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Protects Cardiomyocytes from Myocardial Ischemia and
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Objective. /e aim of this study was to determine whether Si-Miao-Yong-An decoction (SMYAD) could protect cardiomyocytes
from ischemia/reperfusion (I/R) injury and its underlying mechanisms.Methods. C57BL/6 mice were used to establish a model of
myocardial infarction by I/R injury and treated by SMYAD for 4 weeks. /en, the cardiac functions of mice were evaluated by
cardiac magnetic resonance (CMR). Histopathological analysis for the heart remodeling was detected by H&E and Masson
staining./e protein expression of collagen I, MMP9, and TNFαwas detected by western blot in the heart tissues. H9C2 cells were
used to establish the hypoxia/reoxygenation (H/R) model and SMYAD intervention. MTT assays detected the cell viability of
myocardial cells. /e expression level of IL-1β was evaluated by ELISA. /e expression levels of LC3B-II/LC3B-I, p-mTOR,
mTOR, NLRP3, procaspase 1, and cleaved-caspase 1 in H9C2 cells were evaluated by Western blot. Results. SMYAD improved
cardiac functions such as ventricular volume and ejection fraction of the rats with ischemia/reperfusion injury. Morphological
assay indicated that SMYAD reduced the scar size and inhibited fibrosis formation. It was found that SMYAD could regulate
collagen I, MMP9, and TNFα protein expression levels in the heart tissues. SMYAD improved the survival rate of H9C2
cardiomyocytes in the H/R injury model. SMYAD elevated the rate of LC3B-II/LC3B-I protein expression, decreased the rate of
p-mTOR/mTOR protein expression, and reduced expressions of caspase 1, NLRP3, and IL-1β in H/R cardiomyocytes.Conclusion.
SMYAD exerted protective effects on ischemia/reperfusion injury in myocardial cells by activating autophagy and inhibiting
pyroptosis. /is might be the reason why SMYAD protected myocardial tissue and improved cardiac function in mice
with ischemia/reperfusion.
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1. Introduction

Myocardial infarction (MI) is an event of myocardial is-
chemia caused by coronary artery occlusion and interrup-
tion of blood flow leading to myocardial cell death [1], which
retains a significant impact on global health and economic
burden [2, 3]. Although timely reperfusion has proven to be
the most effective treatment, the following ischemia/
reperfusion (IR) injury indeed undermines the effectiveness
and presented potential risks [4]. All efforts to seek ways and
means of protecting cardiomyocytes from IR injuries are
necessarily exerted with a pressing sense of urgency.

Programmed cell death (PCD) is a gene-directed way of
cell self-death for normal cell turnover and tissue homeo-
stasis, including apoptosis, autophagy, necroptosis, and
pyroptosis, which occurs during the normal development of
individuals and in abnormal physiological states or diseases
[5–8]./e consensus among the pathological mechanisms of
I/R injury is the programmed cell death of cardiomyocytes
caused by histanoxia [2]. When myocardial I/R injury oc-
curs, the increase of oxygen free radicals and calcium
overload lead to massive death of myocardial cells and re-
lease endogenous danger molecules, as well as damage-as-
sociated molecular patterns (DAMPs), which will trigger
and recruit abundance of inflammatory cells to clear cell
debris away; in turn, undue inflammation aggravates the
heart injury [9–11]. Along with researches going deep,
DAMPs released from host cells can initiate and assemble
cytosolic multiprotein oligomers called inflammasomes in
immune cells such as macrophages. Initiation of the
inflammasomes promotes cleavage and secretion of proin-
flammatory cytokines IL-1β and IL-18, as well as cleavage of
Gasdermin D, which induces a distinct form of programmed
cell death, referred to as pyroptosis [12–14]. Experimental
evidence also suggests that pyroptosis is a primary mech-
anism to aggregate the cardiomyocyte death in the myo-
cardial I/R injury [15]. /us, the inhibition of pyroptosis
holds promise as a therapeutic target for myocardial is-
chemia/reperfusion injury [16, 17]. In addition to the as-
sembly of inflammasomes in the process of pyroptosis, the
appearance of autophagosomes is also associated with PCD,
referred to as autophagy. Recent researches have revealed
that the activation of autophagy accompanied with PCD is
an endogenic survival mechanism [18, 19]. In a sense,
autophagy might counterbalance and regulate PCD to
maintain the cell viability./ere is a reasonable prospect that
a therapeutic approach activating autophagy and inhibiting
pyroptosis will be promising in protecting myocardiocytes
from I/R injury.

