of the 9 cancer types. Additionally, we examined the AG and RG score for TSGs. We
found that both AG and RG cumulative distribution for TSGs is higher than that of non-TSGs
in 7 cancer types, except LUSC and OV (S14 and S15 Figs). Taken together, our gene gravity
model can distinguish one important tumor biological characteristics, oncogenic potential
altered by oncogenes, very well. However, our model fails to distinguish caretaker or gatekeeper
roles altered by TSGs. One possible reason is that some TSGs have both tumor suppressor and
oncogenic activities in different cancer types or cell types. For example, p21, encoded by
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CDKN1A, plays both tumor suppressor activities and paradoxical tumor-promoting activities
in cancer [39]. In addition, it is partially because TSGs have truncated mutations that may scat-
tered in the gene region. Thus, further study will be needed for systematic investigation of the
AG and RG score for TSGs, which we hope will be prompted by the findings herein.

Combinatorial effects of the cancer evolution induced by genetic and
epigenetic alterations
We calculated the gene average gravitation (aveG) score using (ρ)i = ∑j Gij / n between gene
i and gene j (j belongs to the set of gene i’s interacting partners (n) in PIN). We found that the
aveG score of cancer driver gene is significantly higher than that of DNA repair, CGC, and
essential genes in all of the 9 cancer types (Fig 2 and S4 Table). For BRCA, the cancer driver
gene aveG score (0.47 ± 0.02) is significantly higher than that of DNA repair genes
(0.30 ± 0.03, q = 1.9 × 10−4), CGC genes (0.35 ± 0.02, q = 1.1 × 10−4), and essential genes
(0.26 ± 0.01, q = 2.3 × 10−32, S4 Table). However, the cancer driver gene aveG score is similar
to that of CRFs (0.42 ± 0.04, q = 1.0) in BRCA. Similar trends were observed in the remaining 8
cancer types (S4 Table). Thus, chromatin regulation might play an important role in
tumorigenesis.

We further investigated whether genetic or epigenetic alterations have combinatorial effects
that shape cancer genome evolution. Since CRFs represent the epigenetic landscape [27], we
divided cancer driver genes into two subgroups: CRF cancer driver genes and non-CRF cancer
driver genes. We found cancer driver genes are significantly enriched in CRFs (38 out 176
CRFs versus 176 CRFs from 20,462 human protein-coding genes collected from National Cen-
ter for Biotechnology Information [NCBI] database, p = 3.0 × 10−21, Fisher’s exact test, Fig
3A). Furthermore, the CRF cancer driver gene aveG score is higher than that of non-driver
CRFs across 9 cancer types (q< 0.10, Fig 3A and S5 Table). For KIRC, the CRF cancer driver
gene aveG score (1.6 ± 0.48) is significantly higher than that of non-CRF cancer driver genes
(0.76 ± 0.04, q = 4.2 × 10−3) and non-driver CRFs (0.72 ± 0.09, q = 3.3 × 10−3, S5 Table), respec-
tively. However, we did not find a significant aveG difference between non-CRF cancer driver
genes and non-driver CRFs in any of the 9 cancer types (q = 1.0, Fig 3A and S5 Table).

We next divided CGC genes into two subgroups: CRF CGC genes and non-CRF CGC
genes. We found that CGC genes are significantly enriched in CRFs as well (p = 1.2 × 10−15,
Fisher’s exact test, S16A Fig). As expected, we did not observe a significant aveG difference
between non-CRF CGC genes and non-CGC CRFs in 7 cancer types (q> 0.05, S6 Table), with
the exception of OV (q = 0.04) and KIRC (q = 0.04). Put together, the cancer genome evolution
might be shaped by the combinatorial synergy between cancer driver genes and CRFs.

