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Bose–Einstein condensate soliton 
qubit states for metrological 
applications
The Vinh Ngo1, Dmitriy V. Tsarev1, Ray‑Kuang Lee2,3,4* & Alexander P. Alodjants1

We propose a novel platform for quantum metrology based on qubit states of two Bose–Einstein 
condensate solitons, optically manipulated, trapped in a double-well potential, and coupled through 
nonlinear Josephson effect. We describe steady-state solutions in different scenarios and perform a 
phase space analysis in the terms of population imbalance—phase difference variables to demonstrate 
macroscopic quantum self-trapping regimes. Schrödinger-cat states, maximally path-entangled 
(N00N) states, and macroscopic soliton qubits are predicted and exploited to distinguish the obtained 
macroscopic states in the framework of binary (non-orthogonal) state discrimination problem. For an 
arbitrary frequency estimation we have revealed these macroscopic soliton states have a scaling up to 
the Heisenberg and super-Heisenberg (SH) limits within linear and nonlinear metrology procedures, 
respectively. The examples and numerical evaluations illustrate experimental feasibility of estimation 
with SH accuracy of angular frequency between the ground and first excited macroscopic states of the 
condensate in the presence of moderate losses, which opens new perspectives for current frequency 
standard technologies.

Nowadays, the formation and interaction of nonlinear collective modes in Kerr-like medium represent an indis-
pensable platform for various practical applications in time and frequency metrology1,2, spectroscopy3,4, abso-
lute frequency synthesis5, and distance ranging6. In photonic systems, frequency combs are proposed for these 
purposes7. The combs occur due to the nonlinear mode mixing in special (ring) microcavities, which possess 
some certain eigenmodes. Notably, bright soliton formation emerges with vital phenomena accompanying micro-
comb generation8. Physically, such a soliton arises due to the purely nonlinear effect of temporal self-organization 
pattern occurring in an open (driven-dissipative) photonic system. However, because of the high level of various 
noises such systems can be hardly explored for purely quantum metrological purposes.

On the other hand, atomic optics, which operates with Bose–Einstein condensates (BECs) at low tempera-
tures, provides a suitable platform for various quantum devices that may be useful for metrology and sensing 
tasks9.

In particular, so-called Bosonic Josephson junction (BJJ) systems, established through two weakly linked 
and trapped atomic condensates, are at the heart of the current quantum technologies in atomtronics, which 
considers atom condensates and aims to design (on-chip) quantum devices10. Condensates in this case represent 
low dimensional systems and may be manipulated by magnetic and laser field combinations. For a real-world 
experiment we can exploit a Feshbach resonance technique to tune the sign and magnitude of the effective atom-
atom scattering length11. Thus they represent advanced alternative to optical analogues.

The BJJs are intensively discussed and examined both in theory and experiment12–16. The quantum properties 
of the BJJs are also widely studied17–24 including spin-squeezing and entanglement phenomena19,25,26, as well as the 
capability of generating N00N-states20,21 to go beyond the standard quantum limit27. Physically, the BJJs possess 
interesting features connected with the interplay between quantum tunneling of the atoms and their nonlinear 
properties evoked by atom–atom interaction28,29.

Recently, nonlinear effects were recognized as the most interesting and promising from a practical point of 
view in quantum metrology30. For instance, atomic BECs pave the way for the nonlinear quantum metrology 
approach, which permits the super-Heisenberg (SH) scaling, i.e. scaling beyond Heisenberg limit (HL), cf.31,32. It 
was experimentally demonstrated (see33,34) that atomic spin-squeezed states improve the metrological parameter, 
which plays an important role in spectroscopy and quantum metrology of frequency standards35. Obviously, 
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a further enhancement of quantum metrological measurements may be achieved by improving the sources of 
entangled superposition (N00N-like) states or entangled states optimally adapted to moderate level of losses36–38. 
For these purposes, we propose to use in this work two-soliton states of atomic condensates.

With Kerr-like nonlinearities, solitons naturally emerge from atomic condensates in low dimensions39–43. Espe-
cially, the bright atomic solitons observed in lithium condensate possessing a negative scattering length41–43 are 
worth noticing. Atomic gap solitons are also observed in condensates with repulsive inter-particle interaction40.

Bright atomic solitons represent a promising platform for high precision interferometry due to the enhance-
ment of fringe contrast. In Refs.44–46 authors analyse the matter-wave gyroscope based on the Sagnac atomic 
interferometer with solitons. However, as shown in Ref.44, the analysis of the Fisher information and frequency 
measurement sensitivity parameter requires a delicate approach based on application of various quantum meth-
ods combination in the case of bright solitons interferometry.

Based on soliton modes, we recently proposed the quantum soliton Josephson junction (SJJ) device with 
the novel concept to improve the quantum properties of the effectively coupled two-mode system31,32,47,48. The 
SJJ-device consists of two weakly-coupled condensates trapped in a double-well potential and elongated in one 
dimension. BECs with such a geometry were studied in Ref.49. We demonstrated that quantum solitons may be 
explored for the improvement of phase measurement and estimation up to the HL and beyond47. In the frame-
work of nonlinear quantum metrology, we also showed that solitons permit a SH scaling ∝ N−5/2 ) even with 
coherent probes32. On the other hand, steady-states of coupled solitons can be useful for effective formation of 
Schrödinger-cat (SC) superposition state and maximally path-entangled N00N-states, which can be applied for 
the phase estimation purposes48. It is important that such superposition states arise only for soliton-shape con-
densate wave functions and occur due to the existence of certain steady-states in the phase difference—popula-
tion imbalance phase plane32.

Remarkably, macroscopic states, like SC-states, play an essential role for current information and metrology50. 
In quantum optics, various strategies are proposed for the creation of photonic SC-states and relevant (continuous 
variable) macroscopic qubits51–53. Special (projective) measurement and detection techniques are also important 
here54–56. The condensate environment, dealing with mater waves, is potentially promising for macroscopic qubits 
implementation due to the minimally accessible thermal noises it provides57–59.

In this work, we propose two-soliton superposition states as macroscopic qubits. The interaction between 
these solitons comes from the nonlinear mode mixing in an atomic condensate trapped in a double-well potential. 
In particular, we demonstrate the SC-states formation and their implementation for arbitrary phase measure-
ment prior HL and beyond. As we show further, this accuracy is due to the essentially nonlinear behavior of the 
solitons relative phase. Since SC-states are non-orthogonal states, a special measurement procedure is applied by 
so-called sigma operators, as it enables us to estimate the unknown phase parameter60. On the other hand, our 
approach can be also useful in the framework of discrimination of binary coherent (non-orthogonal) states in 
quantum information and communication61,62. The non-orthogonality of these states leads to so-called Helstrom 
bound for the quantum error probability that simply indicates the impossibility for a receiver to identify the 
transmitted state without some errors63,64. In quantum metrology, by means of various regimes of condensate 
soliton interaction, we deal with a set of quantum states, which may be prepared before the measurement. Our 
results show that these SC-states approach the soliton N00N-states to minimize the quantum error probability.

