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Abstract
In recent times, various machine learning approaches have been widely employed
for effective diagnosis and prediction of diseases like cancer, thyroid, Covid-19, etc.
Likewise, Alzheimer’s (AD) is also one progressive malady that destroys memory and
cognitive function over time. Unfortunately, there are no dedicated AI-based solutions
for diagnoses of AD to go hand in hand with medical diagnosis, even though multiple
factors contribute to the diagnosis, making AI a very viable supplementary diagnostic
solution. This paper reports an endeavor to apply various machine learning algorithms
like SGD, k-Nearest Neighbors, Logistic Regression, Decision tree, Random Forest,
AdaBoost, Neural Network, SVM, and Naïve Bayes on the dataset of affected victims
to diagnose Alzheimer’s disease. Longitudinal collections of subjects from OASIS
dataset have been used for prediction.Moreover, some feature selection and dimension
reduction methods like Information Gain, Information Gain Ratio, Gini index, Chi-
Squared, and PCA are applied to rank different factors and identify the optimum
number of factors from the dataset for disease diagnosis. Furthermore, performance
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is evaluated of each classifier in terms of ROC-AUC, accuracy, F1 score, recall, and
precision as well as included comparative analysis between algorithms. Our study
suggests that approximately 90% classification accuracy is observed under top-rated
four features CDR, SES, nWBV, and EDUC.

Keywords Alzheimer’s disease · Data science · Machine learning · Feature
selection · Classification algorithms

1 Introduction

In the modern competitive world, the lifestyle of the person is hustled, irregular,
and stretched towards multitasking, resulting in many health-related issues leading
to long-term chronic diseases. Alzheimer’s disease (AD) belongs to the category of
diseases associated with progressive dementia that causes impairment of memory,
thought process, and conduct [1]. Symptoms typically grow gradually and deteriorate
over the time, eventually making it impossible for the patient to perform even basic
everyday tasks, as the patient gradually loses ability to control their body, and in cases,
can lead to death [2]. Alzheimer’s disease (AD) is incurable; hence, early detection
and diagnosis are very important to achieve better disease management. Conventional
indicative and demonstrative techniques for AD detection have a few restrictions, and
they depend essentially on certain scales, clinical presentation or CT, MRI, and so
forth. For instance, numerous components can meddle with the Mini-mental State
Examination. But these measures are tedious and hard to apply to patients in serious
infectious stages of AD. CT-Scan and MRI on the other hand are costly and hence not
affordable to screen sicknesses in a huge populace. Even though, several computer-
aided initiatives have been developed in recent years to help in the early detection
of diseases; their cost makes their widespread application very difficult, especially in
poor economies [3].

Data science based approaches are intuitive and can learn from experience, and
hence can be complementary to medical diagnosis and thus are used extensively in
healthcare sector [4] which is one of the key indicator of a countries human devel-
opment index [5]. With high availability of digital pathology dataset, and recent
advancement in predictive data analytical methods, various data science approaches
have been widely used to diagnose diseases with complicated etiologies. Medical res-
onance imaging (MRI) is a non-invasive technique, which is comparatively cheaper
than invasivemethods, and is easier to understand from an analytical point of view as it
captures brainmicrostructurewith a high spatial resolution. Hence,MRI has been used
to generate data regarding informative biomarkers for mapping Alzheimer’s disease
[1, 2]. Recent advancements in data acquisition and analysis techniques have made
it possible to analyze the volumes of medical data. Further, advancements and avail-
ability of these tools has made it possible for interdisciplinary cooperation between
domain experts, ultimately leading to improvements in medical analysis and patient
care. This paper provides a detailed study of predictive data science algorithms that
contribute to the field of early and efficient diagnosis of Alzheimer’s disease. The goal
of early AD prediction is to perform predictive analytics and evaluate the effectiveness
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of standard machine learning (ML) algorithms that provides insights to researchers
to infer patients’ status and will be further used in prescriptive analytics for decision
making. The feature selection techniques applied in this work, is used provide more
valued information for AD diagnosis. Zhang et al. [6] focused on more informative
features and thus applied the feature selection method. P-order L2 norm regularization
was applied for feature selection and thus having the advantage of robust performance
over L2 norms. Although the method can be used for non-smooth optimization prob-
lems it was unable to find correlations for multi-views. Likewise, Zhang et al. [7]
applied multi-view classification on the MRI dataset by considering intra-structure
and the inter-structure relationship between features with L2,p norms. Luo et al. [8]
created a feature subset using SVM-RFE, mRMR [9], and RF feature selection and
applied SVM to handle the small size of datasets with high dimensionality.