We next divided cancer driver genes into two subgroups: DNA repair cancer driver genes
and non-DNA repair cancer driver genes. Fig 3B showed that DNA repair genes tend to be
cancer driver genes as well (18 out 153 DNA repair genes versus 153 DNA repair genes from
20,462 human protein-coding genes collected from NCBI database, p = 1.1 × 10−6). However,
CRFs are more likely to be cancer driver genes than DNA repair genes (p = 0.02). The DNA
repair cancer driver gene aveG score is similar to that of non-DNA repair cancer driver genes
in 6 cancer types (q> 0.1), except of HNSC (q = 0.02, S7 Table), KIRC (q = 0.08), and LUAD
(q = 0.08). However, the DNA repair cancer driver gene aveG score is significantly higher than
that of non-driver DNA repair genes (q< 0.01, S7 Table) in all of the 9 cancer types (Fig 3B).
For BRCA, the DNA repair cancer driver gene aveG score (0.73 ± 0.13) is marginally higher
than that of non-DNA repair cancer driver genes (0.46 ± 0.02, q = 0.12), while significantly
higher than that of non-driver DNA repair genes (0.24 ± 0.03, q = 4.4 × 10−4, S7 Table). Fur-
thermore, the non-DNA repair cancer driver gene aveG score is significantly higher than that
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of non-driver DNA repair genes in all of the 9 cancer types as well (q< 0.01, Fig 3B and S7
Table). We further divided CGC genes into two subgroups: DNA repair CGC genes and non-
DNA repair CGC genes. We found CGC genes are significantly enriched in DNA repair genes
as well (p = 2.7 × 10−18, Fisher’s exact test, S16B Fig). S8 Table indicated that DNA repair CGC
gene aveG score is not significantly higher than that in both non-DNA repair CGC genes
(q> 0.50) and non-CGC DNA repair genes (q> 0.10) in 8 cancer types with an exception of
OV (q = 0.03). Moreover, the non-DNA repair CGC gene aveG score is higher than that of
non-CGC DNA repair genes in COAD (q = 0.04) and OV (q = 0.02, S8 Table). Collectively, the
cancer genome evolution shaped by cancer driver genes may have additional mechanisms (i.e.,
chromatin regulation), except DNA repair.

Fig 2. Box plots of gene average gravitation (aveG) score for five gene sets across 9 cancer types.Red: cancer driver genes (Driver); purple: Cancer
Gene Census (CGC) genes; yellow: chromatin regulation factors (CRF); green: essential genes (Essential); and blue: DNA repair genes. The adjusted p-
values (q) are based on the comparison of the gene average gravitation score of cancer driver genes with CGC, CRFs, essential genes, and DNA repair
genes respectively, by Wilcoxon rank-sum test corrected by Benjamini-Hochberg multiple testing. **: q < 0.01. The detailed data are provided in S4 Table.
Abbreviations of 9 cancer types in Figs 2–5 are provided in Fig 1 legend.

doi:10.1371/journal.pcbi.1004497.g002
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Identifying putative cancer genes by the gene gravity model
We found that the top 100 genes with the highest aveG scores tend to be cancer driver genes
(q< 0.01, Fisher’s exact test, Fig 4A and S9 Table) or CGC genes (q< 0.05, S10 Table) in all of
the 9 cancer types. In addition, the top 100 genes with the highest aveG scores are more likely
to be CRFs (q< 0.05, S11 Table) in 7 cancer types with the exception of COAD (q = 0.12) and
LUSC (q = 0.12). However, the top 100 genes are not significantly enriched in DNA repair
genes in all of the 9 cancer types (q> 0.05, Fig 4A and S12 Table). We further examined the
tumor exome mutation density (the average number of mutations per Mb) for the top 10 genes
with the highest aveG score via the genome-wide mutation rate analysis (S13 Table). By exam-
ining mutation density data of ~3,000 tumor exomes from Kandoth et al. [29], we found that
patients having nonsynonymous somatic mutations on any of four genes (FAT4, SYNE1,
AHNAK, or COL11A1) often showed a higher cancer genome mutation density at the whole
genome level compared to that of wild-type (WT) patients in 4 cancer types: COAD, LUAD,
LUSC, and UCEC (Fig 4B). FAT4 (protocadherin fat 4), a member of the cadherin super-fam-
ily, is a key component in the Hippo signaling pathway, playing a candidate tumor suppressor

Fig 3. Combined effects of genetic and epigenetic alterations. The left Venn diagrams show the relationship between cancer driver genes and (A)
chromatin regulation factors (CRFs) and (B) DNA repair genes. The right panels show the distributions of the average gravitation (aveG) score of three gene
sets in the corresponding left Venn diagram across 9 cancer types: (A) comparison of CRF cancer driver genes, non-CRF cancer driver genes, and non-
driver CRF genes; (B) comparison of DNA repair cancer driver genes, non-DNA repair cancer driver genes, and non-driver DNA repair genes. The adjusted
p-values (q) are calculated by theWilcoxon rank-sum test and corrected by Benjamini-Hochberg multiple testing. The detailed data is provided in S5 and S7
and S8 Tables.

doi:10.1371/journal.pcbi.1004497.g003
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role in cancer [40]. In COAD, 40 patients harbored FAT4 nonsynonymous mutations. The
average number of mutations per Mb for 40 FAT4mutated COAD samples (43.3 ± 12.8) are

Fig 4. Identifying four putative cancer genes. (A) Enrichment analysis of the top 100 genes with the highest gene average gravitation scores for cancer
driver genes, chromatin regulation factors, and DNA repairs genes. The adjusted p-values (q) are calculated by the Fisher’s exact test and corrected by
Benjamini-Hochberg multiple testing. **: q < 0.01, *: q < 0.05. The detailed data is provided in S9 and S11 and S12 Tables. (B) Distribution of the number of
mutations per megabase pairs (Mb) for the mutated (Mut) tumor samples versus wild-type (WT) samples. The q values are calculated by the Wilcoxon rank-
sum test and corrected by Benjamini-Hochberg multiple testing.

