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The aim of this paper is to find a suitable discount function able to describe the

progression of a certain addiction or disease under treatment as a discounting process.

In effect, a certain indicator related to a disease decays over time in a manner which

is mathematically similar to the way in which discounting has been modeled. We

analyze the discount functions observed in experiments which study addictive and other

problematic behaviors as well as some alternative hyperbola-like discount functions in

order to fit the patience exhibited by the subject after receiving the treatment. Additionally,

it has been experimentally found that people with addiction display high rates of

discount (impatience) and preference reversals (dynamic inconsistency). This excessive

discounting must be correctly modeled by a suitable discount function, otherwise, it

can become a trans-disease process underlying addiction and other disorders. The

(generalized) exponentiated hyperbolic discount function is proposed to describe the

progression of a disease with respect to the treatment, since it maintains the property of

inconsistency by exhibiting a decreasing discount rate after an initial period in which the

opposite occurs.

Keywords: delay discounting, addiction, disease, hyperbolic discounting, (generalized) exponentiated hyperbolic

discounting, hazard rate

1. INTRODUCTION

In a recent paper, Bickel et al. (2012) state that drug-dependent individuals, and people with other
diseases such as obesity, gambling problems, diagnosed ADHD (Attention Deficit Hiperactivity
Disorder) or schizophrenia, discount delayed reinforcers more rapidly than individuals not having
these addictions or diseases. It could be said that these individuals are more impulsive or impatient
than individuals belonging to the control group (people not suffering from the studied addiction
or disease). After an extensive review of the literature on addictive behavior and discounting
of delayed rewards, a similar conclusion is drawn by MacKillop et al. (2011) who found strong
evidence of greater discounting in individuals with addictive behavior. On the other hand, there
are empirical studies in which only (mainly hypothetical) monetary rewards are discounted. Most
of these experiments can be found in MacKillop et al. (2011). However, there are also empirical
works which compare the discounting of monetary and non-monetary rewards by people with and
without addictive behavior. Hypothetical amounts of cigarettes (e.g., Bickel et al., 1999), heroin
(e.g., Madden et al., 1997), crack/cocaine (e.g., Coffey et al., 2003), and alcohol (e.g., Petry, 2002)
have been used as non-monetary rewards. As a general conclusion, all these substances of abuse
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were discounted more steeply than money by their consumers.
Furthermore, a higher discount was applied to monetary rewards
by the group of substance abuse consumers.

According to Prelec (2004), “the core meaning of impatience
is a preference for something to happen sooner rather
than later.” Some papers (Takahashi et al., 2007) use the
term impulsivity as a synonym for impatience1. Although
Bickel and Marsch (2001) broadly call them “personality
assessments,” we will refer to impulsivity in the context of delay
discounting.

Another interesting idea, proposed by Bickel et al. (2012),
is the consideration of excessive discounting as a trans-disease
process underlying addiction and other disorders as well as
disease-related behavior. For example, high discount rates appear
in smokers and ADHD. This was also pointed out by Green and
Myerson (2004) who stated: “Such findings raise the possibility
that differences in impulsivity may underlie these behavioral
problems2 and that assessment based on behavioral discounting
measures may be able to predict who is at risk and who
is most likely to benefit from interventions.” In a similar
fashion, Bickel et al. (2012) propose that “[...] understanding
the commonalities in comorbid disorders may inform treatment
approaches for multiple disorders.” They also suggest that the
relation between disorders and discount rates may be additive
and, for example, individuals with two or more disorders could
show higher discount rates than individuals with only one
disorder. In the same vein, Petry and Casarella (1999) found that
the discount rates displayed by people with two disorders, namely
gambling and substance abuse, were three times higher than
the rates of non-gambling substance abusers. As these disorders
additively affected discount rates, we are going to consider an
aggregated discount function in this work which takes into
account higher discount rates due to more than one disease or
addiction. In summary, we will take into account that people with
addiction:

1. Have high rates of discount (Bickel et al., 2012, refer to it as
excessive rates of discount).

2. Have preference reversals. “These preference reversals are a
hallmark feature of individuals suffering from addiction, as
they often express a desire to abstain when drugs are not
immediately available, but may reverse this preference when
the opportunity to use is more proximal [...]” (Bickel et al.,
2012).