Consequently, this paper includes various classifiers to diagnose Alzheimer’s dis-
ease that is based on machine learning algorithms like SGD, k-Nearest Neighbors,
LogisticRegression,Decision tree,RandomForest,AdaBoost,NeuralNetwork, SVM,
andNaïveBayes. Historically and geographically, ADhas been known to affect people
who are above 65 years of age. Therefore, the dataset used in this study covers sub-
jects of age 60 to 90 years old. Afterward, feature selection and dimension reduction
methods like Gini index, Information Gain, Information Gain Ratio, Chi-Squared, and
PCA are applied to identify the optimum number of features. Finally, performance of
each classifier is evaluated in terms of ROC-AUC curve, accuracy, F1 Score, recall,
and precision.

The rest of the paper is organized as follows. Section 2 covers the related work
that shows researchers’ contribution in the field of early and efficient Alzheimer’s
disease diagnosis using Machine Learning algorithms. Section 3 examined different
classification models and datasets in detail. Section 4 presents the experimental result
and analysiswith a comparison from the current state of the art, while Sect. 5 concludes
this paper.

2 Literature Review

Alzheimer’s is characterized by sudden and rapid deterioration in the mental faculty
of people suffering from it hence, there is an urgent need for early diagnosis of AD to
provide cost-effective solutions for disease management in the form of medication to
patients in early stages of AD. This section includes the existing work done in the field
of early predictions ofAD.Mainly, the research has been focused in twodifferent areas,
feature selection, and classification tasks. Some authors used neuroimaging datasets
while others used the EEG dataset. Almost in all cases, researchers focused on a binary
classification task. In machine learning-based algorithms, data works as nutrients, and
resultsmayvarywith the size of the datasets available. Because of the small sample size
and the high dimension of small datasets, Zheng et al. [10] used MRBM as the LUPI
algorithm for feature learning from MRI images and considered SVM and SVM+
as an ensemble for early diagnosis of AD. The integrated RBM and SVM+ models
worked considerably well on small datasets. Afterward, different CNN architectures
were designed by Ji et al. [11], while Valliani et al. [12] used deep residual CNN,
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and Cherdal and Mouline [13] created Petri Nets for modeling the complex structure
of the brain. McCrackin [14] applied deep CNN with data augmentation based on
extrapolation and interpolation to achieve better accuracy. Furthermore, Liu et al. [15]
applied multi-class classification on MRI using deep CNN. Additionally, the authors
have used regression analysis with a deep neural network to find the decaying rate of
the patient’s brain. Even though the model performs well, it lacks in robustness with
observed variations in the distribution of data.

With a small dataset of 28 people, Zhao and He [16] combined a deep learning
model with SVM using incremental learning for early AD prediction. A voxel-based
morphometry (VBM) [1] approach to ensemble PCA-based bagging and boosting is
applied on the MRI dataset. No prior information is required for using VBM even for
a small dataset, but the complexity of classification is higher in ensemble classifica-
tions. In the voxel-based analysis, often generalized linear model/logistic regression
is applied to predict disease and the desired estimator along with graph difference
operator is sparse. But there exists a procedural bias that violates the property of prior
sparsity. Consequently, Sun et al. [17] applied variable splittingwith generalized linear
models to gain better predictions, but with unimodal data. To capture more complex
relationships Cao et al. [18] capture non-linear relationships between features and
response variables with preserving sparsity. Liu et al. [19] learned cognitive features
using the Laplacian sparse group lasso model while maintaining sparsity. With this
multitask learning model, cognitive measure over time is still an open issue that can
improve the prediction power of machine learning models. To maintain sparsity, Xu
et al. [20] applied multi-task learning with dual margin loss function of behavioral and
background data of patients.