doi:10.1371/journal.pcbi.1004497.g004
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significantly higher than that of FAT4WT samples (5.0 ± 0.57, q = 1.1 × 10−5, Fig 4B). Simi-
larly, the average number of mutations per Mb for 43 FAT4mutated LUAD samples
(26.3 ± 8.4) are significantly higher than that of FAT4WT samples (7.5 ± 0.48, q = 2.8 × 10−9,
Fig 4B). Using genome-wide association studies, Berndt et al. found FAT4 to be a candidate
gene for spontaneous pulmonary adenomas [41]. Using exome sequencing, Zang et al. found
that the somatic inactivation of FAT4might be a critical tumorigenic event in a subset of gastric
cancers [42]. In this study, FAT4 was identified as a putative cancer gene involved in lung and
colorectal cancer, which is consistent with previous studies [40–43]. SYNE1, encoding spectrin
repeat containing, nuclear envelope 1, is involved in nuclear organization and structural integ-
rity, function of the Golgi apparatus, and cytokinesis. Herein, we found that the average num-
ber of mutations per Mb for 49 SYNE1mutated COAD samples (35.8 ± 8.4) are significantly
higher than that of SYNE1WT samples (7.5 ± 0.48, q = 6.8 × 10−9, Fig 5B). Doherty et al.
found that SYNE1 polymorphism relates to an increased risk of invasive ovarian cancer [44].
Collectively, SYNE1may be a candidate cancer mutated gene in COAD.

AHNAK (neuroblast differentiation-associated protein), also known as desmoyokin, is
essential for tumor cell migration and invasion [45]. In this study, the average number of muta-
tions per Mb (12.1 ± 2.6) for 22 AHNAKmutated samples is significantly higher than that of
AHNAKWT samples in HNSC (4.5 ± 0.21, q = 1.5 × 10−5, Fig 4B). Dumitru et al. found that
AHNAK was associated with poor survival rates in laryngeal carcinoma, a major subtype of
head and neck cancer [46]. COL11A1 and COL6A3, encoding collagen proteins, are two main
structural proteins of the various connective tissues in animals. In LUAD, the average number
of mutations per Mb (25.3 ± 7.9) for 46 COL11A1mutated samples is significantly higher than
that of COL11A1WT samples (7.4 ± 0.47, q = 1.1 × 10−9, Fig 5B). Additionally, for LUSC, the
average number of mutations per Mb (16.5 ± 0.59) for 32 COL11A1mutated samples is signifi-
cantly higher than that of COL11A1WT samples as well (8.5 ± 0.40, q = 4.9 × 10−5). Further-
more, COL6A3 (q = 3.1 × 10−4, COAD) and COL5A2 (q = 1.5 × 10−4, LUAD) mutations are
significantly associated with a high mutation density in colorectal and lung cancer, respectively.
The over-expression of COL11A1 reportedly correlates with lymph node metastasis and poor
prognosis in non-small cell lung cancer and ovarian cancer [47–49]. The expression level of
COL6A3 is involved in pancreatic malignancy [50,51]. Collectively, AHNAK, COL11A1, and
COL6A3may be potential candidates for therapeutic and diagnostic biomarkers in head and
neck cancer and lung carcinoma. However, the mutation status of each of aforementioned
genes is associated with the genome-wide mutation rate. Mutations in these genes could be
either the cause of the mutation-rate increase or simply a consequence of an elevated global
mutation rate. Thus, further experimental validation of these genes in the specific cancer type
is warranted.

Hypermutation of the inactive X chromosome in the female cancer
genomes
When examining cancer driver gene aveG score across chromosomes in each of 9 cancer types,
interestingly, we found that the X chromosome has an unusually higher cancer driver gene
aveG scores compared to autosomes in BRCA, GBM, and UCEC using the total 22 autosomes
as background (Fig 5). In BRCA, cancer driver gene aveG score (0.66 ± 0.09) on the X chromo-
some is higher than that of the whole set of 22 autosomes (0.46 ± 0.02, q = 0.06 [p = 7.9 ×
10−3], Wilcoxon rank-sum test, Fig 5A). Similarly, in GBM, the cancer driver gene aveG score
(1.2 ± 0.18) on the X chromosome is higher than that of the whole set of 22 autosomes
(0.80 ± 0.05, q = 0.07 [p = 9.9 × 10−3], Fig 5B). And the cancer driver gene aveG score
(0.92 ± 0.15) on the X chromosome is also higher than that of the whole set of 22 autosomes in