3. Could have a propensity to developing other diseases in which
high discount rates are an underlying process.

Indeed, the aforementioned characteristics will help us to find
a suitable discount function able to describe these addiction
situations. To this end, this paper is organized as follows: In
Section 2 we are going to describe a disease or an addiction
as a discounting process. Following that, in Section 3, we will
first study the discount functions that best fit the behavior of
the diseases and their properties. Then, in Section 4, we will

1For a formal definition of impatience (impulsivity), see Cruz Rambaud and

Muñoz Torrecillas (2016).
2For example, they refer to substance abusers.

analyze some properties of time discounting which may be
helpful in the design of the disease therapy. Section 5 proposes
excessive discounting as a trans-disease process underlying
addiction and other disorders, and explains it through the
concept of hazard rate. Finally, Section 6 provides a summary and
conclusion.

2. ADDICTION AND ILLNESSES AS
DISCOUNTING PROCESSES

Usually, the term discounting is applied to contexts involving
delay (delay discounting), or probability (probability
discounting). However, several kinds of quantifiable processes
may also be viewed as discounting phenomena (Rachlin, 2006).
Table 1 shows these processes and introduces the behavioral and
psychopharmacological treatment of addictions and diseases
which can be considered discounting processes as well. The
variable to be discounted (i.e., the original quantity), the
discounted quantity and the variable involved in the discounting
process is specified for every discounting process in this table.
We can distinguish between temporal and non-temporal
variables involved in the discounting. In this regard, delay
discounting and memory exhibit temporal variables involved
in the discounting process, namely, delay to reward and time
between learning and recall, respectively. On the other hand,
an example of a non-temporal discounting variable would be
the social distance from a person in the case of discounting
“generosity.” In their experiment, Jones and Rachlin (2006)
applied a social discounting equation from Rachlin and Raineri
(1992) which included a parameter measuring the social distance
(from 1 to 100) between the participants and the person who
would be sharing the money, 1 being the closest. The participants
had to decide whether to forgo a hypothetical amount of money
for themselves in order to give $75 to another person and the
amount of money forgone varied with the perceived social
closeness to the beneficiary.

As indicated, in Table 1 we have introduced another
process, the behavioral and psychopharmacological treatment of
addictions and diseases, which can be considered as a discounting
process. In actual fact, all addictions involve the involuntary
consumption of an increasing amount of a certain substance.
For example, cigarettes (smokers), drugs (drug addicts), and
money (compulsive gamblers), among others. The level of an
addiction can be defined as the amount of substance which can
be consumed in a given period of time (for example, a day).
Analogously, for a disease we can assume that an individual
is affected by a microbial population. This justifies a joint
consideration of addictions and diseases (see Chart 1).

It is well known that many diseases cannot be completely
cured. In that situation, treatment attempts to improve or
neutralize the problem, especially in chronic diseases. However,
this paper is about the subset of treatments which reverse
diseases completely or end medical problems permanently. More
specifically, we will analyze the diseases treated with a regular
dose able to reduce the concentration of pathogens in the
patient.
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TABLE 1 | Different types of discounting processes.

Application of discounting to Original quantity

Discounted quantity

Involved variable

Delay of reward Absolute reward value

Current value

Delay to reward

Probability of reward Absolute reward value

Value of probabilistic reward

Probability of reward

Generosity Money you have

Money you give to another person

Social distance from that person

Energy Source of energy (e.g., light, sound)

Energy distant from source

Distance from source

Memory Original learning

Memory

Time between learning and recall

Addiction or disease Level of addiction

Current level

Regular dose/time frequency

Source: Rachlin (2006) and own elaboration.

Chart 1 | Parallelism between addictions and diseases. Source: own

elaboration.