To diagnose AD early, mild cognitive impairment (MCI) can be considered as
early-stage where patients over time remain stable or change to AD. Zhang et al. [21]
predict the conversion of MCI to AD using semi-supervised learning with Laplacian
SVM. Accordingly, Zhu et al. [22] focused on incomplete multimodal data to identify
the label-data relationship for classification tasks. The multimodal data is assumed
to be a mixture of multiple distributions and Maximum Mean Discrepancy based
distance is used to find the difference between the distributions. SVM is applied to
the estimated distance to classify the MRI images. The generalized classifier works
well on homogenous data, but clinical data shows heterogeneous characteristics due
to various complex distributions. Zhu et al. [23] capture distribution divergence in
the high dimension space with biconvex optimization for designing a personalized
classifier. While Gamberger [24] applied gender-based clustering, an unsupervised
ML approach to a group of patients, thus making homogenous groups of patients
for further application of ML algorithms. Li [25] focused on the open challenges of
i.e. AD staging and avoiding retraining of classifiers. AD staging is optimized by α

expansion while the bottleneck of retraining is solved by 3 steps Multifold Bayesian
Kernalizaiton. In addition to MRI and CT, researchers also worked on EEG and MEG
for the early diagnosis of AD. Abasolo et al. [26] applied sample entropy to extract
relevant features from EEG data. Although the size of sample entropy does not depend
on the size of the data set, (samples are assumed to be independent), parameter setting
is crucial and results vary with change in parameter setting.
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From the various studies [27] it has been found that AD may affect brain topologi-
cal structure, hence, BrainNetCNN [28] is been proposed to learn the topology of the
brain. In addition to that Spectral CNN is developed to learn the remaining geometric
feature in Euclidean Space, giving better feature selection than BrainNetCNN. On the
other hand, Palafox [29] applied a mean shift algorithm for the segmentation of the
hippocampus of MRI, using SVM and kernel functions to map changes that came out
in the brain, starting with AD. Chen et al. [30] applied Gaussian Probability-based seg-
mentation for identifying the decaying structure of the brain. The two open challenges
with almost all models are, first the small size of the data set with high dimensionality
and second is the training of classifier with new datasets. Consequently, this paper
considers all issues and introduces various classifiers to diagnose Alzheimer’s disease
that is based on machine learning algorithms. Feature selection and dimension reduc-
tionmethods are also applied to give rank to features and identify the optimum number
of features, and each classifier is evaluated in terms of ROC-AUC curve, accuracy, F1
Score, recall, and precision.

3 Dataset andMethods

This article includes different methods and datasets used for the performance evalua-
tion of different ML algorithms. The work is broadly echeloned into two parts. First
is the feature selection method, where the focus is to get more relevant features and
discard the extraneous for faster and more efficient classification of data. In the second
part, the classification algorithms are applied to obtained features to make predictions.

3.1 Data Set Description

Themain problemwith existing work is the small size of datasets available, D∈ R
n×m

where, n ≈ m, i.e. small sample size with a large number of features, and therefore
approximating the parameters are difficult. The Oasis-2 Brain Data Set [31] is used for
the early diagnosis of AD. It contains MRI scans of 150 subjects with 373 sessions.
Each subject’s age ranges from 60 to 96 is shown in Fig. 1 in the form of a histogram in
which red and blue stripe represents male and female count (frequency) respectively
of a particular age. The data is classified into 3 classes, demented, non-demented,
and converted. The distribution of data is depicted in Fig. 2 and Table 1. Here, the
x-axis and y-axis show the group and frequency respectively, it denotes male and
female count under each group in the dataset. In this manner, the dataset is suitable
for molding the organization loads for accomplishing the most ideal arrangement of
results.