Si-Miao-Yong-An decoction (SMYAD) is a traditional
Chinese medicine formulation, which consists of Lonicerae
Japonicae Flos (Jinyinhua), Scrophulariae Radix (Xuanshen),
Angelica Sinensis Radix (Danggui), and Glycyrrhizae Radix
et Rhizoma (Gancao) in a 3 : 3 : 2 :1 proportion by weight.
SMYAD first appeared in the “Hua Tuo Shen Yi Mi Zhuan”
of the Eastern Han Dynasty and was edited in the “Yan Fang
Xin Bian” of the Qing Dynasty. SMYAD was also listed as
one of the 100 classic prescriptions in the “Catalogue of

Ancient Classic Prescriptions (the First Batch),” which was
issued by the National Administration of Traditional Chi-
nese Medicine in 2018. /is famous ancient recipe was
traditionally used for gangrene and in modern medicine to
treat peripheral vascular diseases, diabetes, coronary heart
disease, and heart failure [20]. According to reports,
SMYAD has been reported to exert pharmacological effects,
including anti-inflammatory, regulating angiogenesis,
antioxidative stress, regulating blood lipids, and improving
blood rheology [21–23]. Previous study identified 16 com-
pounds in the SMYAD in rat plasma using UPLC-Q/TOF-
MS, most of which showed cardiomyocyte protective activity
[20]. However, the effect of SMYAD inmyocardial I/R injury
has yet not been explored.

In this study, we performed in vivo I/R injury mouse
model to prove the protective effects of SMYAD on myo-
cardial injuries and carried out studies on the mechanism of
actions in vitro. /e main objective of this study is to in-
vestigate the pharmacological effects of SMYAD on MI and
provide the experimental basis for clinical application.

2. Materials and Methods

2.1.Materials. /ematerials were sodium chloride injection
(Harbin Sanlian Pharmaceutical, China); Dulbecco’s mod-
ified Eagle’s medium (DMEM) (Gibco, USA); fetal bovine
serum (Gibco, USA); penicillin/streptomycin (Gibco, USA);
0.25% (w/v) Trypsin-0.53mMEDTA (Gibco, USA); glucose-
free DMEM (Gibco, USA); IL-1 β ELISA Kit (Elabscience,
China); BCA Assay Kit (TDY Biotechnology Co., Ltd.,
China); anti-GAPDH antibody (CST, #5174); anti-Collagen
I antibody (Abcam, ab270993); anti-MMP9 antibody
(Abcam, ab38898); anti-TNFα antibody (CST, #3707); anti-
β-actin antibody (CST, #3700s); anti-LC3B antibody
(Abcam, ab192890); anti-p-mTOR antibody (CST, #5536);
anti-mTOR antibody (CST, #2983); anti-NLRP3 antibody
(Proteintech, 19771-1-AP); anti-caspase 1 antibody (CST,
#2225); goat anti-mouse IgG H&L (IRDye® 800CW)
(ab216772, 1: 5000), and goat anti-rabbit IgG H&L (IRDye®680RD) preadsorbed (ab216777, 1: 5000).

2.2. Animals. 6–8-week-old male Kunming mice (18–22 g)
were purchased from Beijing Huafukang Biotechnology Co.,
LTD (certificate no.: SYXK (Jing) 2019–0008, Beijing,
China). Animals were maintained on a 14 h/10 h light/dark
cycle with temperature of 20°C± 2°C, and food and water
were available ad libitum. /e experimental procedures and
animal welfare were in accordance with the Ethical Regu-
lations on the Care and Use of Laboratory Animals of
Harbin Medical University. Animals were acclimatized for
three days and randomly divided into four groups (n� 12
per group): control group (Con), myocardial ischemia/
reperfusion (MI/R) injury model group (I/R), myocardial
ischemia/reperfusion (MI/R) injury + Si-Miao-Yong-An
decoction 12 g/kg/day (SMYAD-L), and myocardial ische-
mia/reperfusion (MI/R) injury + Si-Miao-Yong-An decoc-
tion 24 g/kg/day (SMYAD-H).
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2.3. Establishment of Mice Myocardial Ischemia/Reperfusion
(MI/R) Injury Model and Drug Treatment. /e myocardial
infarction animal model was established by left anterior
descending (LAD) coronary artery ligation. Mice were
anaesthetized by 2% isoflurane inhalation, and the skin in
the operating area of mice was prepared. Endotracheal
intubation was used to assist breathing and electrocar-
diogram was recorded. /e chest was opened by a vertical
cut, lateral to the left side of the sternum, the heart was
temporarily exteriorized through a left thoracic incision,
and a 7-0 silk suture slipknot was placed around the left
anterior descending coronary artery. /e chest clamp was
used to temporarily close the chest, and electrocardiograph
(ECG) was recorded to observe whether the STsegment was
elevated. After 45min of ischemia, the slipknot was re-
leased, allowing the myocardial reperfusion. 5-0 polypro-
pylene sutures were used to close the ribcage and the
muscle layer in turn. After removal of the tracheal intu-
bation tube, the animal was placed in a clean recovery cage
under a heat lamp. Control groupmice underwent the same
operation except that the suture placed around the LAD
was not tied. On the 15th day after modeling, all mice
except those in the Con group and I/R group were orally
treated with saline, 10ml/kg/day, and the mice in the
SMYAD-L group and SMYAD-L group were continuously
administrated with Si-Miao-Yong-An decoction (at a dose
of 12 g/kg/d or 24 g/kg/d, corresponding to the 4 g/kg/d and
8 g/kg/d extracts, respectively) for 28 days, as shown in
Figure 1.