3. THE DISCOUNT FUNCTIONS FITTING
ILLNESS OR ADDICTION PROCESSES

Many experimental studies have shown that the monetary
discounting exhibited by people with certain addictions or
diseases is best fitted to a hyperbolic discount function (see
Figure 1). Accordingly, MacKillop et al. (2011) offer an extensive
review of the literature on addictive behavior (addiction to
alcohol, tobacco, and gambling, among others) related to
discounting of delayed rewards. From the 64 experimental

Figure 1 | Hyperbolic discounting.

Figure 2 | Exponentiated hyperbolic discounting.

comparisons3 reviewed by MacKillop et al. (2011), 70% used
Mazur’s (1987) hyperbolic discount function. In effect, a simple
hyperbola-like is used in the majority of cases to describe the
discount in this framework:

V =
A

1+ it
, (1)

where i > 0 is a constant discount rate, and t is the interval
betweenA (the value of the reward to be discounted for t periods)
and V (the value of the reward at instant 0).

Our paper is also in line with the work by Augenblick
et al. (2015) who suggest that individuals exhibit hyperbolic

3Comparisons between a group with addiction and a control group.
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discounting for non-monetary goods, but exponential
discounting for money. More specifically, the decay in effort
is exponential, not hyperbolic, in the delay. This finding is
consistent with the evidence of non-present bias on monetary
payments (Andreoni and Sprenger, 2012), as opposed to real
effort (DellaVigna and Pope, 2017).

According to Bernheim and Rangel (2005), addicts are
sometimes allowed to consume involuntarily. To all intents
and purposes, this paper introduces five important patterns of
addictive behavior: (1) unsuccessful attempts to quit, (2) cue-
triggered recidivism, (3) self-described mistakes, (4) self-control
through precommitment, and (5) self-control through behavioral
and cognitive therapy. Our paper lies in the context of this
last group with the implementation of “successful behavioral
therapies” able to “teach cue-avoidance, often by encouraging the
adoption of new lifestyles and the development of new interests,”
as opposed to item 4 where addicts exhibit a “tendency to make
mistakes by voluntarily removing or degrading future options.”

Story et al. (2014) assimilate the progression of an illness
to a discounting process when stating: “Individuals who are
willing to accept a more severe illness occurring after a delay
over a less severe immediate illness are said to discount future
illness.” According to Ganiats et al. (2000), health evolution
can be described as an improvement in health from an initial
state of illness, where individuals prefer immediate over delayed
health improvement. More specifically, the discounting process
is hyperbolic in the way that individuals are willing to accept
a smaller-sooner improvement in health over a larger-later
improvement. Going beyond this idea, “high discount rates
for money (and in some instances for food or drug rewards)
are associated with several unhealthy behaviors and markers of
health status, establishing discounting as a promising predictive
measure” (Story et al., 2014).

This section provides an approach toward justifying the
exponentiated hyperbolic discount function as a new discounting
model better able to describe the illness processes. This is because
the shape of the discount function underlying the medical
treatment of an illness or an addiction is very important as the
mathematical expression of this function can influence wrong
treatment and so itself become a trans-disease factor. As such,
Figure 2 can also be interpreted in the following way: if an
individual suffers an addiction or an illness at a level A, a certain
frequency t can reduce this level as far as V .

That said, under this interpretation, the function displayed
in Figure 2 can better represent the progression of a certain
disease with respect to the treatment (dosage or frequency) for
the following reasons:

1. The decrease in the level of addiction or disease must have a
lower improvement rate at the beginning, which later starts
increasing. This can be best described by stating that a future
discount function must verify that V and consequently lnV
are convex in a neighborhood of 0. On that note, we must
clarify that this paper focuses on the types of diseases whose
symptoms disappear after a period of time in which a dose of
medicine has been administered to the patient. Nevertheless,
there are some diseases, in particular chronic ones, which are

excluded from the work. A chronic disease is a persistent,
or otherwise long-lasting, disease whose effects persist over a
long period. A chronic course is further distinguished from a
recurrent course as recurrent diseases relapse repeatedly, with
periods of remission in between. However, a chronic disease
may be progressive, result in complete or partial disability, or
even lead to death. The expected improvement in the patient is
low in the first instants of his disease but it is also logical that
the curve regarding the level of the disease can decay as the
number of administered doses increases. This is the particular
form of the decay function we are going to analyze in this
paper.