Somatic Mutation-Driven Cancer Genome Evolution

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004497 September 9, 2015 11 / 25



Fig 5. Distribution of average gravitation (aveG) score for cancer driver genes (Driver), essential genes (Essential), and all genes (All) across 23
human chromosomes in 3 cancer types. The left plots show the distribution of aveG scores for three different genes across 23 human chromosomes in (A)
BRCA: breast invasive carcinoma, (B) GBM: glioblastoma multiforme, and (C) UCEC: uterine corpus endometrial carcinoma. The right box plots show the
comparison of aveG scores between the X chromosome (ChrX) and all the 22 autosomes (Autosomes) for three different gene sets in the corresponding left
three cancer types. The p-values are calculated by the Wilcoxon rank-sum test and corrected by Benjamini-Hochberg multiple testing. The remaining 6
cancer types are provided in S17 Fig.

doi:10.1371/journal.pcbi.1004497.g005
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UCEC (0.56 ± 0.03, q = 0.04 [p = 5.3 × 10−3], Fig 5C). As a control, we repeated the aforemen-
tioned analyses for all genes and essential genes, respectively. We did not find the higher aveG
score on the X chromosome for all genes or essential genes in any of the 9 cancer types (Fig 5
and S17 Fig). Thus, the high gene aveG score on the X chromosome is unique for cancer driver
genes.

The X chromosome is largely functionally haploid in both males and females. A recent
study showed that hypermutation of the inactive X chromosome is a frequent event in cancer
[52]. Both BRCA and UCEC (Fig 5) are female-specific cancer, while GBM is not. To explore
the hypermutation of inactive X chromosome in the female versus male cancer genomes, we
separated GBM patients as males and females, and performed the same analysis. Interestingly,
we found that the cancer driver gene aveG score (0.66 ± 0.13) on the X chromosome is signifi-
cantly higher than that of the whole set of 22 autosomes (0.43 ± 0.04, q = 0.04, Fig 6A and 6C)
in the female GBM genomes. However, the cancer driver gene aveG score (0.68 ± 0.17) on the
X chromosome is similar to that of the whole set of 22 autosomes (0.72 ± 0.07, q = 0.68, Fig 6B
and 6C) in the male GBM genomes. Furthermore, similar aveG scores for all genes (q = 0.09)
or essential genes (q = 0.18) were observed between the X chromosome and the whole set of 22
autosomes in the female GBM genomes. In contrast, we found a lower aveG score on the X
chromosome for all genes (q = 4.4 × 10−9, Fig 6C) or essential genes (q = 0.06) compared to
that on the whole set of 22 autosomes in the male GBM genomes.

We then examined the top 10 driver genes with the highest aveG scores on the X chromo-
some in BRCA, GBM, and UCEC. Two putative cancer drivers (DDX3X and STAG2) stood out
(Fig 6D and 6E). We found that the patients harboring DDX3X or STAG2 nonsynonymous
mutations have a higher genome mutation density in uterine cancer during the genome-wide
mutation rate analysis (Fig 6D). For instance, the average number of mutations per Mb for
15 DDX3Xmutated uterine tumors is 144.1 ± 34.0, 11-fold higher than that of DDX3XWT
tumors (13.1 ± 2.8, q = 2.5 × 10−5). A previous study indicated that somatic mutations of
DDX3X were associated with medulloblastoma [53]. Additionally, the average number of
mutations per Mb for 26 STAG2mutated uterine tumors (144.5 ± 26.0) is significantly higher
than that for STAG2WT samples (10.2 ± 2.2, q = 1.9 × 10−10). STAG2 belongs to cohesin pro-
tein family, playing an important role in mediating sister chromatid cohesion [54]. Solomon
et al. found that the inactivation of STAG2 causes aneuploidy in human glioblastoma cell lines
[55]. Lawrence et al. recently identified STAG2 as one of the 12 genes that were mutated at a
substantially high frequency in at least four cancer types through examining the exome
sequencing data of 4,742 human cancer samples across 21 cancer types [30]. Taken together,
we provided statistical evidence in that hypermutation of the cancer driver genes on the inac-
tive X chromosome may be a general feature in the female cancer genomes [52]. Further inves-
tigation on this feature is warranted.

