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Influenza A virus (IAV) is a dangerous virus equipped with the
potential to evoke widespread pandemic disease. The 2009
H1N1 pandemic highlights the urgency for developing
effective therapeutics against IAV infection. Vaccination is a
major weapon to combat IAV and efforts to improve current
regimes are critically important. Here, we will review the role of
dendritic cells (DCs), a pivotal cell type in the initiation of
robust IAV immunity. The complexity of DC subset hetero-
geneity in the respiratory tract and lymph node that drains the
IAV infected lung will be discussed, together with the varied
and in some cases, conflicting contributions of individual DC
populations to presenting IAV associated antigen to T cells.

Influenza A virus (IAV) is a negative sense, single-stranded RNA
(ssRNA) virus that establishes an acute infection in the respiratory
tract. Responsible for annual illness, hospitalizations and deaths,
IAV is a dangerous virus that is also equipped with the potential
to evoke widespread pandemic disease. The 2009 H1N1
pandemic highlights the urgency for developing effective
therapeutics against IAV infection. Vaccination is a major weapon
to combat IAV and efforts to improve current regimes are
critically important. In order to do this, the mechanisms that
underlie immunity to IAV need to be studied in detail.1 Here, we
will review the complex role of dendritic cells (DCs), a pivotal cell
type in the initiation of robust IAV immunity (Fig. 1).

Dendritic Cell Heterogeneity

DCs are equipped with the capacity to display peptides derived
from viral-associated antigen in the context of major histocompat-
ibility class I (MHCI) and MHCII molecules to elicit CD8+ and
CD4+ T cell immunity, respectively. The source of the peptides
differ: cytosolic for MHCI- and exogenous for MHCII-restricted
peptides. Notably, distinct DC subpopulations possess the ability
to load peptides derived from exogenous antigens onto MHC
class I molecules. This process is termed “cross-presentation.”2,3

Cross-presentation pathway is considered critical for generating
CD8+ T cell immunity against pathogens, such as IAV, that do
not primarily infect DCs. Therefore, DCs are a heterogeneous
population of cells, with different subsets displaying specialized
antigen presentation functions.

To date, the identity of the DCs involved and the exact nature
of the mechanisms utilized to initiate IAV-specific T cell
immunity remain controversial. There is considerable complexity
in identifying subpopulations of the DC family. Developmental
stages are still being defined, together with increasing numbers of
lineage markers to define end-stage subpopulations. Having said
this, significant progress has identified distinct DC family
members that can now be readily defined. DCs are routinely
subdivided into two major subsets that include plasmacytoid DCs
(pDCs) and myeloid DCs, with the latter commonly referred to as
conventional DCs (cDCs).4 pDCs are a major source of the anti-
viral cytokine interferon-a (IFNa).5 cDCs that are isolated from
the lymph node that drains the lung represent a mixture of
lymphoid resident DCs that do not traffic to peripheral tissues,
and tissue-derived, “migratory” DCs. At least three lymphoid
resident DC subsets are described and can be subcategorized
based on their expression of the lymphocyte markers CD4 and
CD8 (CD8+ DCs, CD4+ DCs and CD8–CD4– DCs).6 Two
migratory DC subsets are defined and are subdivided based on their
expression of the mucosal aE integrin marker CD103 and myeloid
marker CD11b (CD103+CD11b− and CD103−CD11b+).7 In
addition to cDCs and pDCs that are present in uninfected airways
and lymph nodes, the inflammatory environment elicited by IAV
infection recruits monocyte-derived “inflammatory DCs” to the
lung parenchyma. These DCs are also referred to as tumor necrosis
factor producing inducible nitric oxide synthetase-producing (TIP)
DCs8 or interferon killer (IKDCs).9 Inflammatory DCs typically
express CD11b and can be distinguished from conventional
CD11b DCs by several specific lineage markers including Ly6C.10

Finally, alveolar macrophages are a dominant cell type in the
pulmonary tract that are often confused with DCs, given their
expression of CD11c, but can be excluded from DC populations
based on their high autofluorescence11 as well as their exclusive
expression of siglec F and CD2.12 Therefore, many DC populations
contribute to eliciting immunity to IAV both in the infected lung
tissue and in the associated lymph node (Table 1).
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Detection of Influenza A Virus