2. Following Takahashi (2006), abstinent drug addicts may be
more susceptible to relapse when an abstinence period is
presented as a series of divided shorter time-blocks. In
terms of intertemporal choice, abstinence implies choosing
larger later rewards (i.e., successful recovery from drug
addiction) instead of smaller sooner ones (i.e., immediate drug
intake). He points out: “My present hypothesis states that
this subadditivity may result from perception of the time-
interval followingWeber-Fechner law. Therefore, medical and
behavioral treatments which help abstinent addicts precisely
perceive time-duration of abstinent period is expected to
be effective.” In delay discounting, subadditivity4 implies
that the cumulative discounted value is smaller (and the
discount higher) for more subdivided intervals. For example,
the discount function for 1 month will be greater than the
product of the corresponding discount function values for
each day. Conversely, superadditive discounting means that
the discounted value is greater (and the discount smaller)
when the interval is divided into subintervals.

Let us apply these concepts to our proposed discount function. If
F(t) represents the concentration of pathogens in a patient when
administering a treatment every t hours, it is possible that a dose
level of reference t0 exists such that the disease can get worse if
the medicine is administered every t0/2 hours and so on. This
property is known as superadditivity which can be expressed as
follows:

F(t0/2)F(t0/2) > F(t0). (2)

In other words, the illness/addiction gets worse by partitioning
the administration of tablets/drugs. Similarly, it is possible that
drug administration can improve the disease if the subintervals
are greater than or equal to t0. For instance,

F(t0)F(t0) < F(2t0). (3)

This property is known as subadditivity. As we are considering
behavioral and/or psychopharmacological treatment for certain
diseases or addictive behavior (pathological gambling, psychiatric
disorders, smoking and drugs abuse, among others), we can also
represent the medicine dosage on the x-axis, but in the case
of behavioral/psychological treatment we could represent, for

4For more detailed reading on subadditive discounting, see Cruz Rambaud and

Muñoz Torrecillas (2014).
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example, a sequence of actions over the course of time. Similar
reasoning could be performed by considering a dose of reference,
d0, instead of the time of administration, such that:

• F(r)F(s) > F(d0), whether r + s = d0 (superadditivity).
• F(r)F(s) < F(r + s), provided that r and s are greater than or

equal to d0 (subadditivity).

Observe that r and s can be different. This reasoning reinforces
the argument whereby the function is convex in a neighborhood
of 0. However hereinafter, we will focus on the dose as time
frequency.

Our objective now is to find a suitable family of discount
functions satisfying the two former items. This approach was
introduced by Cruz Rambaud and Ventre (2014, 2015) when
searching for a family of discount functions F(t) such that the
following property holds:

P: There is a certain period of time, t0, such that
the behavior of the discount function changes from
subadditivity/superadditivity into superadditivity/subadditivity,
i.e.:

F(t1)F(t2) · · · F(tn) < F(t), (4)

if t1 + t2 + · · · + tn = t ≤ t0 (which, of course, implies that all
numbers tk are less than t0, for k = 0, 1, . . . , n), and

F(t1)F(t2) · · · F(tn) > F(t), (5)

if t1 + t2 + · · · + tn = t and min{t1, t2, . . . , tn} > t0 (which,
of course, implies that t and all values tk are greater than t0, for
k = 0, 1, . . . , n).