Discussion
Several previous studies showed several lines of strong biological evidences in that a single gene
may shape subsequent evolution of the human cancer genome [8,11,13]. Such evidence moti-
vated us to develop a mathematical model that can quantitatively measure a gene-gene pair to
be co-mutated and highly co-expressed simultaneously in a given cancer type. Here, we pro-
posed the gene gravity model based on Newton’s law of gravitation to study the cancer genome
evolution by the systematic integration of ~3,000 cancer genome transcription and somatic
mutation profiles from TCGA under molecular network architecture knowledge. It is worth
noting that some factors, such as gene length, network topology (e.g. connectivity), high
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Fig 6. Distribution of average gravitation (aveG) scores for cancer driver genes (Driver), essential genes (Essential), and all genes (All) in
glioblastomamultiforme (GBM) male versus female genomes across 23 human chromosomes. The distribution of aveG scores for (A) GBM female
genomes and (B) GBMmale genomes. (C) Box plots show the comparison of aveG scores between the X chromosome (ChrX) and all the 22 autosomes
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mutation rate on the cancer driver genes, and high PCC value for the particular genes, may
affect the performance of the gene gravity model.

Longer genes would be more likely to harbor mutations, increasing the false positive rate
during cancer genomic analysis [28,32]. We investigated the correlation of the gene aveG score
with gene cDNA length collected from Tamborero et al. [56]. We removed two longest human
genes (TTN andMUC16) because no evidence has been found in cancer yet [28,32]. We
observed a moderate correlation between gene aveG score and cDNA length in the 9 cancer
types (S18 Fig). For BRCA, the correlation is 0.21 between gene aveG score and gene cDNA
length (p< 2.2 × 10−16). In addition, we recalculated the aveG score by using the average muta-
tion density (M/L, here M is the number of mutations for a given gene in a specific cancer
type) per base pair in each cancer type normalized by gene cDNA length (L). We could
reproduce the results (S19 Fig), since the new results are nearly the same to those presented in
S2–S10 Figs.

We next examined whether the gene connectivity and gene average co-expression correla-
tion, such as “party hub” in the network [57], contribute to the performance of the gene gravity
model. We found that gene aveG score significantly correlates with gene connectivity in all of
the 9 cancer types (S20 Fig). For BRCA, the correlation is 0.40 between the gene aveG score
and gene connectivity in PIN (p< 2.2 × 10−16, F-statistics, S20 Fig). Thus, a gene with high
connectivity may create a higher cancer genome evolution rate. Additionally, we investigated
the relationship between the gene aveG and the average gene co-expression coefficient
(avePCC). We calculated a gene avePCC using (ρ)i = ∑j PCCij / n between gene i and gene j (j
belongs to the set of gene i’s interacting partners (n) in PIN) based on the absolute value of
PCC for each gene-gene pair. We found a moderately positive correlation between gene aveG
score and its avePCC across 9 cancer types (p< 2.2 × 10−16, S21 Fig). Finally, we further exam-
ined whether we could reproduce the results using 4 features: high connectivity, high avePCC,
gene length, and high mutation rate. For comparison, we separated genes into 3 categories
based on the range of the aveG score. As shown in S22 Fig, for each of these 4 features, the dis-
tribution of aveG score cannot simply separate 3 different aveG categories: low, middle, and
high groups. In a previous study, we found a positive correlation of protein connectivity with
the number of nonsynonymous somatic mutations across 12 cancer types [23]. Thus, the cur-
rent observation is consistent with our previous study that network-attacking perturbations
due to somatic mutations occurring in the network hubs of the cancer interactome play impor-
tant roles during tumor emergence and evolution [23].

There are some ultra-mutated tumor samples in various cancer types, such as UCEC or
COAD. For example, a small number of tumor samples can contribute to a large proportion
(e.g., 40%) of total somatic mutations observed in the whole cancer cohort [29]. We removed
18 ultra-mutated tumor samples in UCEC and 31 ultra-mutated tumor samples in COAD
based on a previous study [29]. We then used the remaining tumor samples to perform the
same analyses. As shown in S23 and S24 Figs, we could reproduce the results, since the new
results are nearly the same to those presented in Fig 2 and S2–S10 Figs. Thus, ultra-mutated
tumor samples only had a minor influence on the performance of gene gravity model.

There are several limitations in the current model. First, for the TCGA data, its inherent
static nature gives only a single time point analysis, and we are unable to map specific genome

(Autosomes) for three different gene sets in GBMmale versus female genomes. (D) Distribution of the number of mutations per megabase pairs (Mb) for the
STAG2 or DDX3Xmutated (Mut) versus wild-type (WT) tumors in uterine corpus endometrial carcinoma. (E) Circos plot displaying the distribution of gene
aveG scores for cancer driver genes (red bars) and non-cancer driver genes (black bars) across 23 human chromosomes in 3 cancers. This image is
prepared by Circos (http://circos.ca). Six genes labeled in red represent the putative cancer genes identified by the gene gravity model. The p-values are
calculated by theWilcoxon rank-sum test and corrected by Benjamini-Hochberg multiple testing.

