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Abstract

Background: Drug repositioning can reduce the time, costs and risks of drug development by identifying new
therapeutic effects for known drugs. It is challenging to reposition drugs as pharmacological data is large and
complex. Subnetwork identification has already been used to simplify the visualization and interpretation of biological
data, but it has not been applied to drug repositioning so far. In this paper, we fill this gap by proposing a new
Physarum-inspired Prize-Collecting Steiner Tree algorithm to identify subnetworks for drug repositioning.

Results: Drug Similarity Networks (DSN) are generated using the chemical, therapeutic, protein, and phenotype
features of drugs. In DSNs, vertex prizes and edge costs represent the similarities and dissimilarities between drugs
respectively, and terminals represent drugs in the cardiovascular class, as defined in the Anatomical Therapeutic
Chemical classification system. A new Physarum-inspired Prize-Collecting Steiner Tree algorithm is proposed in this
paper to identify subnetworks. We apply both the proposed algorithm and the widely-used GW algorithm to identify
subnetworks in our 18 generated DSNs. In these DSNs, our proposed algorithm identifies subnetworks with an
average Rand Index of 81.1%, while the GW algorithm can only identify subnetworks with an average Rand Index of
64.1%. We select 9 subnetworks with high Rand Index to find drug repositioning opportunities. 10 frequently
occurring drugs in these subnetworks are identified as candidates to be repositioned for cardiovascular diseases.

Conclusions: We find evidence to support previous discoveries that nitroglycerin, theophylline and acarbose may be
able to be repositioned for cardiovascular diseases. Moreover, we identify seven previously unknown drug candidates
that also may interact with the biological cardiovascular system. These discoveries show our proposed
Prize-Collecting Steiner Tree approach as a promising strategy for drug repositioning.

Keywords: Steiner tree problem, Subnetwork identification, Drug similarity network, Big data, Physarum
polycephalum
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Background

Drug repositioning aims to identify new therapeutic
effects for known drugs. By repositioning known drugs,
drug development time, costs and risks can be reduced
significantly [1-3]. There are mainly two challenges to
reposition drugs. First, pharmacological data is usually big
and difficult to analyze [4, 5]. Second, pharmacological
data is highly complex and involves various drug char-
acteristics, including their chemical structures, molecular
targets and induced gene expression signatures [6].

Existing drug repositioning methods can be divided
into three categories; data-driven methods [1-3, 6], text-
mining methods [7, 8], and network-based methods
[3, 9-11]. The data-driven methods reposition drugs
by analyzing pharmacological data using statistical and
machine learning concepts such as statistical estimations,
classification and clustering [1, 6, 10]. Because of the
overlapping nature of pharmacological data [3, 11], the
evaluation process of the data-driven methods is compli-
cated [11]. On the other hand, text mining methods use
efficient text analytics and semantic inference approaches
to reposition drugs [7, 8], but their application is lim-
ited by the availability of relevant biomedical publications
and reports. Network-based methods are emerging meth-
ods that use networks to represent pharmacological data
[10]. These methods typically reposition drugs by iden-
tifying drug candidates in multiple decomposed subnet-
works [10-12]. Even though multiple therapeutic effects
are expected to be found, it requires a long time to analyze
these multiple decomposed subnetworks.

Subnetwork identification is a technique to identify a
single small-scale subnetwork from a large-scale network.
It differs from previous network-based methods in that
we only need to analyze a single identified subnetwork.
This method has already been proven to be efficient to
simplify the visualization and interpretation of protein-
protein interaction networks [13-16], protein-DNA inter-
action networks [17], gene-regulatory networks [18] and
metabolic networks [19]. However, to our knowledge, no
one has applied subnetwork identification to pharmaco-
logical networks so far. This paper will fill this gap by
exploring the application of subnetwork identification to
drug repositioning for the first time.

The Prize-Collecting Steiner Tree (PCST) approach is
gaining traction in subnetwork identification, but has
not been tried with pharmacological data yet. Existing
methods are slow and non-deterministic, chance based.
This method is heuristic, i.e. it is not an exact solution,
but it is deterministic. The definition of Prize-Collecting
Steiner Tree Problem (PCSTP) is given as follows: let G =
(V,E,p,c) be a connected, undirected graph, where V is
the set of vertices, E is the set of edges, p is a function
which maps each vertex in V' to a non-negative number
called the prize, and c is a function which maps each edge
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in E to a positive number called the cost. Let T be a sub-
set of V called terminals. The aim of PCSTP is to find a
connected subgraph G' = (V',E'), V' € V,E’ C E which
contains all the terminals while minimizing the objective
function ¢(G") = ), c(e) =D,y P(v), and the optimal
solution of PCSTP is called Steiner Minimum Tree (SMT)
in G for T.