As we are focusing on the disease as a delay discounting
process, we will first assume that impatience as a function of delay
follows the trend described in the former paragraphs. However,
we are going additionally to take into account the following
points:

1. If the dose must be administered every t hours, usually
dividing in two could prove better, but this subdivision reaches
a limit. In effect, there is a maximum partition for which the
treatment is not efficient. In this regard, an exponentiated
hyperbolic discount function (Rachlin, 2006):

V =
A

1+ itk
, k > 1 (6)

or even a generalized exponentiated hyperbolic discount
function:

V =
A

(1+ itk)α
, k > 1, α > 0, (7)

(see Figure 2) may be more adequate to describe an expected
increasing discount rate at the beginning of the treatment,
followed by a decrease in the rate. Note that i, k and α in
Equations (6) and (7) represent a constant.

Observe that function (7) is a special case of a more
general q-exponential time discounting model (Cajueiro,
2006; Takahashi, 2007; Cruz Rambaud andMuñoz Torrecillas,

2013) with psychological time following the well-known
Stevens’s power law (τ = ts), where q = 0:

V =
A

expq(it
k)

=
A

[1+ (1− q)itk]1/(1−q)
, i > 0, k > 1. (8)

This model is compatible with a sharp decrease in the
discount function. Indeed, Figure 3 shows a comparison of the
hyperbolic discounting of monetary rewards for people with
certain addictions or diseases with the exponentiated discount
function representing the decrease of the disease with respect
to time. Note that, for the same value of i, the exponentiated
hyperbolic discount function (in green) is steeper than the
simple hyperbola (in blue).

2. An argument which reinforces the choice of exponentiated
against simple hyperbolic discounting is the so-called
sequence effect as described in the experimental work
by Hofmeyr et al. (2010) in the following manner: “The
propensity of smokers to prefer small short-term rewards over
larger delayed rewards may be mitigated, over a sequence of
decisions of this kind, by encouraging or forcing them to think
of the sequence as a whole.”

Focusing on a disease, let us consider a microbial population
of size N. An external (exposure) dose is the amount of an
agent or chemical administered to an experimental animal or
human (containing this population) in a controlled experimental
setting by some specific route at some specific frequency (World
Health Organization, 2009). Irrespective of the internal dose
(the external dose is that which is absorbed and enters general
circulation), the dose is determined by its frequency and duration:
for example, mg/kg body weight per day over a given period of
time. In this context, a dose-response curve is a plot of the fraction
of surviving organisms as a function of the exposure intensity
(Peleg et al., 1997).

Figure 3 | Comparison between exponentiated and simple hyperbolic

discounting for the same value of parameter i.
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A uniform effective dose in pharmacology is the dose or
amount of a drug which produces a therapeutic response or
desired effect in a certain fraction of the subjects taking it.
Hereinafter, we will represent the regular dose amount as x
(in mg) and the time between two consecutive doses as t (in
hours). Thus, the effective dose will be denoted by (x0, t0),
where x0 represents the effective dose amount and t0 the time
after which the drug has produced the desired effect. In some
experimental studies about the possible doses for the treatment of
certain diseases (for instance, Krober et al., 1990), patients were
randomly selected to receive doses of xmg of a medicinem times
per day, x/2 mg 2m times per day, x/4 mg 4m times, and so on.
As a result, they obtained a recommended (optimal) medicine
treatment. In general terms, let x be an amount of drug or tablets
to be administered and assume that the optimal time frequency
remains constant. If F(y, x) denotes the surviving population after
administering x, t times per day, to an initial population of size y,
it can be supposed that:

F(y, x) = yF(1, x) = yF(x), (9)

where F(1, x) has been denoted by F(x). As (x0, t0) is the optimal
dose, one has:

F
(x0

m

)

F
(x0

m

)

· · · F
(x0

m

)

︸ ︷︷ ︸

m times

> F(x0) (10)

and

F(x0)F(x0) · · · F(x0)
︸ ︷︷ ︸

m times

< F(mx0). (11)

An alternative way of dealing with this issue could have been as
follows. Essentially, let t be the frequency of administration (in
hours) of the drug and assume that the optimal drug amount
remains constant. Of course, a multiple kt of the frequency
implies the same multiple of the amount to be administered
for this time. If F(y, t) denotes the surviving population after
administering an amount x0 with a frequency t over an initial
microbial population of size y, it can be supposed that:

F(y, t) = yF(1, t) = yF(t), (12)

where F(t): = F(1, t) is the ratio of surviving microbes after
administering x0 with a frequency t.