Two‑soliton model
Coupled‑mode theory approach.  We start with the mean-field description of coupled mode theory 
approach to an elongated BEC trapped in V = VH + V(x) potential, where VH is a 3D harmonic trapping poten-
tial; while V(x) is responsible for the double-well confinement in one (X) dimension48. The (rescaled) condensate 
wave function (mean field amplitude) �(x) obeys the familiar 1D Gross–Pitaevskii equation (GPE), cf.49:

where u = 4π |asc|/a⊥ characterizes a Kerr-like (focusing) nonlinearity, asc < 0 is the s-wave scattering length 
that appears due to atom-atom scattering in Born-approximation, a⊥ =

√
�/mω⊥  characterizes the trap 

scale, and m is the particle mass. To be more specific, we only consider condensates possessing a negative 
scattering length. In Eq. (1) we also propose rescaled (dimension-less) spatial and time variables, which are 
x, y, z → x/a⊥, y/a⊥, z/a⊥ , and t → ω⊥t , cf.32,47,49.

The nonlinear coupled-mode theory admits a solution of Eq. (1) that simply represents a quantum-mechanical 
superposition

where the wave functions �1(x) and �2(x) characterize the condensate in two wells. For weakly interacting 
atoms one can assume that

where �1(x) and �2(x) are ground- and first-order excited states, with the corresponding wave functions pos-
sessing energies β1 and β2 , respectively; C1(t) and C2(t) are time-dependent functions. If the particle number is 
not too large, Eq. (3) may be integrated in spatial dimension, leaving only two condensate variables C1,2(t)

29. In 
particular, �1(x) and �2(x) may be time-independent Gaussian-shape wave functions obeying different sym-
metry. Practically, this two-mode approximation is valid for the condensates of several hundreds of particles65. 
The condensate in this limit is effectively described by two macroscopically populated modes as a result.

(1)i
∂

∂t
� = −1

2

∂2

∂x2
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Quantization of coupled solitons.  The sketch in Fig. 1 explains the two-soliton system described in our 
work. If trapping potential V(x) is weak enough and the interaction among condensated particles is not so weak, 
the ansatz solution (3) is no longer suitable. For condensates with a negative scattering length, a bright soliton 
solution is admitted for �1,2(x, t) in Eq. (2). In fact, in this case one can speak about two-soliton solution prob-
lem, which is well known in classical theory of solitons66.

In quantum theory, instead of Eq.  (2), we deal with a bosonic field operator â(x, t) ∝ â1 + â2 , where 
â1,2 ≡ â1,2(x, t) are field operators corresponding to mean-field amplitudes �1,2(x, t) . We assume that experi-
mental conditions allow the formation of atomic bright solitons in each of the wells. In particular, these con-
ditions may be realized by means of manipulation with weakly trapping potential V(x). Experimentally, this 
manipulation may be performed by a dipole trap and laser field.

Then, considering linear superposition state, one can write down the total Hamiltonian Ĥ for two BEC soli-
tons in the second quantization form as

The annihilation (creation) operators of bosonic fields, denoted as âj ( ̂a†j  ) with j = 1, 2 , obey the commuta-
tion relations:

In the Hartree approximation for a large particle number, N >> 1 , one can assume that the quantum N-par-
ticle two-soliton state is the product of N two-soliton states and can be written as67–69

where �j(x, t) is the unknown wave functions, and |0� ≡ |0�1|0�2 denotes a two-mode vacuum state. The state 
given in Eq. (6) is normalized as 

〈

�N

∣

∣�N

〉

= 1 , and the bosonic field-operators âj act on it as

Applying variational field theory approach based on the ansatz �j(x, t) , one can obtain the Lagrangian density 
in the form:

where we suppose N − 1 ≈ N and omit common term N.
Noteworthy, from Eq. (8), one can obtain the coupled GPEs for �j-functions as 
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Figure 1.   Sketch of the probability density distribution |�|2 versus spatial coordinates X and Y, as a 2D 
projection of the 3D coupled condensates trapped in a double-well (dashed green curve) and harmonic (dashed 
magenda curve) potentials, respectively. Shadow regions display 1D condensate wave packets projections; they 
represent a secant-shape in X-direction and Gaussian-shape in the transverse directions.
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 where � = β2 − β1 is the energy (frequency) spacing.
The set of Eqs. (9) and (10) leads to the known problem for transitions between two lowest self-trapped 

states of condensates in the nonlinear coupled mode approach if we account Eq. (3) for the representation of 
condensate wave functions �j(x, t)

28,29.
On the other hand, Eqs. (9) and (10) can be recognized in the framework of soliton interaction problem 

that may be solved by means of perturbation theory for solitons66. In particular, in accordance with Karpman’s 
approach we can find in Eq. (9) and (10) the terms proportional to ǫjk = �∗

j �
2
k + 2|�j|2�k , j, k = 1, 2 , j  = k , 

as perturbations for two fundamental bright soliton solutions. Physically, ǫjk implies the nonlinear Josephson 
coupling between the solitons.

In this work we establish a variational approach for the solution of Eqs. (9) and (10), cf.32. For the weakly 
coupled condensate states, i.e. for ǫjk ≃ 0 , the set of Eqs. (9) and (10) can be reduced to two independent GPEs:

which possess bright (non-moving) soliton solutions

In the case of ǫjk  = 0 and non-zero inter-soliton distance δ , we examine ansatzes for �j(x, t) in the form 

In particular, our approach presumes the existence of two well distinguished solitons (separated by the 
small distance δ , with the shape preserved) interacting through dynamical variation of the particle numbers, 
Nj ≡ Nj(t) , and phases, θj ≡ θj(t) , which occurs in the presence of weak coupling between the solitons. In other 
words, Nj and θj should be considered as time-dependent (variational) parameters.