3.2 Feature Selection Techniques

The dataset contains 13 attributes and 3 classes. The distribution of all three classes
is depicted in Fig. 3. In the decision-making process, including all features makes
computational costs higher. Therefore, feature selectionmethods are used for selecting
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Fig. 1 The age-wise distribution of data

Fig. 2 The distribution of data with 3 different classes

Table 1 Distribution of data
Class/Count F M Total

Converted 24 13 37

Demented 60 86 146

Nondemented 129 61 190

Total 213 160 373
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Fig. 3 The feature space to the data

relevant features with some loss of information. To identify the optimum number
of features following techniques namely Information-Gain, Information-Gain Ratio,
Gini-Index, Chi-squared, and a dimension reduction technique (Principal Component
Analysis) is applied to select relevant features from the data.

The reduction in the entropy is measured as Information gain [32]. It takes the
product of probabilities of class with a log having base 2 of that class probability.
Entropy measures the minimum amount of information needed to classify the data.
Thus, information gain gives the impact of selecting some of the features from all
available features. Higher the information gain, the better the purity gained on splitting
data based on a few features. Initially calculate Entropy to measure the purity of split
and then information gain (IG) to determine which feature gives us the maximum
information about a class, shown in Eqs. (1) and (2):

Entropy H (X ) � −
N∑

i�1

Pi ∗ log2 Pi (1)

where X, N and Pi represent the set of all instances in the dataset, number of distinct
class values and even probability respectively.
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IG(A, X ) � H (X ) − H (A, X ) �
v∑

y�1

∣∣∣∣
X j

X

∣∣∣∣ ∗ H (X j ) (2)

where H(X) Entropy of dataset X, |Xj| number of instances with y value of an attribute
A, |X| total number of instances in dataset X, v set of distinct value of an attribute
A, H(Xj) entropy of subset of instance for attribute A, H(A,X) entropy of an attribute
A. The information gain is biased towards those attributes which have where high
variability in data values. To remove biased for such cases, Information Gain Ratio is
calculated that is divided by its intrinsic value i.e. the conditional entropy.

Information gain covers lesser distributionwhile calculatingwhich feature is promi-
nent in decisionmaking. To incorporate higher value of distributionsGini index is used,
which is calculated by Eq. (3). It captures the variance of distributions that are asso-
ciated with features. Its value lies between 0 to 1, where 0 represents equality and 1
represents inequality [33]. A Gini index of 0.5 denotes equally distributed elements
into some classes. For feature selection, a higher value of Gini-index shows that it has
more independent features in the dataset.

Gini � 1 −
n∑

i�1

(pi )
2 (3)

Other methods like chi-squared (X2) [8, 9] aim at selecting optimal features or
finding relation between features within the dataset, and are used to measure the
association between features with the n − 1 degree for freedom. More independent
features will contribute more to decision making and hence those features are more
relevant. In this method, firstly null and alternate hypothesis defines to check the
correlation between features, whether there is a significant relation between features
or not. Here, the significance level is 0.05 and its chi-square tabular value with a degree
of freedom (shown in Eq. 4) is 21.03, meanwhile, Chi-square is calculated by Eq. (5):

Degree of f reedom � (columns − 1)(rows − 1) (4)

X2
Calculated �

∑ (Observed value − Expected value)2

Expected value
(5)

Another technique is Principal Component Analysis (PCA) [1], which is a dimen-
sion reduction technique. It transforms the data into new smaller feature space and
still contains most of the information of original data. It captures the total variability
covered by identified Principal components as depicted in Fig. 4. It can be seen from
the figure that the newly transformed feature spacewith 6 principal components covers
75% variability of overall data.