DCs provide a first line of defense following IAV infection.
Equipped with sensors to detect viral products, DCs alert the
immune system to the presence of infectious virus. Invading IAV

is detected by “pattern recognition receptors” (PRR). In early
studies, the molecular signature generated by IAV was considered
to be double-stranded viral RNA (dsRNA) recognized by Toll-like
receptor 3 (TLR3).13,14 A role for TLR3 was subsequently
considered unlikely, however, given that the concentration of
dsDNA generated by IAV is unlikely to be sufficient to signal
TLR3.15 Instead, the IAV polymerase generates uncapped ssRNA
that serves as a unique molecular signature, readily identified by
the immune system as foreign.16 Interestingly, a growing number
of cytosolic receptors that are capable of detecting viral products
are being defined. These include members of the RNA helicase
RIG-I-like receptor,17 Nod-like receptor18 and AIM2-like recep-
tor19 families. It is becoming increasingly apparent that multiple
receptors are involved in detecting IAV. RIG-1,16,20 but not
MDA5,16,21 detects IAV, which can occur independently of viral
replication.20 Members of the DExDc helicase family facilitate
IAV recognition within myeloid DCs. These include DDX1-
DDX21-DHX3622 and DHX9.23 IAV also triggers the NLRP3
inflammasome.24-26 On the one hand, the NLRP3 inflammasome
response to IAV was deemed critical for the development of
adaptive immunity to IAV,26 whereas others reported it as
dispensable for adaptive IAV immunity, but critical for immediate
innate immunity and tissue healing.24,25 Notably, the NLRP3
inflammasome is not triggered by viral RNA, but by the ionic
channel activity of IAV-encoded protein M2 that disturbs the
intracellular ionic concentration.27 In addition to cytosolic
detectors, TLR7 is also implicated in IAV detection. Expressed
in the endosomal compartments of plasmacytoid DCs and B cells,
TLR7 detects IAV ssRNA.28,29 Therefore, an array of molecules
ensures that IAV is detected in the infected host.

Once IAV is detected, the individual PRR initiate multiple
signaling cascades that aim to elicit innate immunity and facilitate
viral eradication. In an attempt to evade such detection, IAV
encodes non-structural protein 1 (NS1). Type 1 IFN induction
is antagonized by NS1-mediated suppression of IFN-induced
proteins including dsRNA-activated protein kinase, 2'-5-oligo
(A) synthetase,30-32 the transcription factors NFkB33 and the IFN
regulatory factor-3.34 Containing an RNA-binding domain at its
N terminus,33 it was previously considered that NS1 sequestered

Figure 1. Dendritic cells (DCs) have multiple roles in immunity to
influenza A virus (IAV) infection. DCs in the lung secrete pro-
inflammatory cytokines including interferon-a (IFNa) following detection
of IAV. DCs may become infected with IAV and/or traffic IAV antigen to
the lymph node draining the lung. In the lymph node, DCs present IAV
antigen to CD4+ and CD8+ T cells. IAV primed T cells migrate into the
infected respiratory tract where they can again interact with lung
resident DCs before differentiating into effector T cells that clear the IAV
infection.

Table 1. Summary of dendritic cell subsets contributing to influenza A virus immunity

Population Marker

CD11c MHCII CD45RA sirpa CD11b CD103 Ly6C CD8

Lymphoid resident DC

plasmacytoid int + + − − − − +/−

CD8+ hi + − − − +/− − +

CD8− hi + − + + − − −

Migratory DC

CD11b hi + − + + − − −

CD103 hi + − − − + − −

Inflammatory DC hi + − − + − + −
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influenza A virus dsRNA.35 Instead, NS1 forms a complex with
RIG-1.16 Finally, once IAV is cleared from the host, the
inflammatory cascade must be shut down. Turning off the
inflammatory response to IAV requires NLRX1, which acts to
dampen RIG-1-mediated responses to IAV.36 In summary,
detection of IAV by DCs (and other cell types) is a complex
process with the participation of several innate immune pathways
and an active counterattack by the virus itself.