The algorithms for PCSTP can be divided into two
groups: exact algorithms and heuristic algorithms. Exact
algorithms can find SMT, but are slow in large graphs
[20]. On the contrary, heuristic algorithms can find solu-
tions faster, but they may only find close approximations
to SMT [21]. The Drug Similarity Networks (DSN) we
used in this paper are large graphs with 548 vertices and
thousands of edges. Thus, it is necessary for us to use
heuristic algorithms in DSNs. Many heuristic algorithms
have been proposed to solve PCSTP; the GW algorithm
(named for Michel X. Goemans and David P. Williamson)
is the most popular one [22-25]. However, in our simu-
lations we observe that GW algorithm does not perform
well in DSNs. Physarum-inspired algorithms are emerging
heuristic algorithms that have already been used to solve
PCSTP [26]. In this paper, we propose a new Physarum-
inspired algorithm called Physarum-inspired Subnetwork
Identification Algorithm (PSIA) to identify subnetworks
in DSNs. Our proposed PSIA outperforms the popular
GW algorithm by identifying more suitable subnetworks
for drug repositioning. Furthermore, by analyzing the
identified subnetworks, we find evidence to support pre-
vious discoveries that some drugs could be repositioned
for cardiovascular diseases. These discoveries show that
our proposed Prize-Collecting Steiner Tree approach is
effective and efficient to reposition drugs.

Methods
Generation of drug similarity networks
We build Drug Similarity Networks (DSNs) to represent
the similarities between drugs. There are several pharma-
cological databases at present, such as PharmGKB [27],
DrugBank [5, 28], SIDER [29], etc. We generate DSNs
using the data following the work of Zhang et al. [30],
which includes data from DrugBank and SIDER. Similari-
ties between drugs are quantified in DSNs based on their
chemical, therapeutic, protein and phenotype features.
There are 881 chemical features, 719 therapeutic features,
775 protein features, and 1385 phenotype features consid-
ered for each drug. Therefore, 3760 (881+719+775+1385)
features in total are considered for each drug.

The DSNs we generated have five components:

vertex: Each vertex represents a drug. There are 548
drugs included in each of our generated DSNs [30].
Each drug is associated with a 1 x 3760 feature vector
where binary numbers represent the presence or
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absence of each individual feature that we consider.
Note that, binary numbers have already been widely
used to describe drug features [6, 30, 31].

edge: Each edge represents the association between
two drugs.

terminal: Each terminal represents a vertex which
must be contained in the identified subnetworks of
DSN . In each DSN, the terminal set represents a
cardiovascular subclass of drugs in the Anatomical
Therapeutic Chemical (ATC) classification system
[32]. ATC is used for the classification of active
ingredients of drugs according to the organ or system
on which they act and their therapeutic,
pharmacological and chemical properties. There are
9 subclasses in the cardiovascular class (C); cardiac
therapy (CO01), antihypertensives (C02), diuretics
(C03), peripheral vasodilators (C04), vasoprotectives
(C05), beta blocking agents (C07), calcium channel
blockers (C08), agents acting on the
renin-angiotensin system (C09), and lipid modifying
agents (C10). There are 104 drugs in total in these
subclasses. (Notably, there is no C06 in the ATC
classification system).

edge cost: Each edge cost represents the quantified
dissimilarity between two drugs. The bigger the edge
cost is, the more dissimilar the two drugs are. The
edge cost is calculated using the Jaccard coefficient,
as shown in the formula below.

ZZ:l vi(k) N Uj(k)
Zzzl vi(k) U Uj(k)

where i and j are indexes of two different drugs, c;; is
the cost of edge (i, /), n is the total number of features
considered for each drug, which is 3760, and v is the
feature vector of drug i.

vertex prize: A prize is associated with each vertex to
signify the similarity between the drug represented by
this vertex and all the drugs represented by terminals.
The vertex prize is calculated using the following
equation.

(1)

ci=1-

5, !

eT j#i 1+ ¢

2
] 2)

bi=
where p; is the prize of vertex i, T is the set of
terminals, and | 7T'| is the total number of terminals.

The objective of PCSTP is to minimize the net-cost of
edge costs and vertex prizes. Thus, the subnetwork identi-
fied using the PCST approach tends to include edges with
small costs and vertices with big prizes. In our generated
DSNs, edges with small costs connect drugs with big sim-
ilarities, and vertices with big prizes represent drugs that
are similar to the drugs represented by terminals. Hence,
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a subnetwork of DSN that includes drugs similar to the
drugs represented by terminals is expected to be identified
using the PCST approach.