As (x0, t0) is the effective (periodic and constant) dose, one
has:

F

(
t0

n

)

F

(
t0

n

)

· · · F

(
t0

n

)

︸ ︷︷ ︸

n times

> F(t0) (13)

and

F(t0)F(t0) · · · F(t0)
︸ ︷︷ ︸

n times

< F(nt0). (14)

By considering F as a function of t, these conditions are satisfied
if F is superadditive to the left of t0 and subadditive to the right

of t0. To be more precise, we can assume that the instantaneous
discount rate of F, defined as:

δ(t) = −
d ln F(z)

dz

∣
∣
∣
∣
z=t

(15)

increases to the left of t0 and decreases to the right of t0. An
example of such a function could be (Peleg et al., 1997):

S(x) =
1

1+ exp{(x− xc)/a}
, (16)

where xc is a measure of the individual organism’s resistance
to the particular lethal agent, and a is an arbitrarily small
numerical value. On the other hand, Altshuler (1981) proposes
the following cumulative probability function representing the
fraction of responders with time-response less than or equal to
a time t when administering a dose d:

P(t, d) = 1− exp
{

−adtk
}

, (17)

where a is a constant and k is determined by a background
response. In any case, the shape of the dose-response curve is
shown in Figure 4.

Nevertheless, we are going to derive a discount function
belonging to a well-known family of discount functions. To do
this, we have to take into account the following result:

Theorem (Cruz Rambaud and Ventre, 2017). Let F(t)
be a subadditive discount function and let us consider its
corresponding new discount function G(t) using the time
deformation D(t) = tk, with k > 1. A necessary and
sufficient condition for G(t) to satisfy superadditivity and then
subadditivity is that the equation:

k− 1

ktk
= δH(t

k), (18)

Figure 4 | Standard dose-response curve.
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where H(t): = δ(t)
δ(0)

, has a finite number of solutions.

As an application, the q-exponential discount function
(Equation 8) Fq(t) is subadditive for certain values of q.

Consequently, by introducing the deformation D(t) = tk, k > 1,
we can obtain a family of partially superadditive and subadditive
discount functions in which we can highlight the exponentiated
hyperbolic discount function (Rachlin, 2006) (Equation 6) and
the generalized exponentiated hyperbolic discount function
(Equation 7). Both functions are suitable for describing the
progression of the level of an addiction or an illness. In summary,
there are three possibilities for the variable which best describes
the discounting process for the level of an addiction or illness:

1. The time frequency of the drug or therapy administration.
2. The regular amount of drug or therapy dose.
3. The delay to a certain reward that the patient can receive,

once discounted, depending on the waiting time. Observe that,
in this case, the discounting is applied, not to the disease or
addiction, but to an original reward amount, resulting in the
first row of Table 1.

4. SOME MATHEMATICAL PROPERTIES
OF THE EXPONENTIATED DISCOUNT
FUNCTION

The so-called exponentiated discount function is not the only
model to describe the progression of an addiction or disease
under treatment. The advantage of this inverse S-curve time
discount function is that it can be obtained from hyperbolic
discounting by distorting time with a given power. It is
noteworthy to highlight the relevance of Takeuchi’s (2011)
contribution since we need to introduce a new discount
function able to describe the transition from an increasing to a
decreasing instantaneous discount rate. In this section, we are
going to introduce some mathematical properties which will be
necessary to use the exponentiated hyperbolic discount function
hereinafter. First, for the sake of simplicity, we will work with the
mathematical expression of the exponentiated discount function
for a $1 reward. This expression is as follows:

F(t) =
1

1+ itk
, i > 0, k > 1. (19)

Let us calculate the instantaneous discount rate of this discount
function:

δ(t): = −
d ln F(t)

dt
=

iktk−1

1+ itk
. (20)