By substituting Eqs. (13) and (14) into (8) we obtain (up to the constant factor and term)

where z = (N2 − N1)/N  (  N1,2 = N
2 (1∓ z) )  is  the part icle  number populat ion imbalance; 

� = θ2 − θ1 − (β2 − β1)t ≡ θ −�t is an effective time-dependent phase-shift between the solitons.
Physically, � is an angular frequency spacing between the ground and first excited macroscopic states of the 

condensate; it represents a vital (measured) parameter for metrological purposes in this work. In Eq. (15), we 
also introduce the notation � = N2u2/16 and define the functionals 

 where � ≡ Nu
4
δ is a normalized distance between solitons.

Finally, by using Eq. (15) for the population imbalance and phase-shift difference, z and � , we obtain the 
set of equations 

 where dots denote the derivatives with respect to the renormalized time τ = �t.
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In contrast to the problem with coupled Gaussian-shape condensates, the solutions of Eqs. (18) and (19) 
crucially depend on the features of governing functionals I(z,�) and J(z,�) , cf.28,29. In Supplementary Material 
we represent some analytical approximations for I(z,�) and J(z,�) , in order to give a clear illustration.

Steady‑state (SS) solutions
Steady‑state solution for z2 = 1.  The steady-state (SS) solutions of Eqs. (18) and (19)  play a crucial role 
for metrological purposes with coupled solitons47. We start from the SS solution z2 = 1 of Eq. (18) by setting the 
time-derivatives to zero. As seen from Eqs. (16) and (17), in the limit of maximal population imbalance, z2 = 1 , 
I and J are independent on � and approach 

Substituting z2 = 1 and Eqs. (20) and (21) into Eq. (19), we obtain 

Notably, in the quantum domain the SS solutions shown in Eqs. (22) and (23) admit the existence of quantum 
states with maximal population imbalance z = ±1 and phase difference. The latter depends on the frequency 
spacing � , which is the object of precise measurement with maximally path-entangled N00N-states in this paper.

Below we perform the analysis of the SS solutions of Eqs. (18) and (19) in two limiting cases �  = 0 , � ≃ 0 
and � ≃ 0 , �  = 0.

SS solutions for � = 0,π and � ≃ 0.  To find the SS solutions we rewrite Eq. (19) as

for � = 0 and

for � = π , respectively.
In Supplementary Material we represent a polynomial approximation for I, J functionals given in Eqs. (16) 

and (17). Since the equations obtained from Eqs. (24) and (25) are quite cumbersome, here we just briefly ana-
lyze the results.

In the limit of closely spaced solitons and � = 0 , the population imbalance z at equilibrium depends only 
on � and obeys

Similarly, for fixed soliton phase difference � = π we have

We plot the graphical solutions of Eqs. (26) and (27) in Fig. 2; the blue and red curves characterize the right 
parts of Eqs. (26) and (27), respectively. The straight lines in Fig. 2 correspond to different values of the �/� 
ratio. These lines cross the curves in the points indicating the solutions of Eqs. (26) and (27). Notice that the 
solid blue and red curves denote the values of �/� and z corresponding to the stable SS solutions; while the 
dotted ones describe parametrically unstable solutions. As seen from Fig. 2, at phase difference � = 0 there 
exists one stable SS solution for any z ∈ [−0.7; 0.7] and only unstable solutions for |z| > 0.7 . At |�/�| > 1.55π , 
no SS solutions exist.

On the other hand, at � = π there exists a tiny region −0.1π ≤ �/� ≤ 0.1π possessing two SS solutions 
simultaneously. One stable SS solution exists within the domain 0.1π < |�/�| ≤ 2.64π.

SS solutions for � = 0,π and � ≃ 0.  At � = 0 Eqs. (26) and (27) admit the SS solutions, which look 
like: 
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As seen from Eq. (29), at relative phase � = π Eq. (25) possesses three solutions: a parametrically unstable 
solution occurs at z = 0 and two degenerate SS solutions appear for z = ±z0 . Here, z0 varies from 0.41 at � ≈ 0 
to 0.64 at � ≈ 2.8 for non-zero soliton inter-distance, respectively. For � > 2.8 these SS solutions do not exist.

In Fig. 3 we represent a more general analysis of SS solutions for � = 0 as functions of inter-soliton distance 
� for different � . For that we exploit the sixth-order polynomial approximation, see Supplementary Material.

Notably, the dependence in Fig. 3 is similar to the one obtained with the Lipkin–Meshkov–Glick (LMG) 
model, see e.g.70. The LMG model exhibits remarkable features including quantum phase transition and maxi-
mally entangled state formation, see e.g.71–75. In our work, the distance between solitons plays a key role in this 
case. In particular, at � ≃ 0 there exists one solution at z = 0 , stable at � ≤ �c ≈ 0.5867 . For � > �c this 
solution becomes parametrically unstable. On the other hand, for � > �c Eq. (24) possess the degenerate SS 
solutions similar to the ones at � = π . The bifurcation for population imbalance z occurs at � = �c ; in Fig. 3 

Figure 2.   Normalized frequency spacing �/� (dashed lines) versus reduced population imbalance z for 
Eq. (26) (blue line) and Eq. (27) (red line), respectively. Dashed regions correspond to unstable solutions.

Figure 3.   Population imbalance z versus � for � = 0 and different � . The solid curves denote SS solutions of 
Eq. (24) and the dotted curves represent (parametrically) unstable solutions. �c = 0.5867 and �ub

c = 0.647 
are critical distances between the solitons correspondent to bifurcations occurring for curves �/� = 0 and 
�/� = 0.05π , respectively.
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the z+ (upper,positive) and z− (lower, negative) branches characterize this bifurcation. In the vicinity of �c we 
can consider z± = ±z0 , where

At �  = 0 , the behavior of SS solutions become complicated with respect to the distance �—see the green 
curves in Fig. 3. The solid curves correspond to SS solutions for different � , while the dotted ones describe the 
unstable solutions. As clearly seen from Fig. 3, for |�| > 0 there is no bifurcation for population imbalance z and 
two stationary solution branches z± occur with |z−| > |z+| . Notice, for � > 0 there exists another critical point 
�ub

c > �c , where the upper branch z+ of SS solution appears. The numerical calculation for �/� = 0.05π in 
Fig. 3 gives �ub

c ≈ 0.647 or �− ≈ 0.06 in (35). For these parameters z+ ≈ 0.2 and z− ≈ −0.3 . On the other hand, 
at a relatively large values of parameter �/� , only one SS solution exists - see the red curve in Fig. 3.