Complete graphs with different sets of terminals can
be generated using the five graph components defined
above. Since the sets of vertices are identical, the sets of
edge costs are also the same in different complete graphs.
However, the sets of vertex prizes are different as the sets
of terminals are different in different complete graphs.
PCSTP algorithms perform better in sparse graphs than in
complete graphs [22]. Therefore, we propose two sparse
graph generation algorithms to prune the complete graphs
to produce sparse graphs for DSNs.

In our first proposed algorithm, the Minimum Spanning
Tree (MST) of the complete graphs is found using Prim’s
algorithm [33]. Then, edges are added probabilistically to
MST until the total number of edges is increased to the
desired number. This algorithm is outlined in Fig. 1, in
which |E| is the number of edges in the sparse graph, |V is
the number of vertices, De is the desired number of edges
in the sparse graph, Pro is the probability of adding edges
to MST.

Our first proposed algorithm generates a sparse graph
by adding edges to the MST of a complete graph. While
our second proposed algorithm generates a sparse graph
by deleting edges from a complete graph. The challenge of
generating a sparse graph by deleting edges is to delete as
many edges as possible while maintaining the graph con-
nectivity. The graph connectivity can be checked using
Tarjan’s algorithm, which has the complexity of O(|V| +
|E]) [34]. It takes a long time to generate a sparse graph
if the connectivity is checked every time after an edge is
deleted. In our second proposed algorithm, two threshold
values, ¢ and £y, are used to delete edges in two steps. In
the first step, all the edges which have a cost below ¢; are
deleted from the complete graph. In the second step, all
the edges which have a cost below £, are deleted from the

Input:  a complete graph Cg = (V, E” p,c)
Output:  a sparse graph G = (V, E,p,c)
1: Find MST of Cg as G
2:  While |E| < De do
3 Fori=1to |V|—1do
4. For j =i+ 1to |V]| do
5: If rand(1) < Pro then
6: Add edge (i,j) to G
£ Break
8: If |E| == De then
9: Break
Fig. 1 The first proposed sparse graph generation algorithm
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graph when deleting the edge will not make the graph dis-
connected. Set t; < £y, and make sure ¢; is small enough
to maintain the graph connectivity. The purpose of delet-
ing edges in two steps is to make the algorithm fast by only
checking the graph connectivity in the second step. Our
second proposed algorithm is outlined in Fig. 2.

Two sparse graphs can be generated from each complete
graph using the two algorithms proposed above. These
two algorithms generate sparse graphs by only consider-
ing the edge costs. Since the sets of edge costs are the same
in different complete graphs, the sparse graphs generated
using the same proposed algorithm will have the same set
of edges. Therefore, sparse graphs with two different sets
of edges are generated using the two proposed algorithms,
and these two types of sparse graphs are visualized in
Fig. 3, in which Fig. 3a visualizes the sparse graphs gener-
ated using the first proposed algorithm, and there are 548
vertices and 1500 edges in each of them, Fig. 3b visualizes
the sparse graphs generated using the second proposed
algorithm, and there are 548 vertices and 1391 edges in
each of them.

The distributions of edge costs in the complete graphs
and two types of sparse graphs are shown in Fig. 4. It
can be seen from Fig. 4a that most edges in the complete
graphs have costs between 0.5 and 0.9. It can be seen from
Fig. 4b that most edges in the first type of sparse graphs
also have costs between 0.5 and 0.9. The reason why the
complete graphs and the first type of sparse graphs have
similar distributions of edge costs is that, in the first pro-
posed algorithm, edges are randomly added to the MST
of the complete graphs without considering their costs.
However, it can be seen from Fig. 4c that most edges in the
second type of sparse graphs have costs between 0.9 and
1. It is because t; and £, are set respectively to be 0.9 and
0.95 in the second proposed algorithm, and all the edges
which have a cost below 0.9 have been deleted. In the com-
putational trials, it takes the second proposed algorithm
29.24 s to generate a sparse graph when £, = 0.9 and ¢, =
0.95. In contrast, it takes the second proposed algorithm

Input:  a complete graph Cg = (V, E” p,¢c)
Output:  a sparse graph G = (V, E,p,c)
1: Save Cg as G
22 Fori=1to|V|—-1do
3: For j =i+ 1to |V]| do
4: If ¢;; <ty then
5: Delete edge (i,j) from G
6: Fori=1to|V|—1do
7: For j =i+ 1to |V]| do
8: If ¢;; <2 then
9: Check the connectivity of G without edge (i,7)
10: If G is still connected without edge (i,7) then
11: Delete edge (i,7) from G
Fig. 2 The second proposed sparse graph generation algorithm
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7870.69 seconds to generate a sparse graph when t; = 0.5
and £t = 0.95. Moreover, the graph becomes disconnected
when t; = 0.95. Therefore, the computational trials prove
that a big #; makes the second proposed algorithm fast,
but at the risk of ruining the graph connectivity, and a big
t, makes the graph sparse, but at the cost of long running
time.