2.4. Cardiac Functions Detected by Cardiac Magnetic Reso-
nance (CMR). After 28 days of continuous administration,
Cardiac Magnetic Resonance (CMR) detected cardiac
function, including left ventricular end-diastolic volume
(LV-EDA), left ventricular end-systolic volume (LV-ESV),
LV-ligation zone thickness, downstream thickness of LV-
ligation zone, and ejection fraction (EF). /e CMR exam-
inations were performed on a 9.4 T preclinical scanner
(Bruker, BioSpec 94/20 USR TT), equipped with 660mT/m
gradients (slew rate: 4200T/m/s) and three circular polar-
ized mouse body volume coils with the inner diameters of
10mm, 20mm, and 30mm. Mice were anaesthetized (iso-
flurane, 2.5% for induction and 1.5% for maintenance, 2 L/
min oxygen). Respiration and body temperature were
monitored during CMR (SA Instruments, Inc., Stony Brook,
NY, USA) and maintained at about 30 breaths-per-minute
and 37°C, respectively. CMR protocol included the follow-
ing: precontrast long-axis 4-chamber and long-axis 2-
chamber 2D intragate cine FLASH sequences (repetition
time� 30ms, echo time� 2.5ms, number of repetitions� 1,
field of view� 38.4× 38.4mm, slice thickness� 0.8mm, and
total scan time� 1min 36 s) which were used to plan the
short-axis ce-3D-IG-cine stack (repetition time� 7ms, echo
time� 2.423ms, number of repetitions� 1, flip angle� 15°,
slice thickness� 1mm, field of view� 20× 20mm, and total
scan time� 18min 40 s) encompassing the entire LV from
the base to the apex.

2.5. Histopathological Analysis. Mice were sacrificed and the
hearts were harvested on the 30th day after the drug
treatment. 10%-formaldehyde-fixed heart tissues were em-
bedded in paraffin and later sectioned onto the glass slides
(4 μm). /e heart tissue sections were stained with hema-
toxylin and eosin (H&E) to assess for myocardial I/R injury
and withMasson’s trichrome staining to assess for fibrosis in
the heart.

2.6. Cells Culture for H9C2 Cell Line. H9C2 cell line was
purchased from American Type Culture Collection (ATCC).
H9C2 cells were maintained in complete medium (Dul-
becco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) and 1% penicillin/
streptomycin) and incubated in a humidified 5% CO2 in-
cubator at 37°C. /e medium was replaced every 2–3 days,
and the cells were digested with 0.25% (w/v) Trypsin-
0.53mM EDTA when the density of the cells reached ap-
proximately 80–90% confluent. A subcultivation ratio of 1 : 2
to 1 : 4 is recommended.

2.7. Establishment of Hypoxia/Reoxygenation (H/R)Model In
Vitro and Drug Treatment. When the H9C2 cells grew to
approximately 70–80% confluence, they were synchronized
by fresh DMEM media without serum or antibiotics, and
then the mediumwas removed from the synchronized H9C2
cells. H9C2 cells were inoculated into 96-well plates or 6-well
plates and treated for the subsequent experiments. When the
density of cells reached approximately 50–60% in the plates,
the hypoxia/reoxygenation (H/R) model group cells were
incubated for 4 h with serum and glucose-free medium in
the three-gas incubator (NuAire, NU-5741E, USA) with a
mixture of 94% N2, 5% CO2, and 1% O2 at 37°C. Subse-
quently, the cells were removed to the complete medium and
normoxic chamber for 20 h to establish reoxygenation.