Finally, Table 2 depicts the comparative score features by applying the above four
mentioned feature selection techniques. All the techniques used gave almost the same
results with CDR having the highest contribution while Hand (Right-Handed or Left)
is the irrelevant feature. These results are comparable with the visualization of feature
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Fig. 4 Variability covered by the number of principal components

space obtained in Fig. 3. Therefore, it can be stated that all the methods are unbiased
on the current data set and gives the same ordering of the features except the Gini
Index, since Gini Index captures distribution variance, but results are near about the
same. CDR, MMSE, SES, nWBV, and EDUC have higher scores and contribute more
than other features in decision making.

3.3 Classification Techniques

In classification technique, the dataset is usually divided into training and testing set
in which classifier learns from the training set (features of data) at the time of training
and then evaluate itself using the unseen test set. Finally, it predicts the precise class
label for a given input. In thiswork, StochasticGradientDescent, k-NearestNeighbors,
Logistic Regression, Decision tree, Random Forest, AdaBoost, SVM,Neural Network
have been used for classification.

Stochastic Gradient Descent [34] is an optimizationmethod that defines the optimal
cost/loss function for a problem. It learns by considering a single training data at a time
and tries to find the coefficient of function under the condition that minimizes the loss
margin (J(Q)). The algorithm repeats over the training samples, that updates the model
parameters (weights Q(β j) (β0, β1, . . .)) corresponding to each training example, the

123



Annals of Data Science

Table 2 Scores obtained by applying feature selection techniques

Features Info. gain Gain ratio Gini χ2

CDR 0.877 0.623 0.394 247.732

MMSE 0.413 0.208 0.212 134.756

SES 0.080 0.038 0.030 21.415

nWBV 0.073 0.036 0.042 29.116

EDUC 0.067 0.034 0.036 28.009

MR delay 0.058 0.030 0.026 14.759

M/F 0.049 0.050 0.029 14.399

Age 0.023 0.012 0.007 5.996

Visit 0.018 0.011 0.009 5.523

eTIV 0.012 0.006 0.003 0.602

ASF 0.011 0.006 0.003 0.752

Hand 0.000 0.000 0.000 Nan

update rule is given by Eqs. (5) and (6) and try to minimize the sum of squared errors.

J (Q) � 1

2

m∑

i�1

(h(Xi ) − Y i )2

h(Xi ) �
m∑

i�0

βi xi ∀ training examples (m)

The weight (Q) is updated continuously to make J(Q) smaller, until it converges to
global minima.For a single training sample, the update delta rule is:

Q j � Q j− ∝ ∂

∂Q j
J (Q)

β j � β j+ ∝ (Y i − h(Xi ))Xi
j (5)

From Eq. (5), it is observed that if Y and h(X) both are the same then β j do not change
and if Y is greater than h(X), the value of β j must be increased therefore h(X) comes
closer to Y, likewise β j will be updated for each training example and repeated until
convergence.

Repeat {
for i � 1 to m do
Q j � Q j+ ∝ (Y i − h(Xi ))Xi

j (for every j)

end for
} until convergence

(6)
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Table 3 SGD parameters
S. no Parameters Value

1 Classification loss function Hinge

2 Regression loss function Squared loss

3 Regularization Ridge (L2)

4 Regularization strength (α) 1e−05

5 Learning rate Constant

6 Initial learning rate (η0) 0.01

7 Shuffle data after each iteration Yes

where Yi is the actual value for a particular sample (xi, yi), h(Xi) is the estimated value
and ∝ is the learning rate. In this analysis, parameters have considered under SGD
shown in Table 3.