Next, we question whether δ(t) increases or decreases. To do this,
we will calculate its derivative:

dδ

dt
= ik

tk−2(k− 1− itk)

(1+ itk)2
. (21)

Therefore, solving the equation dδ
dt

= 0, we obtain the following

two solutions: t1 = 0 or t1 =

(
k−1
i

)1/k
. Obviously, the

first solution makes no sense, meaning only the second one is
consistent. Moreover, observe that δ(t) increases in the interval
]0, t1[ and decreases in the interval ]t1,+∞[5. Therefore, F(t) is
superadditive in the interval ]0, t1[ and subadditive in the interval
]t1,+∞[, i.e., the exponentiated discount function satisfies the
property P defined in Section 3.

We now question whether every point (t1, x1) can be chosen
as the maximum of δ(t). The answer is positive since (t1, x1) must
satisfy the following system of equations:

x1 =
1

1+ itk1
(22)

and

t1 =

(
k− 1

i

)1/k

. (23)

Simple algebra shows that k = 1
x1

and i = k−1

tk1
. Observe that the

obtained values of both k and i are consistent because k > 1 and
i > 0. Finally, using the generalized exponentiated hyperbolic
discount function (7), the instantaneous discount rate is:

δ(t) =
αiktk−1

1+ itk
. (24)

while its derivative is:

dδ

dt
= αik

tk−2(k− 1− itk)

(1+ itk)2
. (25)

From this, the maximum of δ(t) has the same abscissa as in
the case of the exponentiated hyperbolic discount function,
its ordinate being different. Summarizing, the (generalized)
exponentiated hyperbolic discount function is a good candidate
for describing the progression of illnesses or addictions with
respect to their treatment as hypothesized at the beginning of
this paper. In this regard, Becker and Murphy (1988) pointed
out that “[p]ermanent changes in prices of addictive goods may
have a modest short-run effect on the consumption of addictive
goods. [...] However, we show that the long-run demand for
addictive goods tends to be more elastic than the demand for
nonaddictive goods.” They added: “Indeed, rational persons end
strong addictions only with rapid and sometimes discontinuous
reductions in consumption.” As such, the dose frequency of drug
administration can be adapted to the particular situation of a
patient, showing the utility of equations from (22) to (25) when
choosing the suitable frequency for each addict.

In the following section, we are going to show that impatience
or excessive discounting as a trans-disease process can be
explained by the fact that the corresponding discount rate is
obtained from the hazard rate of the sum of two or more random
times.

5According to Takeuchi (2011), F(t) is an inverse S-curve.
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5. JUSTIFYING TRANS-DISEASE
PROCESSES

In order to explain our findings, we need the following definitions
and results. A hazard functionmathematically describes the effect
that increases in waiting time have on the risk that something
will happen to prevent an event from occurring (Gross and
Clark, 1975). In the framework of temporal discounting, the fail
represents the probability of an event occurring at t that will
prevent the receipt of a reward, divided by the probability of the
event not occurring until t, that is, the conditioned probability of
fail. We can build a discount function based on system reliability:
the discount function at t will be the reliability of the system
at time t (denoted by R(t)), i.e., the probability that the life of
the system will be greater than t (Cruz Rambaud and Muñoz
Torrecillas, 2005):

R(t) = 1− F(t) = exp

{

−

∫ t

0
h(x)dx

}

, (26)

where F(t) is the distribution function, valued at instant 0, of
the random useful life of the system, and h(x) the instantaneous
hazard rate at instant x (0 ≤ x ≤ t).

To all intents and purposes, we can consider that, at instant
0, n elements work and that the useful life of each component
is a random variable T. As a consequence of the fails that
happen as time passes, the number of components that still work,
N(t1),N(t2), . . . ,N(tn), decreases. Thus, we could determine the
reliability and non-reliability of the system in the interval [0, t] as:

R(t) =
N(t)

N(0)
and F(t) = 1−

N(t)

N(0)
, (27)

respectively. We can define the instantaneous hazard rate of a
component at instant t, as:

h(t) = − lim
1t→0

1N(t)/N(t)

1t
= −

N′(t)

N(t)
= −

R′(t)

R(t)
= −

d

dt
lnR(t).