doi:10.1371/journal.pcbi.1004497.g006
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or protein changes to the individual cells or cell populations through whole-tumor tissue analy-
sis. Second, tumor heterogeneity and environmental factors may increase the data bias. For
example, we did not find a substantial pattern indicating that the attractive gravitation for
oncogenes is very stronger than that of non-oncogenes in GBM, HNSC, LUAD, or LUSC (S12
Fig). One possible explanation is that environmental factors (e.g., smoking) may accelerate
cancer genome evolution. We separated TCGA patients into smokers and never-smokers in
LUAD and LUSC, and performed the same analysis by quantifying the gene gravity model. As
expected, we found that the attractive gravitation of oncogenes is significantly stronger than
that of non-oncogenes for never-smokers in LUAD or LUSC (S25 Fig). However, the attractive
gravitation of oncogenes is marginally higher than that of non-oncogenes for smokers in
LUAD or LUSC (S25 Fig). Third, we used a broad context molecular network to derive the
gene gravity model. However, current molecular network architectures do not completely rep-
resent the natural genetic profiles of cells. In the future, we may improve the gene gravity
model in the following ways: (i) integrate single-cell data, including single-cell gene expression
and next-generation sequencing data, to explore the dynamic features of cells and reduce the
influence of tumor purity and tumor heterogeneity [58–61]; (ii) address cancer genetic network
signatures by using large-scale genetic interaction profiles [62]; and, (iii) integrate panomics
data resources, including the chromatin interaction network, copy number variation, proteo-
mics, and DNA methylation profiles, to explore genomic instability more deeply and identify
putative cancer driver genes [32,63]. Finally, we plan to use an insulated heat diffusion process
implemented in a previous study [64] to consider the significance of the cancer driver genes
regardless of network topology (e.g. connectivity). In summary, this study reaffirms the power
and value of TCGA panomic data in investigating fundamental cancer biology questions, such
as somatic mutation-driven cancer genome evolution.

Materials and Methods

Construction of molecular network
We downloaded the PPI data and constructed a large-context PIN from two sources: InnateDB
[65] and the Protein Interaction Network Analysis (PINA) platform [66]. InnateDB contained
more than 196,000 experimentally validated molecular interactions in human, mouse, and
bovine models. PINA (v2.0) is a comprehensive PPI database that integrates six high-quality
public databases. We implemented three data cleaning steps. First, we defined an interaction as
being high-quality if it was experimentally validated in human models through a well-defined
experimental protocol. The interactions that did not satisfy this criterion were discarded. Sec-
ond, we annotated all protein-coding genes using gene Entrez ID, chromosome location, and
the gene official symbols from the NCBI database (http://www.ncbi.nlm.nih.gov/). Finally,
duplicated or self-loop interactions were removed. In total, we obtained 113,473 unique inter-
actions connecting 13,579 protein-coding genes (S2 Table).

Collection of RNA-Seq data and gene co-expression analysis
We collected RNA-Seq data (V2) from 3,487 tumor samples across 9 cancer types from TCGA
(http://cancergenome.nih.gov/). These 9 cancer types consisted of BRCA, COAD, GBM,
HNSC, KIRC, LUAD, LUSC, OV, and UCEC (S1 Table). In this study, we implemented two
criteria to select the genes that were expressed: (i) in a sample, we filtered out the genes whose
mRNA expression was below the 20% of all mRNAs ordered by their expression level; and (ii)
we further filtered out the genes that expressed in less than 20% of samples in whole expression
matrix. We also extracted RNA-Seq V2 data for smokers and never-smokers in LUAD and
LUSC, and for the male and female genomes in GBM from TCGA (January 05, 2015) using the
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R package implemented in TCGA-Assembler [67]. Finally, we calculated the Pearson Correla-
tion Coefficient (PCC) for each gene-gene pair and mapped the PCC value of each gene-gene
pair onto above PIN to construct 9 CePINs for the 9 cancer types (Fig 1A).

Somatic mutations in 3,000 cancer genomes
We collected somatic mutation profiles for 2,946 cancer exomes in 9 cancer types (S1 Table).
In total, we obtained 277,370 nonsynonymous somatic mutations on the protein-coding
regions in ~18,000 genes. The details of preprocessing of mutation data are provided in Kan-
doth et al. [29]. We also extracted somatic missense mutations for smokers and never-smokers
in LUAD and LUSC, and for the male and female genomes in GBM from TCGA (January 05,
2015) using the R package implemented in TCGA-Assembler [67].