Another method is K-Nearest Neighbor [35], which is a straightforward, easy-to-
implement supervised machine learning algorithm that is used to solve classification
and regression problems. KNN assumes that similar things exist close and captures
the concept of similarity (sometimes referred to as distance, proximity, or closeness),
using some arithmetic operation and shows the gap between points on a graph using
Euclidean distance formula, illustrated in Eq. (7). To pick out the K that’s right for
the information, algorithm is evaluated multiple times with random K values and
optimized to select the K that reduces the number of errors. KNN’s main disadvantage
is that it becomes considerably slower as the volume of information increases thus,
making it an impractical choice in environments wherever predictions ought to be
made rapidly. KNN classifier consider uniform weight, Euclidean metric, and several
neighbors 5 to detect Alzheimer’s disease.

d(i, j) �
√

|X i1 − X j1 |2+|X i2 − X j2 |2+|X i3 − X j3 |2+ · · · + |X in − X jn |2 (7)

d(i, j) �
√√√√

n∑

k�1

(|Xik − X jk |)2

Furthermore, logistic regression [15] is applied to Alzheimer’s disease dataset
with ridge regularization (L2), it is appropriate regression or predictive analysis and
employed to clarify the relation between a dependent binary variable and one or more
ordinal features. Logistic Regression is employed once the dependent variable i.e.,
the target variable is categorical. Mathematically, cost function estimation is shown
in Eqs. (8) and (9) under logistic regression is defined as:

cost f unction � max
n∑

i�1

yi × wt xi (8)
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Here wt updates every time till find out the maximum value of the cost function to get
a best-fit line. Here classification is dependent on some conditions such as:

Case 1: if yi � + 1 and wtxi > 0 then yi*wtxi > 0, that means the data point is correctly
classified.
Case 2: if yi � − 1 and wtxi < 0 then yi*wtxi > 0, that means the data point is correctly
classified.
Case 3: if yi � − 1 and wtxi > 0 then yi*wtxi < 0, that means the data point is not
correctly classified.
Case 4: if yi � + 1 and wtxi < 0 then yi*wtxi < 0, that means the data point is not
correctly classified.

Now correctly classify the outliers under this dataset, the sigmoid function is used,
shown in Eq. (10) therefore updated cost function is as given below:

cost f unction � max
n∑

i�1

f (z) (9)

where,

Sigmoid f unction f (z) � 1

1 + e−z
, 0 ≤ f (z) ≥ 1 (10)

Here z � yi × wt xi .
Another supervised probabilistic decision-making algorithm (Decision tree) [32]

is used for regression and classification of targets based on the training features. The
probability tree is penned down using the top-down divide and conquer method. The
root of the tree is selected on the variable that provides the maximum information
gain, mathematically represented in Eqs. (1), (2) and the next nodes are recursively
selected in this manner. The goal is to make the tree as small as possible. Different
attribute selection method is applied for selecting the node like GINI Index, shown in
Eq. (3). Under Alzheimer’s disease detection, pruning is applied at least two instances
in leaves and at least five instances in internal nodes with maximum depth 100, also
performed splitting and it will stopwhenmajority reaches 95% (in classification only).

Many times, a single tree is not effective to capture mapping to target variables
with observations. Therefore, supervised ensemble method such as random forest
[33] is also applied over decision trees for decision making in which some number
of randomly created decision trees are employed in a small sample of training data
and majority decision is used for prediction/classification of target variables. Another
ensemble classifier AdaBoost [35] is applied in Alzheimer’s disease dataset in which
initially some weight is assigned to training sample (Eq. 11) then numerous poorly
performing classifiers (base learners: decision tree) are applied sequentially and trains
through samples of training data and updates weight according to Eqs. (12) and (13).
Afterward, these classifiers combine to get a strong classifier so that high accuracy
and less loss are measured.

I ni tial Weight Estimation(WI ) � 1

Number of sample (n)
(11)
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Fig. 5 Non-linear separable data transformed to linearly separable high dimensional space

Per f ormance of stamp (p) � 1

2
loge

(
1 − Total Error

T otal Error

)
(12)

Updated Weight �
{
WI × ep f or misscalssi f ied sample
WI × e−p f or correctly calssi f ied sample

(13)

Alzheimer’s disease dataset is also analyzed using a support vector machine [16],
the idea is to map the feature vectors non-linearly into another space and learn a
linear classifier there. The linear classifier in the new space would be an appropriate
non-linear classifier in the original space, shown in Fig. 5.