/e experimental groups were divided into Si-Miao-
Yong-An decoction (SMYAD) group and Si-Miao-Yong-An
decoction under hypoxia/reoxygenation (H/R+ SMYAD)
group. At the beginning of reoxygenation, the drug was
added to the completed medium according to the SMYAD
concentration gradient (0, 50, 75, 100, 125, and 150 μg/mL).

2.8. Cell Viability Assays. Cell viability was determined by
the Methyl /iazolyl Tetrazolium (MTT) assays. Cells were
seeded at 1× 105 cells/well in 96-well plates overnight. After
the treatment of different culture environment or drug
concentration, cells were incubated with 50 ul 5mg/mL
MTT for 2–4 h and subsequently solubilized in 150 μL
DMSO. Cell viability was assessed by measuring the ab-
sorbance at 490 nm by using amicrotiter plate reader (Tecan,
Switzerland).

2.9. Enzyme-Linked Immunosorbent Assay (ELISA) for In-
terleukin-1β (IL-1β). Cells culture supernatants of 96-well
plates were collected for assessing the concentrations of IL-
1β in the supernatants by ELISA according to the
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manufacturer’s instructions. Briefly, the cell culture media
were centrifuged at 2,000×g for 10 minutes to remove
debris. All reagents, samples, and standards were prepared
following the instructions. /e 50 μL of sample and 50 μL of
Antibody Cocktail were added to the 96-well plate and
incubated for 1 hour at room temperature on a plate shaker.
/en, the 96-well plates were washed three times, 100 μL of
TMB development solution and 100 μL of Stop Solution
were added, and the OD at 450 nm was recorded by the
microtiter plate reader (Tecan, Switzerland).

2.10. Western Blot. Total proteins in H9C2 cells or heart
tissues were extracted by RIPA lysis buffer with 0.1% phe-
nylmethanesulfonyl fluoride (PMSF) at indicated time
points. BCA kit detected total protein concentration, and the
protein concentration was homogenized. /e protein
samples were separated on 4–20% precast gels at 150V for
1 h and transferred on nitrocellulose filter (NC) membranes
at 110–120V for 50min. /e membrane was blocked for
30min at room temperature in blocking buffer to reduce
nonspecific binding. After blocking, the membranes were
incubated with primary antibodies (collagen I, 1 :1000;
MMP9, 1 :1000; TNFα, 1 :1000; LC3B, 1 :1000; p-mTOR, 1 :
1000; mTOR, 1 :1000; NLRP3, 1 : 500; procaspase 1, 1 :1000;
cleaved-caspase 1, 1 :1000; GAPDH, 1 :1000; and β-actin, 1 :
1000) at 4°C overnight. After washing with TBS containing
0.1% Tween 20, the membranes were followed by 1 h in-
cubation with fluorescent secondary antibodies at 37°C.

2.11. Statistical Analysis. /e results were presented as the
means± standard deviation. All analyses were performed
using SPSS 19.0 statistical software. All statistics and data
evaluation were subjected to statistical analysis using one-
way ANOVA. #p< 0.05, ##p< 0.01, ∗p< 0.05, ∗∗p< 0.01,
and ∗∗∗p< 0.001 were considered significant.

3. Results

3.1. 5e Effect of SMYAD on Cardiac Function Index of I/R
Mice Model. To evaluate the effect of SMYAD in I/R mice
model, Cardiac Magnetic Resonance (CMR) was performed
to observe the cardiac function index changes. As shown in
Figure 2(b), in the coronal view diagram of CMR, it was
found that the inner diameter of the left ventricle was
significantly increased at the end of diastole and end of
systole, and the ventricle was severely dilated in the I/R
model group, while the left ventricular cavity was decreased
in the SMYAD-L and SMYAD-H group after I/R modeling.
Compared with the control group, LV-EDA, LV-ESV, and
LV-ligation zone thickness were significantly increased, and
EF and downstream thickness of LV-ligation zone were

significantly decreased in the H/R group. Compared with the
I/R group, both SMYAD-L and SMYAD-H improved
myocardial infarction symptoms and cardiac function to
varying degrees (Figures 2(a) and 2(c)–2(f)).