Gene gravity model
Mutation propagation. Wemapped the somatic mutations in each cancer type onto

PIN (Fig 1B). We used a network smoothing method [68] to spread the mutations across the
whole network for each cancer type. In this framework, we applied the random walk with
restart algorithm to calculate the cumulative mutations for each gene (Fig 1C). We denoted

MðtÞ
��!

as the mutation vector at iteration step t, and the propagation process is described as

Mðtþ1Þ
���!¼ aPTMðtÞ

��!þ ð1� aÞM0

�!
, where M0

�!
is a n×1 vector (n is the number of genes in the net-

work) with the i-th element equal to the cumulative mutation number of the gene through all
samples for each cancer type. PT is the transition matrix with Pij = 1/ki if i and j are connected,
otherwise Pij = 0 (ki is the connectivity of gene i in the network); and α is a tuning parameter
driving the restart probability of the random walk process. The mutations transmit to a ran-
dom neighbor with the probability α and returns to the initial gene with the probability (1−α).

The theoretical solution is straightforward when α 2 (0, 1), as Mð1Þ
��! ¼ ð1� �Þð1� �PTÞ�1Mð0Þ

��!

[69]. We used the iteration of the propagation function until Mt

�!
converged by the convergence

condition kMðtþ1Þ
���!�MðtÞ

��!k2 < 10�6 for a large network calculation.

For α = 1, the stationary solution of Mt

�!
is ki/2NL (NL is the total edges in PIN), which is

determined only by the network structure. When α = 0, Mt

�!
converges to M0

�!
and only depends

on the cumulative mutations through the samples. Here α is an important parameter in muta-
tion propagation. There is no propagation when α = 0; while the M value of a gene is purely
determined by the network structure when α = 1. We examined the influence of different α
value (0.1 to 0.9) in BRCA. As shown in S26 Fig, the α value (after α> 0.7) affects the results
slightly. Following the propagation process by setting α = 0.7, we built 9 mutation PINs for the
9 cancer types respectively by incorporating nonsynonymous somatic mutations into each PIN
to yield a cumulative mutations for each gene. In addition, we also performed mutation propa-
gation by setting α = 0.2. We could reproduce the results (S27 Fig) by setting α = 0.2 when
compared to that by setting α = 0.7 (Fig 2).

Gene gravity model. The gravity model derived from Newton’s law of gravitation has
been used in several fields, e.g., population migration [70]. In a classical gravity model, the
gravitation of two bodies is proportional to the product of their masses and inversely propor-
tional to the square of the distance between them, that is, G ¼ k m1m2

r2
, where m1 and m2 repre-

sent the masses of two bodies, r represents the distance between them, and k is the gravitation
constant. Here, we proposed a model to derive the genetic interaction between two genes in the
given cancer type. We assumed that the genetic interaction between genes i and j follows a

gravity model. Our model is Gij ¼ k
MiMj

r2
ij
, where Mi represents the cumulative mutations of
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gene i according to the mutation propagation method, rij represents the “biological distance”
between genes i and j, and k was assumed to be 1. For each cancer type, we used the PCC values
of gene co-expression pairs from RNA-Seq data to evaluate the gene-gene “biological distance”
rij ¼ 1

PCCij
. From the definition of rij, a high PCC indicates a short distance, and vice versa. Fol-

lowing the definition of Gij, two genes having large cumulative mutations and high gene co-
expression would exhibit a stronger genetic interaction (high G score) with each other.

Categories of gene sets
Cancer driver genes. We collected a high-quality mutated cancer driver gene set from

four large-scale, cancer genome analysis projects [3,28–30], as briefly described below. (i) Law-
rence et al. identified 224 significantly mutated genes from 4,742 human cancer exomes in 21
cancer types using the MutSig method [30]. (ii) Vogelstein et al. identified 125 mutated cancer
genes from the genome-wide sequencing studies of 3,284 tumors using the 20/20 rule [3]. (iii)
Kandoth et al. identified 127 significantly mutated genes from 3,281 tumors across 12 cancer
types [29]. (iv) Tamborero et al. identified 291 high-confidence mutated cancer driver genes in
3,205 tumors from 12 different cancer types using MutSig, OncodriveFM, OncodriveCLUST,
and ActiveDriver methods [28]. We utilized a union of four driver gene sets, resulting in a total
of 614 cancer driver genes (S3 Table).

DNA repair genes. We collected 153 DNA repair genes from the REPAIRtoire database
[26]. DNA repair enzymes continuously monitor chromosomes to correct damaged nucleotide
residues generated by exposure to carcinogens and cytotoxic agents [25], whose processes are
crucial for the maintenance of genetic information in the cancer genome.

Chromatin regulation factors. We compiled 176 CRFs from a previous study [27]. CRFs
regulate chromatin structure using three distinct processes: the post-translational modification
of histone tails, the replacement of core histones by histone variants, and direct structural
remodeling by ATP-dependent chromatin-remodeling enzymes. The CRFs that modulate the
epigenetic landscape have emerged as potential gatekeepers and signaling coordinators for the
maintenance of genome integrity [24].

Essential genes. We compiled 2,719 essential genes from the OGEE database [35]. Essen-
tial genes, whose knockouts result in lethality or infertility, are important for studying the
robustness of a biological system [35].