Mean‑field dynamics
Small amplitude oscillations.  We start our analysis here from small amplitude oscillations close to SS 
solutions given in Eqs.  (28)–(30). For that we linearize Eqs.  (18) and (19) in the vicinity of the solution in 
Eqs. (28) and (30), assuming 0 ≤ � < 0.6 and �/� << 1 . The first assumption allows us to use the approxima-
tion of I, J-functionals by the fourth-degree polynomial, see Supplementary Material.

For zero-phase oscillations, i.e. for � ≈ 0 ( cos [�] ≈ 1 , sin [�] ≈ � ), from Eqs. (18) and (19) we obtain

with the solution

where A and ω0(�) = 13.4
√
0.37−�2 − 0.25� are the amplitude and angular frequency of oscillations, 

respectively.
Notice, here in (33) and thereafter all frequencies ωj ( j = 0,π , ST ) characterizing small amplitude oscillations 

are given in �−1 units due to the time renormalization τ = �t performed earlier. The last term in Eq. (33) with 
f0(�) = 5.36− 0.8�− 4.22�2 plays a role of constant “external downward displacement force” that vanishes 
at � ≃ 0 . Notably, at � > 0.5 , the oscillations become anharmonic and z(τ ) diverges at � > 0.5867 . For � = 0 
the frequency of oscillations approaches ω0 ≈ 8.15 , that agrees with the numerical solution of Eqs. (18) and (19).

At � = �c ≃ 0.5867 SS solution given in Eqs. (28) splits into two degenerate solutions with z = ±z0 and z0 
determined by Eq. (31), see Fig. 3. Near these points the equation, similar to Eq. (32), has a form

that implies a solution

where �− ≡ �−�c , ωST = 14.53
√

�− − 4.48�2
− + 17.8�3

− − 53.5�4
− is the angular frequency of oscillations, 

and f = 3.4− 7.26�− + 11�2
− is the “external” force. A relative error for Eq. (35) is less than 5%.

In the vicinity of SS points determined by Eq. (30), we obtain π-phase oscillations characterized by

with ωπ =
√
2− 0.9�2 − 0.3� , fπ = 0.1

(

�2 + 0.38�+ 5.5
)

 , and z0 determined in Eq. (30). For � ≃ 0 and 
� = 0 , the angular frequency is ωπ ≈ 1.42 , which is much smaller than that in the zero-phase regime.

The analysis of Eqs. (18) and (19) in the vicinity of Eq. (29) reveals that this solution is parametrically unsta-
ble, and highly nonlinear behavior is expected. Indeed, a direct numerical simulation demonstrates anharmonic 
dynamics plotted in Fig. 4. For 0 < |z| < 0.5 the nonlinear regime of self-trapping is observed,; while it turns 
into nonlinear oscillations at |z| > 0.5.

The analysis of SS solution (22) and (23) reveals a strong sensitivity to z-perturbation, when condition z2 = 1 
is violated, the high-amplitude nonlinear oscillations occur. On the other hand, solution (22) and (23) is robust 
to phase-perturbations, which is an important property for metrology.

Large separation limit, � >> 1.  For a very large distance � between the solitons, i.e., � >> 1 , the 
atom tunneling between them vanishes, and the solitons become independent. Strictly speaking, in the limit of 
� → ∞ the functionals I , J → 0 , and Eqs.  (18) and (19) look like 

(31)z0 = 1.2
√

�−�c .

(32)z̈ + ω2
0(�)z = f0(�)

�

�
,

(33)z(τ ) = A cos [ω0τ ]−
�

�

f0

ω2
0

,

(34)z̈ + ω2
STz = −18�−

√

�− − �

�
f (�−)

(35)z(τ ) = ±
(

1.2− 18�−
ω2
ST

)

√

�− + A cos[ωSTτ ] −
�

�

f (�−)

ω2
ST

,

(36)z(τ ) = ±z0 + A cos [ωπτ ]+
�

�

fπ

ω2
π

,

(37)ż =0,
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 i.e., the population imbalance is a constant in time and the running-phase regime establishes.
For large but finite � , SS solution having z = ±z0 with z0 → 1 exists for the zero-phase regime, � = 0 ; for 

example, for � = 10 the SS population imbalance is z0 ≈ 0.96.

Phase‑space analysis.  The dynamical behavior of the coupled soliton system can be generalized in terms 
of a phase portrait of two dynamical variables z and � , as shown in Figs. 5 and 6.

In Fig. 5 we represent z −� phase-plane for � = 0 and for different (increasing) values of distance � . We 
distinguish three different dynamic regimes. The solid curves correspond to the oscillation regime when z(τ ) 
and �(τ) are some periodic functions of normalized time, see Eq. (33) and the red curve in Fig. 4. The dashed 
curves in Fig. 5 indicate the self-trapping regime when z(τ ) is periodic and the sign of z does not change, see 

(38)�̇ =− �

�
+ 2z,

Figure 4.   (a) The population imbalance z(τ ) and (b) effective phase difference �(τ) versus reduced time τ for 
�(0) = π.

Figure 5.   Phase plane z −� at � = 0 and for (a) � = 0 ; (b) � = 0.75 ; (c) � = 1.2 ; (d) � = 1.5 ; (e) � = 3.0 ; 
(f) � = 10.
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Eq. (36) and the blue curve in Fig. 4. Physically, this is the macroscopic quantum self-trapping (MQST) regime 
characterized by a nonzero average population imbalance when the most of the particles are “trapped” within 
one of the solitons. At the same time, the behavior of phase �(τ) may be quite complicated but periodic in time. 
On the other hand, for the running-phase regime depicted by the dashed-dotted curves, �(τ) grows infinitely, 
see the green curve in Fig. 5b. Due to the symmetry that takes place at � = 0 , the running-phase can be achieved 
only with the MQST regime, see Fig. 5.

As seen from Fig. 5, the central area of nonlinear Rabi-like oscillations between the ground and first excited 
macroscopic states occur for a relatively small inter-soliton distance � and are inherent to zero-phase oscilla-
tions, see Fig. 5a. As discussed before, at � = �c ≈ 0.5867 this area splits into two regions characterized by the 
MQST regimes, Fig. 5b. This splitting occurs due to the bifurcation of population imbalance, see the black curve 
in Fig. 3. These regions are moving away from each other with growing � , see Fig. 5c–f. Notably, the bifurcation 
effect and MQST states, which are the features of the coupled solitons (Fig. 1) at the zero-phase regime, do not 
occur for the condensates described by Gaussian states28,29.

The phase trajectories inherent to π-phase region π2 < � < 3π
2  stay weakly perturbed until the second critical 

value � ≈ 2 , when the MQST regime in Fig. 5d changes to Rabi-like oscillations in Fig. 5e, then, approaches the 
running-phase at � ≈ 6 , see Fig. 5f.