DSNss in sparse graphs are generated using the two pro-
posed algorithms. Because no vertex has been deleted
in any of these sparse graphs, subnetworks containing
similar drugs can be identified in the sparse graphs gen-
erated by both proposed algorithms. Nevertheless, in our
simulations we find that PCSTP algorithms have better
performances in DSNs generated using the second pro-
posed algorithm than in DSNs generated using the first
proposed algorithm.

The proposed physarum-inspired subnetwork
identification algorithm

Physarum polycephalum is a large amoeboid organism
that has displayed many intelligent behaviors [35-37]. The
Physarum-inspired Subnetwork Identification Algorithm
(PSIA) is proposed in this paper to identify subnetworks
in DSNs. The proposal of PSIA is inspired by the Lowest-
cost Network Physarum Optimization algorithm (LNPO)
[26]. LNPO is designed to find PCSTP solutions as close
to SMT as possible. There are two iteration processes in
LNPO, the inner iteration process and the outer iteration
process. A feasible PCSTP solution can be found in each
inner iteration process. The outer iteration process is used
to find multiple solutions and choose the solution which
is closest to SMT as the final solution. However, SMT or
close approximations to SMT may not be suitable for drug
repositioning. There is no need to use the outer iteration
process in PSIA. Thus, only the inner iteration process is
included in PSIA. Moreover, the subnetwork identified in
the inner iteration process may not be a tree. Hence, a
post-processing technique is used in PSIA to ensure that
the identified subnetwork is a tree.

In our proposed PSIA algorithm, a single terminal is
chosen probabilistically to be the sink node, and all the
other terminals will become source nodes. Let /(i) be the
total cost of edges linked to terminal i. Name the termi-
nals in such a way that /(1) < [(2) < --- < [(|T]), where
|T| is the number of terminals. Then, the probability of
choosing terminal i as the sink node can be obtained by

po =Tt D
j=110)

There is flux flowing through each edge, and the flux Q;;
in edge (i,)) is given by

(3)

D
Qj = —~ (Pri — Pr)) (4)
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(a) The first type of sparse graphs (b) The second type of sparse graphs

Fig. 3 Visualization of two types of sparse graphs. a shows the first type of sparse graphs, which are generated using the first proposed algorithm.
b shows the second type of sparse graphs, which are generated using the second proposed algorithm
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Pi_ By oN 5)

CL']' = Cij — EL d]

where Dj; is the edge conductivity, Cj; is a net-cost for
edge (i,j), Pr; and Pr; are pressures at vertex i and j, c;;
is the cost of edge (i, ), p; and p; are the prizes of ver-
tex i and j, d; and d; are the degrees of vertex i and j, and
N = max(py),k C V.

The flux flows into the network from each source node,
and the flux flows out of the network from the single sink
node. By considering the conservation law of flux at each
vertex, the network Poisson equation is described below.

D;; —lo, j = source
> o Pri=Pry) = § +(IT| = Do, j =sink  (6)
ieve) Y 0, otherwise

where V(j) is the set of vertices linked to vertex j, and I is
the flux flowing into each source node. Let the pressure at
the sink node be 0, and other pressures can be calculated
by solving the network Poisson equation. In our simula-
tions, we find that the net-costs of edges in DSNs are quite
close to each other. In this case, if all the edge conduc-
tivities are the same, then the network Poisson equation
may not be solvable. Thus, we give each edge conductiv-
ity a random initial value to make the network Poisson
equation solvable.

After the calculation of pressures, the flux in each edge
can be got. Edge conductivities will be updated using the
conductivity update equation below.

Djj(k + 1) = Djj(k) + a|Q;i(k)| — uDj(k) (7)

where k is the number of conductivity update times, o« and
w are two constants. Edges with conductivities smaller
than the threshold value € will be cut from the graph. We
iteratively update the edge conductivities and cut edges
for K times to find a subnetwork. However, this subnet-
work may not be a tree. Thus, MST of this subnetwork is
found to be the final identified subnetwork. The proposed
PSIA is outlined in Fig. 5 (the MATLAB coding of PSIA is
publicly available at https://github.com/YahuiSun/PSIA-
to-identify-subnetworks).
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Because the sink node is chosen probabilistically in
PSIA, different subnetworks can be identified in a single
DSN by employing PSIA for multiple times. To reposition
drugs, we employ PSIA for multiple times in each DSN to
identify multiple subnetworks. Then, we select the most
suitable subnetwork from them for drug repositioning.