Other cancer genes. First, 487 CGC genes were downloaded from Cancer Gene Census
[71] (July 10, 2013). We then annotated oncogenes and TSGs using information from two pub-
licly available databases: CancerGenes [72] and TSGene [73]. In total, we obtained 477 onco-
genes and 1,040 TSGs (S3 Table).

Statistical analysis
All statistical tests were conducted using the R package (v3.0.1, http://www.r-project.org/). The
q values less than 0.1 were considered statistically significant.

Supporting Information
S1 Fig. The distribution of mutational density on the protein-protein interaction pairs in
comparison to the unfiltered interactions relative to the same number of random pairs
across 9 cancer types.
(PDF)
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S2 Fig. The complementary cumulative distribution of the gene-gene gravitation score for
five different gene sets in breast invasive carcinoma (BRCA).
(PDF)

S3 Fig. The complementary cumulative distribution of the gene-gene gravitation score for
five different gene sets in colon adenocarcinoma (COAD).
(PDF)

S4 Fig. The complementary cumulative distribution of the gene-gene gravitation score for
five different gene sets in glioblastoma multiforme (GBM).
(PDF)

S5 Fig. The complementary cumulative distribution of the gene-gene gravitation score for
five different gene sets in head and neck squamous cell carcinoma (HNSC).
(PDF)

S6 Fig. The complementary cumulative distribution of the gene-gene gravitation score for
five different gene sets in kidney renal clear cell carcinoma (KIRC).
(PDF)

S7 Fig. The complementary cumulative distribution of the gene-gene gravitation score for
five different gene sets in lung adenocarcinoma (LUAD).
(PDF)

S8 Fig. The complementary cumulative distribution of the gene-gene gravitation score for
five different gene sets in lung squamous cell carcinoma (LUSC).
(PDF)

S9 Fig. The complementary cumulative distribution of the gene-gene gravitation score for
five different gene sets in ovarian serous cystadenocarcinoma (OV).
(PDF)

S10 Fig. The complementary cumulative distribution of the gene-gene gravitation score for
five different gene sets in uterine corpus endometrial carcinoma (UCEC).
(PDF)

S11 Fig. The complementary cumulative distribution (C) of the gene-gene gravitation
score (G) for Cancer Gene Census (CGC) genes in lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC) smoker versus never-smoker (Nonsmoker) patients.
(PDF)

S12 Fig. The complementary cumulative distribution (C) of the attractive gene-gene gravi-
tation (G) scores for oncogenes across 9 cancer types.
(PDF)

S13 Fig. The complementary cumulative distribution (C) of the repulsive gene-gene gravi-
tation (G) scores for oncogenes across 9 cancer types.
(PDF)

S14 Fig. The complementary cumulative distribution (C) of the repulsive gene-gene gravi-
tation (G) scores for tumor suppressor genes across 9 cancer types.
(PDF)

S15 Fig. The complementary cumulative distribution (C) of the attractive gene-gene gravi-
tation (G) scores for tumor suppressor genes across 9 cancer types.
(PDF)
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S16 Fig. Venn diagrams showing the relationship between Cancer Gene Census (CGC)
genes with (A) chromatin regulation factors (CRFs) and (B) DNA repair genes.
(PDF)

S17 Fig. The distribution of average gravitation score across 23 chromosomes for 6 cancer
types.
(PDF)

S18 Fig. Correlation between gene average gravitation score and gene length (cDNA length,
bp) across 9 cancer types. The correlation r was calculated using Pearson Correlation Coeffi-
cient, and the p-value was calculated using F-statistics.
(PDF)

S19 Fig. Box plot shows new gene-gene pair gravitation (G) score distribution when using
the average mutation rate (M/L, here M is the mutation frequency for a given genes in a
specific cancer type) per base pair (bp) in each cancer type normalized by gene cDNA
length (L) for five gene sets across 9 cancer types.
(PDF)

S20 Fig. Correlation between gene average gravitation score and gene connectivity in pro-
tein interaction network across 9 cancer types. The correlation r was calculated using Pearson
Correlation Coefficient, and the p-value was calculated using F-statistics.
(PDF)

S21 Fig. Correlation between gene average gravitation score and average co-expression
coefficient (avePCC) across 9 cancer types. The correlation r was calculated using Pearson
Correlation Coefficient, and the p-value was calculated using F-statistics.
(PDF)

S22 Fig. The relationship between gene average gravitation (aveG) scores with four fea-
tures: average Pearson Correlation Coefficient (avePCC), mutation rate, gene cDNA
length, and gene connectivity (degree) in 9 cancer types.
(PDF)

S23 Fig. The performance of the gene gravity model after removing 31 ultramutated tumor
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