The separating hyperplane given bySVMmaximizes the separation between classes
[36]. It effectively maps original feature vectors into high dimensional space. Hence, it
learns non-linear discriminant functions. Though mapping to high dimensional space
requires polynomial computation, therefore SVM uses kernel functions, thus it needs
to solve a quadratic optimization problem. In this work, radial basis function kernel
has been considered for classification with numerical tolerance of 0.001 and iteration
limit of 100, mathematically, it is represented in Eq. (14). The RBF kernel applies
at two examples x1 and x2, these are represented by way of feature vectors in input
hyper-plan, is shown as:

f (x1, x2) � exp

(
−||x1 − x2||2

2σ 2

)
(14)

In the case of linearly separable data, the optimization function is shown in Eq. (15).

(
w∗, b∗) � min

||w||
2

+ c
n∑

i�1

εi (15)

where c � 1.0 and ε � 0.1 represent several errors and the value of error respectively.
For effective classification of Alzheimer’s disease, a biologically inspired artificial

neural network (ANNs) has been trained under the dataset. It works as the learning
process of human brains [20] in which each neuron receives signals, processes them,
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Fig. 6 Simple artificial neuron
net

 X1 w1

y
X2 w2

and transmits them to the next nearest neuron and takes decisions. The neural network
comprises three layers input layer, hidden layer, and output layer. Several Hidden
layers can be inserted according to the optimization level needed. The basic model
represented in Fig. 6:

ANN model learns through forward and backward propagation [37]. In forward
propagation, the inputs are processed into hidden neurons to get output after applying
activation function at each neuron, and passing of data to further neurons. After that,
loss is estimated at the output node, as shown in Eq. (16) and if there is an error the
signal is propagated backward to each neuron. The goal is to update the weights for
minimizing error using the computing gradient of the error function concerning the
weight, mathematically represented as chain rule in Eq. (17). Similarly, ANN trains
and repeats until convergence.

Error f unction (Etotal ) � 1

2

n∑

i�1

(yi − yi )
2 (16)

Now calculate the gradient of the error function by taking the partial derivative of
Etotal with respect to the concerning weights stated below.

∂Etotal

∂wi
� ∂Etotal

∂ y
× ∂ y

∂netinput1
× ∂netinput1

∂wi
(17)

New weights are represented as given below:

wi � wi −
(
Learning rate × ∂Etotal

∂wi

)

For analysis, ANN has used 100 hidden layers with ReLu activation function and SGD
solver. Here learning rate is 0.0001 and the maximum iteration is 300 with replicable
training.

Similarly, the Naïve Bayes [34] classification technique is also considered under
this work it is based on the probabilistic Bayes theorem and the hypothesis is that
all the predictors play an independent and equal contribution to the calculation of the
outcomes. Mathematically, Bayes theorem is represented as in Eq. (18),

P(y|x1, x2, . . . xn) � P(x1|y)P(x2|y) . . . P(xn|y)P(y)

P(x1)P(x2) . . . P(xn)
(18)

The above equation shows that, finding out the probability of y (hypothesis), given
that x1, x2, . . . xn (evidence) have already occurred that is called posterior probability
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P(y|x1). P(y) is the prior probability of y, P(x1|y) is the likelihood here find out the
probability of predictor/features given hypothesis and P(x1) is the prior probability
of features.

4 Results and Analysis

In this section, the results of different classification algorithmswith parameter confine-
ment as described in previous sections are compared and each classifier is evaluated
in terms of ROC-AUC curve, classification accuracy (CA), F1 Score, recall, and pre-
cision. Integrated 373 instances are available in the data set with 13 features, with 3
class classification problems. As per the Vapnik-Chervonenkis dimension guidelines
that provide a loose bound on several examples, (13X10) 130 instances are sufficient
for learning hyper-planes. In addition to that, all the experiments are carried out with
tenfold cross-validations, thusmaking the training set sufficiently large for generalized
risk minimization as well as to lower down the true risk on unseen data.