GW algorithm

Besides the proposed PSIA, we also use the popular GW
algorithm to identify subnetworks in DSNs. GW algo-
rithm was proposed by Michel X. Goemans and David
P. Williamson [22], and it is widely used to solve PCSTP
[23-25]. However, GW algorithm is designed to solve
PCSTP instances with a single terminal, which is called
the root. While in DSNs, there are multiple terminals. In
this paper, we apply GW algorithm to DSNs by randomly
choosing a single terminal to be the root and give other
terminals big prizes.

We first choose a single terminal to be the root. Then,
we give each of the other terminals a big prize M, and
M >} j)ek ¢ij- This big prize ensures that all the termi-
nals will be included in the subnetwork identified by GW
algorithm.

To identify a subnetwork, we initially set each vertex as
a component. Each component has a surplus (initially the
vertex prize). A component is active when its surplus is
bigger than 0. However, the root component will always be
inactive. In addition, each edge has a deficit (initially the
edge cost), and an edge is active when it is not connecting
two vertices in the same component.

Setting a constant A, we iteratively do this: the surplus
of all active components are reduced by A, the deficit of
any active edge adjacent to a single active component is
reduced by A, and the deficit of any active edge adja-
cent to two active components is reduced by 2A. After
the update of surpluses and deficits, we check that: if
an edge’s deficit is not above 0, we merge the two com-
ponents linked by this edge and give the new merged
component the sum of surpluses of the two components
being merged; if a component’s surplus is not above 0,
we deactivate this component. The iteration will end until

Input:  graph G = (V, E,p,c), terminal set T'

Output:  graph G’ = (V'/, E’, p, ¢), which is the identified subnetwork
1 Give each edge conductivity a random initial value
2 For k =1 to K do
3 Choose the sink node and the source nodes using Equation (3)
4 Calculate the pressure at each vertex using Equation (6)
5: Calculate the flux through each edge using Equation (4)
6 Update the conductivities using Equation (7)
7 Cut any edge whose conductivity is smaller than the threshold value ¢
8 Find MST of the subnetwork found above as G’

Fig. 5 The proposed physarum-inspired subnetwork identification algorithm
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there is no active component disconnected with the root
component.

After the iteration, the vertices and the edges in the root
component will be a tree. Then, we delete some vertices
and edges by strong pruning the tree. The strong pruning
idea was proposed by Johnson et al. in 2000 [25]. In the
general GW algorithm, MST of the strong pruned tree is
recommended to be found to increase the total net-prize
of the identified subnetwork. However, in this paper, the
aim of identifying subnetworks is to identify drug can-
didates, which are vertices in DSNs. Therefore, it is not
necessary to find MST of the strong pruned tree, and we
can directly use the strong pruned tree as the identified
subnetwork for drug repositioning. The MATLAB cod-
ing of GW algorithm is publicly available at https://github.
com/YahuiSun/GW-to-identify-subnetworks.

Subnetwork evaluation for drug repositioning

As described above, we select each of the 9 cardiovascu-
lar subclasses individually as the terminal set, and all the
other drugs in the DSN are considered as non-terminal
vertices. We then apply two sparse graph generation algo-
rithms to generate two sparse graphs for each cardiovas-
cular subclass, resulting in 18 DSNs. We name each DSN
as D_i_a or D_i_b, in which i represents the origin of the
terminal set (subclass C01, C02, C03, C04, C05, C07, C08,
C09, or C10), a or b represents the first or the second
sparse graph generation algorithm that is used to generate
that particular DSN.

Both PSIA and GW algorithm have been applied to
each of the 18 DSNs to identify subnetworks. PSIA can
identify multiple subnetworks in each DSN, while GW
algorithm can only identify a single subetwork in each
DSN. Each identified subnetwork contains all the termi-
nals and may also contain some non-terminal vertices. In
DSNs, the drugs represented by terminals are in a cer-
tain cardiovascular subclass, while the drugs represented
by non-terminal vertices may or may not be in the other
cardiovascular subclasses. The aim of subnetwork identi-
fication is to reposition drugs for cardiovascular diseases.
Drugs in the cardiovascular class are closely related to
cardiovascular diseases. Moreover, the identified subnet-
work is supposed to contain drugs that are closely related
to each other. Therefore, a subnetwork that is suitable
for drug repositioning for cardiovascular diseases may
contain a high percentage of drugs that are in the car-
diovascular class and a low percentage of drugs that are
not in the cardiovascular class. Hence, we propose Rand
Index (RI) [38] as the metric to evaluate the identified
subnetworks, and it is defined as

I, + N,
RI= —< N 100% (8)
VI —IT|
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where I, is the number of non-terminal vertices that
represent drugs that are in both the identified subnetwork
and the cardiovascular class (C; including drugs in all 9
cardiovascular subclasses), N, is the number of vertices
that represent drugs that are neither in the identified sub-
network nor in the cardiovascular class, | V| is the number
of vertices in DSN (|V| = 548 in this paper), |T| is
the number of terminals in DSN. Notably, our computa-
tional trials show that identifying true positives (I.) and
true negatives (N, ) are both important to subnetwork
identification for drug repositioning.