Initiation of T Cell Immunity to Influenza A Virus

While it is well-documented that CD4+ and CD8+ T cell
immunity is initiated in response to IAV-associated antigens, the
identification of the specific DC subsets that are responsible for
presenting antigen to the respective T cell populations is the
subject of intense ongoing research. Analysis of individual DC
subsets and their role in antigen presentation following IAV
infection has mostly relied on ex vivo analysis of isolated DC
populations. In particular, the DC responsible for MHCI
presentation of IAV antigen to CD8+ T cells is a source of great
debate. There are several conflicting reports as to which DC is
responsible. On the one hand, MHCI antigen presentation of
IAV antigen was attributed to CD11b+ DCs,37 while in a separate
study, CD103+ DCs were deemed the responsible subset.38 The
divergent results could not be explained by different methodo-
logies used to detect IAV-derived antigen in the context of H-2Kb,
as both studies utilized the same TCR-like mAb. Additional
studies add to the confusion where IAV antigen is presented by
MHCI expressed by both CD103+ and CD11b+ migratory DC
subsets.39,40 In one case, the CD103+ DC subset preferentially
drives naïve CD8+ T cell differentiation,39 while in the second
study, this is achieved by CD11b+ DCs.40 The lymphoid resident
CD8+ DCs is also implicated in IAV MHCI antigen presentation
to naïve CD8+ T cells.41-43 Disparities are also reported for the
generation of memory CD8+ T cells, with one report excluding
migratory DC involvement44 while another implicates antigen
presentation by migratory CD103+ DCs.45 Therefore, currently
there is no consensus as to which pulmonary DC subset is
responsible for MHCI antigen presentation to CD8+ T cells,
either naïve or memory, following IAV infection. Identifying this
DC subset is important as this cell type will be critical for vaccine
strategies that aim to elicit CD8+ cytotoxic T lymphocytes. For
MHCII IAV antigen presentation, the data are less extensive, but
again there is controversy as to which DC subset is responsible. In
one study, CD103+ DCs exclusively present IAV antigen via
MHCII,42 while in another study, both CD103+ and CD11b+ are
implicated.39

Potentially, the difficulty in identifying the DC subset
responsible for IAV antigen presentation reflects the difficulty in
isolating DCs as strictly purified subsets. Therefore, in an attempt
to resolve this debate, several studies have incorporated in vivo
analysis. These studies have mostly focused on MHCI IAV
antigen presentation and remain to be exploited for a more
detailed evaluation of MHCII IAV antigen presentation.
Intratracheal administration of diphtheria toxin (DT) transiently
depletes lung CD11c+ DCs in CD11c.DTR mice.46 In this

setting, CD8+ T cell responses are impaired, implicating a
requirement for migratory DCs in IAV MHCI antigen
presentation.39,42 The DT system must be viewed with caution;
however, as other key populations including alveolar macro-
phages, which can harbor infectious IAV virions can also be
eliminated. DT treatment may therefore remove a potential
antigen source for DCs, rather than remove critical antigen
presenting cells themselves. In addition, DT treatment has the
potential to impact and reduce lymphoid resident DCs.
Therefore, this system needs to be interpreted with caution.
Another model relies on the langerin.DTR mice,47 where DT
administration specifically ablates langerin-expressing CD103+

DCs. Treatment of langerin.DTR mice with DT following IAV
infection results in reduced IAV MHCI antigen presentation and
impaired anti-IAV CD8+ T cell immunity.42 This implicates an
important role for CD103+ DCs, although the fact that some
anti-IAV CD8+ T cell effectors are primed indicates that more
than one DC subset can participate in the response. Again,
however, this model has its caveats. Specifically, CD103+ DC can
be directly infected with IAV43 and therefore can deliver IAV
antigens to other DC subsets, including the lymphoid resident
DCs.41 Therefore, the loss of this population in DT-treated
langerin.DTR mice could be misinterpreted as a key role in
priming, rather than the provision of IAV antigen. This
complexity is also applicable to the studies performed in mice
lacking the chemokine receptor CCR7.48 In the absence of
CCR7, lung resident CD11b+ and CD103+ DCs are unable to
emigrate from the lung to the draining lymph node.39,49 Again,
the role of CD103+ DCs as an antigen source, rather than the DC
subset that initiates MHCI antigen presentation must be
considered. In addition, CCR7−/− lymphoid resident DCs may
be unable to migrate to the paracortex to efficiently interact
with naïve CD8+ T cells. This again makes the contribution of
lymphoid resident DCs difficult to exclude. Fortunately, there
seems to be a consensus with regards to which DC populations are
not involved in MHCI antigen presentation of IAV. pDCs do not
present IAV antigens via MHCI to CD8+ T cells,39,41,42 although
they are implicated in promoting anti-IAV B cell immunity.42