At large enough � , the particle tunneling vanishes and the zero-phase MQST domains arise in the vicinity 
of population imbalance z = ±1 , Fig. 5f. The phase dynamics corresponds to the running-phase regime with 
z = const , see Fig. 5f and Eqs.  (37) and (38).

For non-zero � , the phase portrait becomes asymmetric, see Fig. 6. To elucidate the role of � , we study the 
soliton interaction for a given inter-soliton distance � = 0.75 > �c that corresponds to the one after the bifurca-
tion. As seen from Fig. 6a, the phase portrait does not change significantly for small �/� , cf. Fig. 5b.

One of the SS solutions for zero and π-phase regimes disappears with increasing �/� ; then the running-
phase regime establishes, see Fig. 6b. Further increasing of �/� leads to vanishing the SS solution for zero-phase, 
Fig. 6c.

Thus, phase portraits in Figs. 5 and 6 demonstrate the existence of degenerate SSs for coupled solitons by 
varying � and �/� . Such solutions, as we show below, may be exploited for the macroscopic superposition 
soliton states formation in the quantum approach.

Quantum metrology with two‑soliton states
Soliton SC‑qubit states.  In this Section we demonstrate how two-soliton quantum superposition states 
may be used for the parameter estimation and measurement procedure. In particular, we explore two degenerate 
states with population imbalance z = z± for these purposes.

In the mean-field approximation z± correspond to two SS solutions, which specify MQST regimes estab-
lished in Fig. 5 for phases � = 0 and � = π (see Eq. (30)), respectively. Strictly speaking, values z± for � = 0 
are inherent to the upper and lower branches in Fig. 3 and appear above the critical distance �c between the 
solitons, cf. Fig. 5b.

In the quantum domain two degenerate SS solutions z± (occurring simultaneously) determine the existence 
of macroscopic superposition states, which correspond to SC- or N00N-states. Here, we specify necessary condi-
tions for these states formation within the Hartree approach, cf.17,47.

We generalize SC- and N00N-states as macroscopic qubit states of the solitons, which we define as 

 where |�1� and |�2� are two macroscopic states representing two “halves” of SC-, or N00N-states. Notice, opera-
tors �̂i = |πi��πi| realize a projection onto the superposition of states |�1,2� , which generally are not orthogonal 
to each other obeying the condition

(39)|π0� =c1|�1� − c2|�2�,

(40)|π1� =c2|�1� − c1|�2�,

(41)
〈

�1

∣

∣

∣
�2

〉

= η.

Figure 6.   Phase plane z −� at � = 0.75 and for (a) �/� = 0.05π ; (b) �/� = π ; (c) �/� = 1.5π.
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Simultaneously, we require the states in Eqs. (39) and (40) to meet the normalization condition

Now, we are able to determine the coefficients c1,2 , which fulfill Eqs. (41) and (42) and look like

In Eqs. (41) and (43), the parameter η defines the distinguishability of states |�1,2� . The case of η = 1 corresponds 
to completely indistinguishable states |�1,2� . In this case one can assume that |�1� and |�2� represent the same 
state.

On the other hand, the case of η = 0 ( c1 = 1 and c2 = 0 ) characterizes completely orthogonal states |�1,2� ; 
that becomes possible if |�1,2� approach two-mode Fock states. In other words, this is a limit of the N00N-state, 
for which the coupled solitons are examined.

For η  = 1 it is instructive to represent soliton wave functions shown in Eqs. (13) and (14) in the form of 

To be more specific, we examine here two soliton interaction with relative phase � = 0 and intersoliton 
distances above critical values. From Eq. (6) we obtain 

 for two “halves” of the SC-state, where 

In Eqs. (48) and (49), z+ and z− are two SS solutions corresponding to the upper and lower branches in Fig. 3, 
respectively. e−iN(θ/2+β1τ) . In particular, for � ≈ 0 , we have z± → ±z0.

The scalar product for state given in Eqs. (46) and (47) is

where ε characterizes solitons wave functions overlapping. Assuming non-zero and positive � for ε , one can 
obtain

In Fig. 7, we establish the principal features of coefficients shown in Eq. (43) and parameter ε , see the inset 
in Fig. 7, as functions of � . The value of � plays a significant role in the distinguishability problem for states |�1� 
and |�2� . In particular, for � = 0 at the bifurcation point � = �c = 0.5867 , we have ε = 1 that implies indis-
tinguishable states |�1� and |�2� , see the red curve in the inset of Fig. 7. In this limit, the coefficients c1,2 → ∞.

However, even for the small (positive) � , it follows from Eq. (51) that ε  = 1 for any � > �c , and states |�1� , 
|�2� are always distinguishable. In particular, it follows from zero-phase solution given in Eq.  (35) that 
z± = ±

(

1.2− 18�−
ω2
ST

)√
�− − �

�

f (�−)
ω2
ST

 and |z+| �= |z−|.
This is displayed by the green curves in Fig. 7. The SS solutions possess c1 = 1.057 , c2 = 0.203 for c1,2 that 

correspond to �ub
c ≃ 0.647 , ε ≈ 0.9056 for �/� = 0.05π.

(42)
〈

πi

∣

∣

∣
πj

〉

= δij , i, j = 0, 1.

(43)c1,2 =

√

1±
√

1− η2

2(1− η2)
.
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√
uN

4
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[
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)]
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√
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)]
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From Fig. 7, it is evident that coefficients c1,2 rapidly approach (due to the factor N) levels c1 = 1 , c2 = 0 
(completely distinguishable macroscopic SC soliton states), when � increases. In this limit, as seen from Fig. 3, 
z± approaches ±z0 , and from Eq. (51) we obtain

Practically, in this limit the red and green curves coincide in Fig. 7.
Remarkably, the case of η = 0 characterizes completely orthogonal states |�1,2� in (41) and (50); that becomes 

possible if |�1,2� approach two-mode Fock states. In other words, this is a limit of the N00N-state, for which we 
examine the coupled solitons. In this limit, the relative soliton phase approaches (23).

Parameter estimation with macroscopic qubit states.  We can exploit states shown in Eqs. (46) and 
(47) in metrological measurement for arbitrary phase φN estimation. In general, suppose that two-soliton quan-
tum system is prepared in state |ψ� , which carries information about some parameter Ŵ that we would like to 
estimate. In this work we are interested in fundamental bound for a positive operator valued measurement 
(POVM) and consider pure states of the quantum system.