(28)
Taking into account that:

R(t) =

∫ ∞

t
f (x)dx and F(t) =

∫ t

0
f (x)dx (29)

(f being the density function of T), one has:

h(t) =
f (t)

1− F(t)
, (30)

that represents the proportion of units that fail in the interval
]dt, t + dt[ with respect to the units that continue working at
time t.

We are going to make the hazard rate of the random variable
T, defined in the interval [0,+∞[, equal to the instantaneous rate
of a discount function (Takeuchi, 2011). The justification of our
approach can be found in Cruz Rambaud and Muñoz Torrecillas
(2005) in the context of systems failure. In our case, we will

consider the system fail as a relapse of the substance abuser in
an abstinence period.

Finally, several random variables could be considered, but
for the sake of simplicity only two random variables were
chosen, namely, T1 and T2 with distribution functions F(t1)
and F(t2), respectively. For example, assume that T1 denotes
the time in which the treatment of a smoker fails, and T2

the time corresponding to a pathological gambler. In this case,
experiments can describe impatience due to the aggregation of
the two addictions, T1 + T2. It is well known that the hazard
rate corresponding to the sum of two (whether independent or
not) random variables is greater than the hazard rate of each
summand (Barlow and Proschan, 1996). Let us remind ourselves
that the hazard rate is the instantaneous discount rate of the
discount function describing the impatience of patients, but the
treatment of the first disease needs a smaller dose. This justifies
that the slope of certain discount functions can be very steep and
this does not only correspond to the effect that the treatment may
have in the illness since there could be a trans-disease process
affecting the shape of these discount functions.

6. CONCLUSION

In this paper we have described the progression of illnesses
and addictions in connection with their treatment as discount
functions by considering that the “discounted disease” depends
on three possible explanatory variables, viz the level of dose,
the frequency of administration and the time to assess the
(non)monetary rewards, all other things being the same. The
level of disease is superadditive for an interval and subadditive
otherwise.

Essentially, if x∗ and x0 denote, respectively, the maximum
and the optimal dose of medicine per day, the function
representing the progression of the disease behaves as a discount

Figure 5 | Plotting the progression of a disease.
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function with a bounded domain [0, x∗] where the x-axis now
represents regular doses of the medicine or time frequencies (see

Figure 5). If n: = ⌊ x
∗

x0
⌋, then the following inequalities hold (for

every integer h and k such that k < n):

F
(x0

h

)

F
(x0

h

)

· · · F
(x0

h

)

︸ ︷︷ ︸

h times

> F(x0)

and

F(x0)F(x0) · · · F(x0)
︸ ︷︷ ︸

k times

< F(kx0).

As such, despite the fact that in most experiments about
illnesses and addiction processes data are fitted to hyperbolic
discounting, we propose that the suitable adjustment must be
to the so-called exponentiated hyperbolic discount function.
This reasoning can be reinforced by the idea that most medical
treatments are designed to follow a regular dosage, and this
would justify the shape of the discount function. In this case, the
instantaneous discount rate will be increasing up to a level of the
independent variable and decreasing otherwise. An explanation
of this situation is provided because inmost occasions impatience
is measured in patients who exhibit two or more addictions, and
their impulsiveness is due to two or more diseases. Consequently,
if a psychopharmacological treatment for an addiction or disease

is administered based only on the impatience level shown by a
patient, there could be a problem of excessive dosage. This is
because impatience or excessive discounting is a trans-disease
process (as indicated by Bickel et al., 2012) underlying addiction
and other disorders and disease-related behavior which needs to
be correctly assessed.

It should be noted that our study is a complement to the
conventional economic theory of addiction (Becker andMurphy,
1988) in that our model proposes more bio-psychologically
plausible characteristics for the decay of the biological
influences of drug consumption after “cold turkey” (abstinence)
proposed as exponential “depreciation” processes in Becker’s
model.
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