CD8− lymph node resident DCs are not implicated in MHCI
IAV antigen presentation.37-43 Finally, inflammatory monocyte-
derived DCs do not play a crucial role in the lung-draining lymph
node with only very modest CD8+ T cell priming elicited from
these cells ex vivo.39

Lung Resident DCs and Influenza A Virus Infection

It is becoming increasingly evident that effector CD8+ T cells
continue to divide in the lung at sites of IAV pathology after their
departure from the lymph nodes.50 Such an event is attributed to
DCs,51 which are continually recruited to the lungs throughout
the course of IAV infection.10,51,52 These include pDCs and
cDCs39,40,42 as well as inflammatory monocyte-derived DCs10,52

and IKDCs.9

The majority of the lung DC populations, with the exception
of pDCs, appear to possess IAV antigens and can stimulate IAV-
specific T cells ex vivo.9,10,52 However, to date the overall
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contribution and consequence of antigen presentation by these
DC subsets remains unclear. Provision of local stimulation by
respiratory tract DCs is required for optimal anti-IAV T cell
immunity with this response being dependent on the provision of
IL-15.50 CD8+ DCs, a subpopulation considered to reside only in
the lymphoid compartment4 is also reported to be present in the
lungs following IAV infection.51 It is unclear whether CD8+ DCs
precursors migrate from the blood to the infectious site, or
whether the terminally differentiated cells migrate to the infected
lung from the lymph node. In addition, it is unknown whether
other lymphoid resident DC subsets, such as CD4+ DCs, are
also present in abundant numbers at the infectious site. One
possibility is that CD8+ DCs are associated with induced
bronchus-associated lymphoid tissue (iBALT),53 but this remains
to be formally demonstrated. Maintenance of iBALT structures
depends on the presence of lung DCs,9 but the overall
contribution of specific subsets within these structures and at
other sites in the lung during influenza infection remains to be
elucidated.

How Do Dendritic Cells Acquire Influenza A Virus
Antigen?

As discussed, abundant evidence shows that respiratory tract DC
traffic and present IAV-derived antigen to T cells in the lymph
node that drains the IAV-infected lung.9,42,43,54-57 In brief, there
are two major mechanisms by which this antigen can be acquired.
First, DCs may capture and phagocytose infected airway cells.
This has been described for human immature DCs that
phagocytose apoptotic IAV-infected monocytes in vitro.58 In this
case, the experiments were designed to exclude a role for the direct
infection of DCs with the virus itself. IAV infected cells appear to
undergo typical apoptosis with the display of phoshphatidylse-
rine at the infected cell surface being the most likely trigger for
phagocytosis.59 CD36 and the avβ5 integrin are implicated as
receptors that immature DCs employ to capture and acquire
apoptotic IAV infected cell cargo.60 Notably, excluding direct
infection of DCs with IAV is not an easy undertaking. Utilizing
an interesting and novel approach, Langlois et al. generated a virus
containing hematopoietic-specific microRNA target sites inserted
within the nucleoprotein gene. Infection with this virus results in
undetectable transcription and replication in hematopoietic cells,
including DCs, but intact IAV infection of epithelial cells. In this
scenario, viral clearance and CD8+ T cell responses are not altered.
While it is difficult to rule out whether this approach is strictly
excluding IAV infection in all relevant DC populations, this study
does imply that DC acquisition of viral infected cells is a
significant pathway by which DCs can elicit IAV immunity.61

The second major mechanism by which respiratory tract DCs
acquire IAV antigen is to be directly infected with the virus itself.
There are plenty of examples of IAV infection of DCs in vitro.
Mouse bone marrow-derived DCs,62-65 mouse splenic DCs,66

human blood monocyte-derived DCs67-70 and primary human
myeloid, but not plasmacytoid, DCs71 can be infected with IAV
in vitro. Infecting DCs with IAV can result in expression of viral
proteins,66-70 but does not necessarily elicit infectious virions.63