The precision of the estimation of some parameter Ŵ is described by the error propagation formula27 given as

where within the quantum metrology approach 
〈

ψ |(��̂)2|ψ
〉

=
〈

ψ |�̂2|ψ
〉

−
〈

ψ |�̂|ψ
〉2

 represents the vari-
ance of fluctuations of some operator �̂ that corresponds to the measurement procedure performed with the 
(pure) state |ψ� . Typically, such procedures are based on appropriate interferometric schemes and use quantum 
superpositions initially prepared and then explored for measurement and estimation of parameter Ŵ , cf.76. In 
other words, the measurement procedure, that we consider here, includes three important steps involving two-
soliton state preparation, subsequent phase φN accumulation and measurement (estimation), cf.9. Practically, 
two-soliton state preparation involves a splitting procedure, which corresponds to the first beam splitter action 
in traditional Mach–Zehnder interferometer, see e.g.10. At this stage we suppose � vanishing.

Then, we assume that the output state |ψ� of quantum system that we use for measurement and parameter 
(phase) estimation is represented as

where φN is a relative (estimated) phase between states |π0� and |π1� , defined as

(52)ε ≈ (1− z20)(1− 0.21z20).

(53)σŴ =

√

〈

ψ |(��̂)2|ψ
〉

∣

∣

∣

∣

∣

∂

〈

ψ |�̂|ψ
〉

∂Ŵ

∣

∣

∣

∣

∣

,

(54)|ψ� = 1√
2
(|π0�−eiφN |π1�),

Figure 7.   Coefficients c1,2 versus the normalized inter-soliton distance � for N = 10 and different �/� . The 
inset demonstrates the behavior of ε for different � . �ub

c = 0.647 corresponds to the intersoliton distance of the 
upper-branch SS appearence at �/� = 0.05π , which is crucial for the SC-state formation.
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In (55) �� is the phase occurring between the solitons within the time τ� for non-vanishing � ; ϕ = ωτω ≡ Ŵ 
is an additional phase accumulated during time τω . Thus, we suppose that the measurement and parameter-
estimation procedure generally includes two stages characterized by total phase φN.

At first, let us examine the problem of estimation some arbitrary phase ϕ , which may be created after two-
soliton state formation. The role of soliton phase difference �� is negligible here, if we consider soliton interaction 
regimes with vanishing � (or very short time interval τ� ), proposing � = 0 , or � = π . In this limit we exploit 
soliton SC-state to estimate phase parameter φN ≃ Nϕ . We assume in (54) that phase φN ≃ NŴ contains all the 
information about measured parameter Ŵ and linearly depends on particle number N. Notice, this assumption 
is valid only in the linear metrology approach framework, cf.30.

Then, we define a complete set of operators �̂j , j = 1, 2, 3 (cf.60) 

 which obey the SU(2) algebra commutation relation.
The meaning of sigma-operators is evident from their definitions given in Eqs. (56)–(59). Physically, opera-

tors (56)–(59) are similar to the Stokes parameters, which characterize polarization qubit (two-mode) state, cf.77 
. Due to the properties shown in Eq. (42), the states |πi� are suitable candidates for the macroscopic qubit states, 
which we can define by mapping |π0� → |0� and |π1� → |1� , respectively53,78. In this form we can use them for 
POVM measurements defined with operators79 

Importantly, current quantum technologies permit POVM tomography54.In particular, POVM tomography 
involves reconstruction of the Stokes vector for the polarization qubit and requires four measurements at least, 
cf.80. In Ref.81 we suggested a special multiport interferometer for simultaneous measurement of all the Stokes 
parameters, which are relevant to macroscopic two-mode quantum state characterization. The proposed inter-
ferometer consists of a set of beam splitters and simple phase-shift device, which may be implemented in the 
atomic optics domain by relevant procedures performed with two-mode (spinor) atomic condensates, cf.9,10.

Average values of sigma-operators in Eqs. (56)–(59) can be obtained with the help of Eqs. (42) and (54), 
resulting in 

From Eqs. (63)–(65) it follows that only 
〈

�̂2,3

〉

 contain the information about the desired phase φN.
To estimate the sensitivity of phase measurement, we can assume here φN = NŴ and use Eq. (53) with the 

measured operator �̂ ≡ �̂2 . Taking into account 
〈

�̂2
2

〉

= 1 for the variance of fluctuations 
〈

(��̂2)
2
〉

 , we obtain

Finally, from Eqs. (53) and (66) for the phase error propagation we get

that clearly corresponds to the HL of arbitrary (linearly N-dependent) phase estimation and explores the sigma-
operator measurement procedure.

(55)φN = N�� + Nϕ.

(56)�̂0 =|π1��π1| + |π0��π0|,

(57)�̂1 =|π1��π1| − |π0��π0|,

(58)�̂2 =|π0��π1| + |π1��π0|,

(59)�̂3 =i(|π0��π1| − |π1��π0|),

(60)E1 ≡
√
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2
|1��1| = 1√
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2(1+
√
2)
(�̂1 + i�̂3),

(62)E3 ≡I − E1 − E2.

(63)
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�̂1

〉

=0,

(64)
〈
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〉

= cos[φN ],

(65)
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〉

= sin[φN ].
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Nonlinear metrology approach for frequency measurement, Ŵ ≡ �.  Now, we represent another 
particularly important case which relates to angular frequency � measurement that characterizes energy spacing 
between the ground and first excited macroscopic states. In particular, we suppose that all the information about 
� is embodied in phase φN = N�� ; the measurement and estimation procedure is realized immediately after 
period τ� . In other words, here we ignore linear (in respect of particle number N, frequency ω and time duration 
τω ) phase shift ϕ , cf. (55).

The SS solutions given in (22) and (23), which correspond to the maximal population imbalance, z2 = 1 , 
allow us to prepare the maximally path-entangled superposition state, a.k.a. N00N-state. As seen from Eq. (23), 
the solution with z = 1 exists when −2(π − 1) ≤ �/� ≤ 2(π + 1) . Similarly, the domain of solution z = −1 is 
−2(π + 1) ≤ �/� ≤ 2(π − 1) . To achieve the superposition N00N-state formation, we require both solutions 
to exist simultaneously. This restricts the domain of � as −2(π − 1) ≤ �/� ≤ 2(π − 1).