/e Effect of SMYAD on Pathological Changes of I/R
Mice Model in the Heart Tissue

/e study evaluated the changes in cardiac structure and
myocardial tissue by histopathological staining: hematoxylin
and eosin (H&E) and Masson’s trichrome staining. According
to H&E staining, the myocardium of the control group was
dyed evenly with normal myofibrils with a neat arrangement
andmyocardial cells were in order. In the I/Rmodel group, the
cardiac cavity of mice was significantly enlarged and the
myocardial infarction area was visible. In addition, necrosis of
massive myocardial cells, muscle fibers dissolution, and de-
position of the cell matrix were observed. /ese changes of
cardiac structure markedly improved in the SMYAD groups,
especially the SMYAD-H group (Figure 3(a)). According to
Masson staining, the myocardial infarction and severe fibrosis
were observed with increased blue scar tissue at the edge of the
infarction area in the I/R model group. /e myocardial in-
farction symptoms and fibrosis response in both SMYAD
groups were alleviated (Figure 3(b)).

3.2.5e Effect of SMYAD on Expression of Collagen I, MMP9,
and TNFα Protein in the Heart Tissue of I/R Mice Model.
/e Western blot is used for the expressions of Collagen I,
MMP9, and TNFα protein in the heart tissue of I/R mice
model. As shown in Figure 4, the relative expression of each
lane was normalized by the control group in the first lane.
/e results showed that the expressions of Collagen I,
MMP9, and TNFα protein in the model group were higher
than those in the control group, and the SMYAD-H and
SMYAD-L groups decreased the expressions of Collagen I,
MMP9, and TNFα protein after I/R.

3.3. 5e Protective Effect of SMYAD on Myocardial Cells In-
jured by H/R Model. Under normal culture conditions,
SMYAD did not affect the viability of H9C2 cells in the
concentration range of 50–150μg/mL. Under hypoxia/reox-
ygenation model conditions, SMYAD increased cell viability in
a concentration-dependent manner in the range of 50–100μg/
mL (Figure 5). /e results showed that SMYAD had a pro-
tective effect on cardiomyocytes injured by hypoxia/reoxyge-
nation in a dose-dependent manner from 50 to 150μg/ml.

3.4. 5e Effect of SMYAD on Autophagy of Myocardial Cells
Injured by H/R Model. Western blot analysis demonstrated
the LC3B-I, LC3B-II, mTOR, and p-mTOR protein levels

Acclimatized I/R Treatment Saline (con group and I/R group) or 
SMYAD (12g/kg/d or 24g/kg/d), po CMR/heart

D-3 D0 D15 D42

Figure 1: Timeline graph of animal experiments.
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from the total protein of cardiomyocytes, and the relative
expression of each sample was normalized by the control
group lane. Compared with the control group, the rate of
p-mTOR/mTOR was significantly increased in the H/R
group. Compared with the H/R group, the rate of p-mTOR/
mTORwas significantly decreased, and LC3B-II/LC3B-I was
significantly increased in the SMYAD-L (75 μg/mL) and
SMYAD-H (150 μg/mL) groups (Figure 6).

3.5. 5e Effect of SMYAD on Pyroptosis of Myocardial Cells
Injured by H/R Model. Western blot analysis demonstrated
the NLRP3, procaspase 1, and cleaved-caspase 1 protein
levels and ELISA analysis detected the expression level of IL-
1β. Compared with the control group, the expressions of
NLRP3, procaspase 1, and cleaved-caspase 1 were signifi-
cantly increased in the H/R group. Compared with the H/R
group, the expressions of NLRP3, procaspase 1, and cleaved-
caspase 1 were decreased in the SMYAD-L (75 μg/mL) and
SMYAD-H (150 μg/mL) groups (Figure 7).

4. Discussion

MI is characterized by massive myocardial cell death and has
a highly likely poor prognosis [24]. Although prevention and
treatment works have been greatly improved, myocardial
infarction still has a significant impact on global health and

is also the main cause of mortality worldwide [25]. /e
therapeutic regimes for MI contain thrombolytic therapy,
coronary intervention therapy, and drug therapy. All ap-
proaches are aimed at restoring blood supply to the ischemic
zone and replenishing nutrients and oxygen [26, 27].
However, concerns have been raised about the lack of
treatments on the subsequent I/R injury [28, 29].