We evaluate all the subnetworks identified by PSIA and
GW algorithm. Then, we select the subnetworks with high
RI as the suitable subnetworks for drug repositioning.
Most drugs in these selected subnetworks have already
been classified into the cardiovascular class. However,
there may still be drugs in these selected subnetworks
that have not been classified into the cardiovascular class
yet. We consider the ‘not-classified-yet’ drugs that have
frequently occurred in these selected subnetworks as can-
didates for drug repositioning.

Results

There are two groups of DSNs generated in this paper.
Each group contains 9 DSNs that are generated using 9
cardiovascular subclasses (C01, C02, C03, C04, C05, C07,
C08, C09, C10). The DSNs in the first group (D_01_a
to D_10_a) are generated using the first proposed sparse
graph generation algorithm (Fig. 1), while the DSNs in
the second group (D_01_b to D_10_b) are generated using
the second proposed sparse graph generation algorithm
(Fig. 2). These DSNs are publicly available at https://
github.com/YahuiSun/Drug-Similarity-Network.

Both PSIA and GW algorithm are used to identify sub-
networks in two groups of DSNs. Since PSIA can identify
multiple subnetworks in a single DSN, we employ PSIA for
three times in each DSN to identify three subnetworks.

In each DSN, the subnetwork with the highest RI iden-
tified by PSIA is selected to compare with the subnetwork
identified by GW algorithm. The comparison results are
shown in Tables 1 and 2, in which ID is the name of DSN,
|V'|, |E|, |T| are the numbers of vertices, edges, terminals
in each DSN, T-Origin is the origin of the terminal set in
each DSN, |V’| and |E’| are the numbers of vertices and
edges in each identified subnetwork.

The identified subnetwork with a higher RI in each DSN
has been highlighted in Tables 1 and 2. It can be seen
that every highlighted subnetwork has a smaller number
of vertices than the other subnetwork in the same DSN.
Thus, we observe that

Observation 1: In each DSN, the identified subnetwork
which has a higher RI is generally smaller than the other
identified subnetwork.


https://github.com/YahuiSun/GW-to-identify-subnetworks
https://github.com/YahuiSun/GW-to-identify-subnetworks
https://github.com/YahuiSun/Drug-Similarity-Network
https://github.com/YahuiSun/Drug-Similarity-Network

Sun et al. BVIC Systems Biology 2016, 10(Suppl 5):128 Page 32 of 63

Table 1 Subnetwork identification results in drug similarity network: D_01_ato D_10_a

DSN Identified subnetwork
ID V] |E| 7 T-Origin Algorithm V| IE'| Ie Rand Index

PSIA 60 59 7 79.8
D_01_a 548 1500 22 o1

GW 354 353 53 414

PSIA 37 36 10 81.9
D_02_a 548 1500 12 C02

GW 339 338 62 45.0

PSIA 35 34 4 80.4
D_03_a 548 1500 13 co3

GW 330 329 61 46.5

PSIA 9 8 1 81.1
D_04_a 548 1500 4 Co4

GW 322 321 66 474

PSIA 25 24 4 80.9
D_05_a 548 1500 9 COo5

GW 281 280 52 51.2

PSIA 25 24 1 81.8
D_07_a 548 1500 15 co7

GW 301 300 55 503

PSIA 23 22 2 80.2
D_08_a 548 1500 8 co8

GW 320 319 63 47.8

PSIA 29 28 4 82.5
D_09_a 548 1500 16 C09

GW 322 321 56 47.0

PSIA 18 17 1 80.7
D_10_a 548 1500 8 c10

GW 354 353 66 426

The highlighted numbers indicate the higher Rand Index and the corresponding /. in each instance

Table 2 Subnetwork identification results in Drug Similarity Network: D_01_bto D_10_b