Substituting z = ±1 into Eqs. (44) and (45) we obtain 

 which are relevant to the N00N-state’s two “halves” defined as 

Considering the superposition of states shown in Eqs. (70) and (71) and omitting unimportant common 
phase eiN

(

0.5θ(−)−β1t
)

 , from (54) we arrive at

that represents the N00N-state of coupled BEC solitons for our problem. Here,

is the phase shift that contains the �-parameter required for estimation.
Remarkably, we deal here with the nonlinear metrology approach since two-soliton phase �� nonlinearly 

depends on � and parameter � (particle number N), cf.31,32,47.
To study the ultimate achievable precision of such a measurement with state (72), we consider the quantum 

Cramer–Rao bound9

where ν is the number of subsequent measurements (for the sake of simplicity we take ν = 1 ) and FQ is the 
quantum Fisher information. The latter is defined for the pure state |ψ� of the system as

where 
∣

∣ψ ′
�

〉

≡ ∂|ψ�/∂� . Substituting (72) with |ψ� ≡ |N00N� into (75) and then into (74) we get

Notice, Eq. (76) directly results from (53) with (72) and (73).
Comparing Eq. (72) with Eq. (54), we can conclude that the N00N-state “halves” |N0� and |0N� in Eq. (72) 

may be associated with states |π0� and |π1� , respectively. To estimate the sensitivity of the �-measurement, we 
use Eq. (76) with measured operator �̂ ≡ �̂ defined as

Since states shown in Eq. (77) are orthogonal, the mean value of Eq. (77) is
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Figure 8a demonstrates 
〈

�̂

〉

 as a function of �/� . Notice, the interference pattern in Fig. 8a exhibits an 
essentially nonlinear behavior for measured 

〈

�̂

〉

.
The variance of fluctuations 

〈

(��̂)2
〉

 for the measured sigma-operator reads as

Now, by using Eqs. (73) and (76) we can easily find the propagation error for the �-estimation as

Then, we choose the optimal estimation area for � , with the best sensitivity reached, in the vicinity of the 
domain border at �/� → 2(π − 1) . In this limit, Eq. (80) approaches

Equations (80) and (81) demonstrate one of the important results of this paper: for a given � , that charac-
terizes atomic condensate peculiarities, Eq. (81) demonstrates Heisenberg scaling for frequency measurement 
sensitivity.

At the same, time (80) and (81) exhibit some specific peculiarities in two limiting cases, which are inherent 
to the highly nonlinear interference pattern represented in Fig. 8a.

First, (80) is non-applicable ( σ� → ∞ ) for � = 0 since 
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Second, σ� → 0 if �/� → 2(π − 1).

Qualitatively this situation is shown in Fig. 8b. Geometrically tan[α] =
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 determines the slope of the 

tangent to the curve characterizing the interference pattern, cf.27. The blue curve in Fig. 8b corresponds to the 
ideal interference pattern shown in Fig. 8a. Obviously, the tangent is parallel to the abscissa axis in � = 0 point. 
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Figure 8.   (a) Mean value 
〈

�̂

〉

 vs. normalized angular frequency �/� for (a) the whole interval of � , and (b) in 
the vicinity of estimated value �est , respectively. The particle number is N = 200 . In (b) the blue and red curves 
characterize some fragment of the interference pattern without and with incoherent (extra) noises, respectively. 
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At the border of the pattern the tangent tends to be perpendicular to the � axis and σ� → 0 . Physically, such a 
behavior is not surprising and corresponds to the essentially nonlinear (in respect of � ) metrology limit that 
establishes the interference pattern in Fig. 8a. In this case one can obtain the SH scaling for the phase parameter 
measurement and estimation, cf.30,32–34.

Experimental feasibility of quantum metrology with condensate bright solitons.  Let us briefly 
discuss the feasibility of experimental observation of the proposed high-precision measurements with meso-
scopic superposition states in the presence of losses for the quantum soliton system in Fig. 1. A purely quantum 
theory (beyond the Hartree approach) of coupled solitons established in Fig. 1 represents a non-trivial task due 
to the essentially nonlinear character of particle tunneling between the solitons. However, the results for quan-
tum solitons obtained in48 allow to present here some simple arguments on the feasibility of quantum-enhanced 
metrology effects observation with coupled solitons discussed above.

First, we examine the influence of particle losses on N00N-state (72). The losses that occur between the 
two-soliton quantum state preparation and the measurement are similar to the action of some fictitious beam 
splitters, which introduce additional noises36,48. As shown in48, the resulting quantum state of coupled (in the 
transverse plane) solitons may be characterized by the superposition of the Fock states with highly populated 
N00N-components. In the presence of few (even one) particle losses such a state experiences a partial collapse 
with the formation of the highly asymmetric N00N-like state. We represent here such a state as

where γ is a vanishing parameter characterizing the N00N-state decay in the presence of losses. γ may be esti-
mated as γ ≃ 0.25N−1/2 if one particle is lost from the coupled solitons, see for details48. Now, instead of (78) 
we obtain

Equation (83) manifests a vanishing interference pattern in the limit of γ → 0 . Equations (78) and (83) allow 
to establish relations between angles α and αγ:

The last relation in (84) is valid for a single particle loss.
Equation (84) possesses a simple geometric interpretation: the particle losses reduce the slope of the tangent 

to the curve more than 
√
N  times. Moreover, from definition Eqs. (53) and (82) it is possible to show that the 

propagation error for the �-estimation in the presence of losses that we define as σ�,γ also increases in 2
√
N  

times in comparison with σ� established in (80). The red curve in Fig. 8b qualitatively demonstrates how losses 
case the decrease of the α angle and increase of σ�.

Thus, losses lead to the decoherence of an interference pattern, cf.82, and, as a result, the slope of the curve 
modifies. Hence, in the real-world � measurement, for essential amount of losses the accuracy σ�,γ ∝ 1/

√
N  

corresponds to the standard quantum limit of frequency estimation.
It is worth to notice that qubit states  (39) and (40) based on SC-state solutions for |�1� and |�2� “halves” 

should be more robust to small particle losses since each “halve” posses a binomial distribution of mesoscopic 
(or macroscopic) number of particles, see (46) and (47).

Now let us discuss which type of losses are actual for two-soliton states and how we can avoid them obtaining 
quantum-enhanced metrology discussed above.

Previously, in Ref.48, and then in Ref.84 we examined this problem for quantum solitons possessing simple 
Josephson coupling in another, transverse, configuration of soliton interaction, which is reminiscent to commonly 
considered weakly-coupled condensates possessing Gaussian wave functions, cf.12–14,16. From the experimental 
point of view, recent BEC soliton experiments with lithium condensates demonstrated that one- and three-body 
losses may be recognized as major detrimental effects for quantum solitons, cf.48,85,86.