Accumulating evidence has proved that SMYAD can
improve heart function and alleviate cardiac fibrosis in themice
models of heart failure [22, 23, 30]. In this study, a mouse MI
model induced by I/R injury was performed to evaluate the
cardioprotective effects of SMYAD. After 4 weeks of treatment,
the functional test for the hearts of mice was performed by
CMR. We found that there was not much difference in EDV
among model and SMYAD groups, but the difference in ESV
among themwas significant. Moreover, the left ventricular wall
downstream to the ligation position was thicker in the mice of
SMYADgroups than that in themodel group, and the EF of left
ventricle in the mice of SMYAD group was also higher than
that in the model group (Figure 2). All these results suggested
that 4 weeks of application of SMYAD effectively maintained
the cardiac functions of I/R injury by the inhibition of cardiac
remodeling and the reduction of myocardiocytes loss. /e
following H&E and Masson staining indicated that 4 weeks of
application of SMYAD reduced the infarct sizes and inhibited
the myocardial fibrosis (Figure 3). When MI occurs, inflam-
mation mediates myocardial fibrosis [31] and the abnormal
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proliferation of collagen in the myocardial interstitium [32],
which seriously affects cardiac function. Matrix metal-
loproteinases (MMPs) act as targets of myocardial fibrosis to
affect the process of myocardial fibrosis [33]. SMYAD reduced
the expression of heart failure markers and fibrosis markers
(collagen I, MMP9, and TNFα) in the heart tissue of model
animals after myocardial infarction (Figure 4). To prove the
hypothesis that the therapeutic effects of SMYAD in MI were
partially dependent on the protective capabilities of car-
diomyocytes, the in vitro [34, 35] study of oxygen-glucose
deprivation (OGD) in H9C2 cardiomyocytes was performed to
mimic the H/R injury model. /e results indicated that
SMYAD protected myocardial cells from OGD in a dose-
dependent manner (Figure 5).

/e mechanisms of myocardial I/R injury are intricate,
including calcium overload, oxygen free radicals, and in-
flammatory response, eventually triggering the process of

PCD in hearts [36–39]. Pyroptosis, as one of PCD forms, is
called inflammatory cell death and mainly depends on the
formation of inflammasome NLRP3 that activates caspase 1
to release IL-1β and IL-18 into the extracellular environ-
ment, recruiting inflammatory cells to aggregate the in-
flammatory response [13, 14]. We found that SMYAD
reduced the expressions levels of NLRP3 and caspase 1 in the
OGD of H9C2 cardiomyocytes. /e concentration of IL-1β
in the culture supernatant among groups was detected by
ELISA, and SMYAD reduced the IL-1β yield in a dose-
dependent manner. Having demonstrated that SMYAD
targeted and inhibited the pyroptosis pathway, we next
sought to identify the counterbalancing mechanism. When
myocardial I/R injury occurs, autophagy will be activated.
On the one hand, autophagy helps to clear damaged or-
ganelles and proteins and on the other hand provides energy
for ischemic cells [40, 41]. Studies have shown that
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staining using ImageJ.
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maintaining autophagy flux during ischemia/reperfusion
can reduce infarct size and protect cardiomyocytes [42, 43].
/e mTOR signaling pathway is considered an important
signaling pathway during cardiac I/R injury. Studies have
shown that the decrease of phosphorylated mTOR level may

lead to the activation of autophagy [44]. /e change of
microtubule-associated protein 1A/1B-light chain 3B
(LC3B-II) is a well-established marker of autophagosome
formation. In this study, we found that SMYAD elevated the
protein expression of LC3B-II and the rate of p-mTOR/
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Figure 4: /e effect of SMYAD on the expressions of collagen I, MMP9, and TNFα protein in the heart tissue of I/R mice model (n� 3).
(a, b) Protein levels of collagen I, MMP9, and TNFα in each group by western blot. ∗p< 0.05 and ∗∗p< 0.01 versus control group; #p< 0.05
and ##p< 0.01 versus I/R group.
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Figure 5: /e protective effect of different doses of SMYAD (0, 50, 75, 100, 125, and 150 μg/mL) on the viability of cultured H9C2
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versus H/R group.
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Figure 7: Continued.
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mTOR in the OGD of H9C2 cardiomyocytes, which sug-
gested that the antipyroptosis of SMYAD resulted from the
activation of endogenous autophagy.

5. Conclusions

In this study, SMYAD protected myocardial tissue and im-
proved cardiac function in themouseMImodel induced by I/R
injury. Moreover, SMYAD exerted effects on cardiomyocyte
protection by activating autophagy and inhibiting pyroptosis in
vitro./ese findings support the clinical application of SMYAD
for patients who suffer from MI, especially in preventing the
myocardial tissue from I/R injury.
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