In a fundamental sense, there is no universal model that always performs better
than other models for every problem. “No free lunch theorem” formalizes the fact
that no learning algorithm is inherently superior. In practice, the performance of the
classifier is dependent (unconditionally reliant) on the features used [38]. So, the
objective is to find a good subset of features, which is a small subset of features that
has the best correlations with the class labels. The results of classifiers are generated
by the top 3, 4, 5, 6, and 7 features. The most relevant features are selected by apply-
ing feature selection algorithms depicted in Table 2. And the results were obtained as
represented in Tables 4, 5, 6 and 7. Tables 2 and 3 classifier outperforms the other clas-
sifiers for different numbers feature set and feature selection techniques. The results of
best-performing classifiers in the form of accuracy are highlighted in Fig. 7where clas-
sification accuracy is plotted for machine learning techniques for top-rated 4 features,
which has been identified after complex feature selection techniques. Here, logistic
regression and KNN classifier illustrated higher accuracy (90%). Top-rated four fea-
ture maps sufficiently good correlation with the class labels, it is needless to add more
features to learn classifiers. Because it adds bias to models which essentially leads
to over-fit the model. Formally, it can be stated that the optimum number of features
needed to learn all the classifier is four and any more than that leads to adding more
computational costs without adding much accuracy.

The interesting finding of this study suggests that Clinical Dementia Rating (CDR)
is the most prominent feature to measure the severity of AD. Along with CDR, the
Mini-Mental State Examination (MMSE) results helps in the diagnosis of AD more
accurately. Socioeconomic status (SES) and normalized whole brain volume (nWBV)
in presence of high CDR and MMSE increase the chance of AD. These four attributes
are even capable of classifying AD versus non-AD subjects with more than 90%
accuracy. The noteworthy contribution of the study is that CDR, MMSE, and SES
are interview-based scores, potentially reducing the cost of diagnosis. Using such
information in machine learning models helps to identify subjects at higher risk.

There are also techniques to transform the original feature space into a new fea-
ture space. It certainly helps to improve the features. For example, to make them
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Fig. 7 Accuracy versus top rated 4 features

uncorrelated or reduce the dimensionality of the feature vector without losing too
much information. One such technique is PCA in which all the features are linearly
transformed and projected to lower-dimensional space. It essentially maximizes the
variance of projected data. The results of different principal components with the
percentage of variability covered by new projected data are depicted in Table 8 and
Fig. 8. Again, looking at these tables, covering only 59.3% variability, the maximum
performance of the classifier is achieved. So, it can be stated that the top four principal
components are again sufficient to map the correlation with class labels.

5 Conclusion

The machine learning algorithms used in this paper are standards and successfully
applied in classification problems. Along with classification algorithms, different fea-
ture selection anddimension reduction techniques are used for diffingoutmore relevant
features than others for decision making and thus reducing the training time of the
classification algorithms. The contribution of this study is helpful in the exploration of
different machine learning algorithms in the field of applied research in brain health
maintenance as well as disease prevention using an MRI dataset. This paper also sug-
gests the optimal parameters to AD investigators i.e. the symptoms that contribute well
in decision making for machine learning algorithms. Accordingly, a lower number of
features has been identified which essentially lowers the cost and time for disease
diagnosis. In a nutshell the effectiveness of the prediction of the classifiers depends
on the number of features and feature selection techniques. In this study, Top-rated
four features namely CDR, SES, nWBV, and EDUC are identified for decisionmaking
for AD that map sufficiently accurate correlation with the class labels and an approxi-
mately 90% accuracy. Finally, combining the critical feature selection techniques with
the appropriate classifier yields better results. Furthermore, the work can be extended
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by applying other ensemble classification techniques on selected features to increase
the accuracy of the diagnosis.
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