In particular, we examine here time scale τd , in which an one-particle-loss event takes place in average; τd 
may be calculated as (cf.85,86)

where τ1 ≡ 1/K1 and τ3 are characteristic times for one- and three-body losses, respectively. The temporal param-
eters introduced in (85) are dimensionless (we normalized time variable on characteristic time scale 1/ω⊥ , as it is 
established in (1)). Notice, apart from our approach represented in Ref.48, authors in Refs.85,86 take into account 
the density heterogeneity within soliton spatial distribution, which implies the fifth order power in respect of 
particle number N in Eq. (85) for three-body recombination losses. We can represent τ3 in terms of dimension-
less nonlinear strength u as
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where K3 is a constant (normalized on ω⊥a6⊥ ) responsible for three-body recombination losses.
Another important characteristic time is

which results from the energy-time uncertainty relation. We consider particle losses as adiabatic processes 
occurring slowly in comparison with τsol , cf.15,85,86.

Thus, we can impose that the changes in particle number N (loss events) should take place on time scales 
sufficiently longer than characteristic time scales τsol , τ�, τω . Strictly speaking, we require

as a necessary condition for observation of the proposed measurement and estimation approach with solitons.
For numerical estimations we use here experimentally accessible parameters of bright solitons observed with 

lithium BEC42. A harmonic magneto-optical potential was exploited to trap the BEC of 7 Li atoms with charac-
teristic frequency ω⊥ = 2π × 710 Hz, providing characteristic spatial scale a⊥ = 1.4× 10−6 m. The condensate 
soliton was formed at s-wave scattering length asc = −0.21× 10−9 m manipulated via the Feshbach resonance 
technique.

Coefficients K1 and K3 for one- and three-body losses may be estimated (in physical units) as K1 = 0.05 s−1 
and K3 = 6× 10−42 m6s−1 , respectively, cf.86.

Finally, for mesoscopic particle number N ≃ 1000 from (85) we obtain estimation characteristic time scales 
as τd = 87.4 , τsol = 0.28 ( � ≈ 0.22 ), which imply τd ≃ 19.6 ms and τsol = 63 µ s given in physical units, respec-
tively. It is worth noticing that three-body losses are quite small in this limit and may be neglected, cf.48. Our 
estimations show that the last term in (85) relevant to three-body losses becomes compatible with the first one 
for particle number N ≃ 3000 . Obviously, three-body losses dominate with increasing particle number N, cf.86. 
However, bright solitons occurring in the condensates with a negative scattering length possess a wave-function 
collapse for macroscopically large N42. Roughly speaking, condensate bright solitons collapse if the number of 
atoms exceeds the critical value, Nc = 0.67a⊥/|asc|39, which implies uNc ≈ 4.2 (in Ref.42 authors demonstrated 
that Nc is relevant to the number of atoms 5.2× 103 ). In Refs.48,84 we proposed coupled bright solitons for quan-
tum metrology purposes containing few hundreds of condensate particles.

Thus, our approach for the measurement and parameter estimation procedure requires time scales shorter 
than τd and a moderate (mesoscopic) number of condensate particles, see (88). Notice, that in Ref.42 the observa-
tion time was less than 10 ms. Quantum properties of solitons applied to metrology will become possible with 
further improvements (in respect of particle number) of current experiments with BEC solitons43 and cf.84.

In the real-world experiment, on-chip Mach–Zehnder interferometer technology for atomic condensates 
may be useful for the frequency parameter � estimation described above, cf.10. In particular, an accumulated 
(additional) phase ϕ can also help select a measurement window in respect to parameter � for the interference 
pattern given in Fig. 8a. The magnetic field can be implemented for � tuning and manipulation. At the same 
time, magnetic field may be used to tune and enhance atom-atom scattering length11. Furthermore, the accuracy 
at Heisenberg scaling and beyond for parameter (phase) estimation alternatively may be obtained by the par-
ity measurement procedure instead of �̂-operator exploring, see47,60 and, especially, Ref.83 for recent progress 
achieved with the parity-based detection technique for atomic quantum states. Thus, we expect the on-chip 
Mach–Zehnder interferometer containing soliton Josephson junctions to be in focus of experimental research 
in the near future.

Conclusion
In summary, we have considered the problem of two-soliton formation for 1D BECs trapped effectively in a 
double-well potential. The analytical solutions of these soliton Josephson junctions and corresponding phase 
portraits exhibit the occurrence of novel macroscopic quantum selft-trapping (MQST) phases in contrast to the 
condensates with only Gaussian wave functions. With these soliton states, we have also explored the formation 
of the Schrödinger-cat (SC) state in the framework of the Hartree approximation. In particular, we have analyzed 
the distinguishability problem for binary (non-orthogonal) macroscopic states. Compared to the known results47, 
finite frequency spacing � leads to distinguishable macroscopic states for condensate solitons. This circumstance 
may be important for the experimental design of the SC-states.

The important part of this work is devoted to the applicability of predicted states for quantum metrology. In 
the framework of the linear metrology approach, by utilizing the macroscopic qubits problem with the interacting 
BEC solitons, one can apply the sigma-operators to elucidate the measurement and subsequent estimation of an 
arbitrary phase, that linearly depends on the particle number, up to the HL. Notably, the sigma-operators relate 
to the POVM detection tomography, which is similar to the Stokes parameters measurement within the qubit 
state reconstruction procedure. On the other hand, the phase estimation procedure for the phase-dependent 
sigma-operator can be realized by means of the parity measurement technique that produces the same accuracy 
for phase estimation. We have shown that in the limit of soliton state solution with the population imbalance 
|z| = ±1 the coupled soliton system admits the maximally path-entangled N00N-state formation.

In the framework of the nonlinear metrology approach, we have also demonstrated the possibility to estimate 
frequency � at the HL and beyond by soliton phase difference estimation. The SH scaling for frequency estima-
tion becomes possible due to the nonlinear interference pattern, which occurs for the relative soliton phase.

The numerical estimation for characteristic time scales of one- and three-body losses which are based on the 
existing experimental results with condensate bright solitons, demonstrates the feasibility of the experimental 
realization of the proposed quantum metrological schemes possessing moderate losses in the nearest future. At 

(87)τsol =
1

u2N2
≡ 1

16�
,

(88)τsol < τ�, τω < τd ,
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the same time, it is instructive to analyze quantum regimes with coupled solitons (see Fig. 1) established in this 
work. We plan a more detailed study of the quantum phase transition problem that is inherent to the LMG model 
and has not been verified in the paper. We will publish the analysis of these problems in the future.
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