Whether we can extrapolate these findings to infection of
pulmonary tract DCs during live IAV infection is debatable.
DC subsets isolated directly from the pulmonary airways can also
be infected with IAV in vitro, although this depends on the strain
of virus72,73 and the specific DC subset. CD103+ DCs are the
most susceptible to IAV infection, with CD11b+ DCs displaying
intermediate susceptibility and pDCs being the most resistant.73,74

Isolation of DC subsets from IAV-infected mice confirms the
differential infectivity of DC subsets, with the CD103+ DCs
being the major subset containing infectious IAV virus.43,73

Differential infection of DC subsets correlates with their use of
type I IFN receptor (IFNR) signaling, given that ablation of
IFNR signaling enhances viral replication in CD11b+ DCs.43

Constraining IFN signaling in CD103+ DCs to allow IAV
infection may serve to promote IAV antigen presentation once
CD103+ DCs arrive in the lymph node. DCs isolated from the
lungs of mice infected with highly pathogenic H1N1 and H5N1
IAV strains, were productively infected and could liberate
infectious virus.72

Infection of DCs with IAV is primarily mediated by the
recognition of cell surface sialic acid (SA) that is expressed by host
cell glycoproteins and glycolipids. Binding of SA by viral
hemagluttinin is the primary mode of IAV attachment; however,
the presence of SA is not always sufficient for cell infection.
Several C-type lectins known to be expressed by DCs are
implicated in IAV entry including macrophage mannose receptor,
a type I integral transmembrane protein with Ca2+-dependent
specificity for terminal D-mannose, N-acetyl-D-glucoamine and
L-fructose; macrophage galactose type lectin,75 a type II
transmembrane glycoprotein with Ca2+-dependent specificity for
terminal galactose, Lewis-X structures and terminal GalNAc
residues75,76 and DC-specific ICAM-3-grabbing nonintegrin (DC-
SIGN), a tetrameric type II transmembrane glycoprotein with
Ca2+-dependent lectin activity specific for high mannose.77,78

Entry of IAV into DCs via these receptors may occur through
direct endocytosis of bound IAV, or alternatively may involve the
transfer of virus to additional co-receptors that facilitate its
entry.77 In an interesting study, Gonzalez et al. visualized the
capture of inactivated IAV by spleen medullary CD11c+ cells. In
this case, SIGN-R1, another lectin with the ability to bind
mannose-rich sugars was implicated.79 This analysis was
performed with inactivated virus in a vaccine setting and therefore
the role of SIGN-R1 in live IAV infection remains to be
elucidated.

IAV infection of DCs can induce DCs apoptosis.64,70 As such,
directly infecting DCs with IAV may be a viral mechanism to
impair DC function and impede the initiation of an effective
adaptive immune response. Indeed, IAV-infected human
myeloid DCs are impaired in their ability to cross-present
exogenous antigen via MHCI.71 To overcome this, DCs directly
infected with IAV may transfer their antigen to uninfected,
functional DCs. This mechanism of IAV antigen presentation
remains to be formally demonstrated but is likely to be a mode of
antigen presentation by lymphoid resident DCs that participate
in IAV T cell priming but do not access the site of infection
themselves.
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Conclusion

Ultimately, studies of IAV immunity will provide the foundation
for strategies to combat IAV disease. DCs are critical participants in
IAV detection and importantly, process and present IAV-associated
antigen in a context that facilitates successful immunity. Here, we
have summarized the complex role of DCs following IAV infection
of the pulmonary tract. Specific DC subsets play critical role in both
the infected lung itself and in the lymphoid organs that drain the
respiratory tract. Several pathways discussed here are currently
ongoing areas of intense and active research. In this case, we have

attempted to discuss several studies that are often in complete
disagreement, despite utilizing similar methodologies. Obviously,
the complex network of DC subsets requires careful and elegant
techniques for identifying and isolating purified DC populations
from both the lymphoid organs and the infected pulmonary tissue.
In vivo models of DC depletion are proving useful; however, they
present several caveats that need to be carefully considered. All of
the research discussed here has focused on studies undertaken with
well-established mouse models of IAV. Moving forward, this
knowledge must be considered in the context of human patients
and human IAV disease.
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