DSN Identified subnetwork
ID V| |E| 7| T-Origin Algorithm V| |E'| Ic Rand Index

PSIA 41 40 2 81.6
D_01_b 548 1391 22 col

GW 32 31 1 829

PSIA 22 21 2 81.7
D_02_b 548 1391 12 C02

GW 25 24 1 80.8

PSIA 18 17 2 82.8
D_03_b 548 1391 13 Co3

GW 20 19 1 82.1

PSIA 9 8 2 81.4
D_04_b 548 1391 4 Co4

GW 10 9 1 80.9

PSIA 12 11 1 82.2
D_05_b 548 1391 9 C05

GW 17 16 1 813

PSIA 23 22 2 82.6
D_07_b 548 1391 15 co7

GW 24 23 1 82.0

PSIA 19 18 1 80.6
D_08_b 548 1391 8 co8

GW 19 18 0 80.2

PSIA 22 21 1 82.7
D_09_b 548 1391 16 C09

GW 26 25 1 820

PSIA 54 53 5 75.6
D_10_b 548 1391 8 c10

GW 14 13 1 81.5

The highlighted numbers indicate the higher Rand Index and the corresponding /. in each instance
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It is preferable to choose small subnetworks than large
subnetworks for drug repositioning as analysis can be
done more efficiently in small subnetworks. Most drugs
included in our generated DSNs are not in the cardio-
vascular class. Hence, it is important for subnetworks to
identify true negatives (N, in Eq. (8)), and then avoid false
positives (drugs that are not in the cardiovascular class).
One counter-example is that the subnetworks identified
by GW algorithm in D_01_a to D_10_a contain many
false positives, and thus are large and not suitable for drug
repositioning.

In D_01_a to D_10_a, all the highlighted subnetworks
are identified by PSIA. In D_01_b to D_10_b, 7 out of
9 highlighted subnetworks are identified by PSIA. In 18
DSNs, the average RI of the subnetworks identified by
PSIA is 81.1%, while the average RI of the subnetworks
identified by GW algorithm is 64.1%. Therefore, the con-
clusion below can be made.

Conclusion 1: In our generated DSNs, PSIA generally
outperforms GW algorithm in identifying subnetworks
for drug repositioning.

D_01_a to D_10_a are generated using the first pro-
posed sparse graph generation algorithm (Fig. 1), while
D_01_b to D_10_b are generated using the second pro-
posed sparse graph generation algorithm (Fig. 2). 8 out of
9 highlighted subnetworks in D_01_b to D_10_b (except
D_02_b) have higher RI than the corresponding high-
lighted subnetworks in D_01_a to D_10_a (two DSNs
corresponds to each other when they use the same cardio-
vascular subclass as the terminal set; see Tables 1 and 2).
Hence, the conclusion below can be made.

Conclusion 2: The second proposed sparse graph gen-
eration algorithm is more suitable than the first proposed
sparse graph generation algorithm for DSN generation.

We select the nine highlighted subnetworks in D_01_b
to D_10_b (which are generated using the second pro-
posed sparse graph generation algorithm) for drug repo-
sitioning. These subnetworks are visualized in Fig. 6, in
which S01-S09 are IDs of the highlighted subnetworks in
D 01_b to D_10_b, the numbers in the visualized sub-
networks represent the drug index (see drug names in
Additional file 1), the green-color vertices represent drugs
that are in the cardiovascular class, and the white-color
vertices represent drugs that are not in the cardiovascu-
lar class. Drug candidates are selected from the frequently
occurring drugs that are not in the cardiovascular class.
These drug candidates are closely related to the car-
diovascular system, and they could be repositioned for
cardiovascular diseases.

Discussion
Due to the long time, large costs and high risks to develop
new drugs, drug repositioning is important since it finds
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new therapeutic effects for known drugs. In this paper,
we propose subnetwork identification as a new method
to reposition drugs. Because cardiovascular health con-
tributes significantly to the burden of illness and injury in
the Australian community [39], and the Prize-Collecting
Steiner Tree (PCST) approach is a good way to identify
subnetworks, we focus on using the PCST approach to
reposition drugs for cardiovascular diseases.

To identify subnetworks for drug repositioning, we gen-
erate Drug Similarity Networks (DSN) including five com-
ponents, which are vertices, vertex prizes, edges, edge
costs, and terminals. The PCSTP algorithm tends to iden-
tify a subnetwork constructed by vertices with big prizes
and edges with small costs. In our DSNSs, the vertex prizes
represent similarities between drugs, and the edge costs
represent dissimilarities between drugs. Moreover, termi-
nals represent drugs in the cardiovascular class. There-
fore, a subnetwork of drugs that are closely related to the
cardiovascular system is expected to be identified using
the PCST approach.

18 DSNs are generated using 9 cardiovascular sub-
classes and 2 sparse graph generation algorithms. After
generating DSNs, PCSTP algorithms are used to iden-
tify subnetworks. GW algorithm is one of the most
popular PCSTP algorithm. However, GW algorithm is
designed for the single-terminal (root) case, while there
are multiple terminals in DSNs. Therefore, we first adapt
GW algorithm for the multiple-terminal case and then
use it to identify subnetworks in DSNs. Nevertheless,
GW algorithm can only identify a single subnetwork in
each DSN, and this subnetwork may not be suitable for
drug repositioning. Hence, we propose a new PCSTP
algorithm, Physarum-inspired Subnetwork Identification
Algorithm (PSIA), to identify subnetworks in DSNs as
well, and PSIA can identify multiple subnetworks in each
DSN.

We employ both PSIA and GW algorithm in 18 DSNs.
In each DSN, one subnetwork is identified by GW algo-
rithm, and three subnetworks are identified by PSIA.
Since Rand Index gives equal weight to the identifica-
tion of true positives and true negatives, it can be used to
select suitable subnetworks for drug repositioning. Thus,
we evaluate these subnetworks using their Rand Index.
Furthermore, the subnetwork identified by GW algorithm
and the best subnetwork identified by PSIA are compared
with each other in each DSN.

Based on the comparison results shown in Tables 1
and 2, we first observe that smaller subnetworks always
have higher Rand Index than larger subnetworks in the
same DSN. Then, we conclude that PSIA outperforms
GW algorithm in DSNs. Moreover, we conclude that the
second proposed sparse graph generation algorithm is
more suitable than the first proposed sparse graph gener-
ation algorithm for DSN generation.
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Fig. 6 Visualization of the highlighted subnetworks in D_01_bto D_10_b. S01-S09 are IDs of the highlighted subnetworks in D_01_bto D_10_b. The
numbers in the visualized subnetworks represent the indexes of drugs. The green-color vertices represent drugs that are in the cardiovascular class.
The white-color vertices represent drugs that are not in the cardiovascular class
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Drug repositioning for cardiovascular diseases

After the evaluation of all the identified subnetworks, we
select nine most suitable subnetworks to reposition drugs
for cardiovascular diseases. These nine subnetworks are
visualized in Fig. 6. The drugs contained in these subnet-
works are supposed to be closely related to the cardio-
vascular system. There are 134 drugs contained in these
subnetworks, in which 104 drugs are already in the cardio-
vascular class, while 30 drugs are not in the cardiovascular
class yet. Therefore, we consider these 30 drugs as newly
identified drugs for drug repositioning. These 30 drugs are
listed in Table 3, in which Index is the drug index, Freq
is the number of times each drug has been identified for,
S01-S09 are IDs of the nine selected subnetworks.

It can be seen from Table 3 that ten newly identified
drugs have occurred more than once in the selected sub-
networks, while the other 20 drugs have occurred only
once in the selected subnetworks. We consider the ten
drugs which have occurred more than once as candi-
dates for drug repositioning. These ten drug candidates

are nitroglycerin, theophylline, arsenic trioxide, isocar-
boxazid, lincomycin, acarbose, adapalene, haloperidol,
malathion, and neomycin.

We believe that these ten drug candidates could be
repositioned for cardiovascular diseases. Thus, we evalu-
ate each drug candidate using published pharmacological
discoveries. The existing discoveries on three candidates
(nitroglycerin, theophylline and acarbose) are introduced
below.

As to nitroglycerin, Koch et al. [40] found that nitroglyc-
erin can produce a sharp fall in the cardiac filling pres-
sures and the pulmonary arterial pressures. Moreover, the
vasodilatory effects of nitroglycerin also have the potential
to be used in cardiovascular therapeutics [41]. As to theo-
phylline, Sollevi et al. [42] found that theophylline can act
as an adenosine antagonist to antagonize cardiovascular
responses. As to acarbose, Chiasson et al. [43] found that
treating impaired glucose tolerance patients with acarbose
is associated with a significant reduction in the risk of
cardiovascular diseases and hypertension.
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Table 3 Newly identified drugs in the selected subnetworks

Index Drug Name Freq SO1 S02 S03 S04 S05 S06 S07 S08 S09
368 nitroglycerin 7 X X X X X
496 theophylline 5 X X X X

32 arsenic trioxide27 3 X X
261 isocarboxazid 3 X

287 lincomycin 3 X

2 acarbose 2 X X
7 adapalene 2 X X
239 haloperidol 2 X X
298 malathion 2 X

359 neomycin 2 X

10 alclometasone 1 X

14 amcinonide 1

39 azathioprine 1 X

70 caffeine 1 X

74 carbachol 1 X

93 ceftazidime 1

135 desflurane 1 X

165 droperidol 1 X

217 formoterol 1 X

241 hexachlorophene 1 X

367 nitrofurantoin 1 X

417 pramipexole 1

422 prednisone 1

429 procyclidine 1 X

449 repaglinide 1

466 selegiline 1 X

497 thiabendazole 1 X

513 topiramate 1 X

518 tranexamic acid 1 X

526 triiodothyronine 1 X

It can be seen from these discoveries that nitroglycerin,
theophylline and acarbose have already been suspected
for their potential therapeutic effects for cardiovascu-
lar diseases. Therefore, we provide evidences to support
these previous discoveries. As to the other seven drug can-
didates, we believe that they also may interact with the
biological cardiovascular system. These evidences have
shown the effectiveness and efficiency of our proposed
PCST approach for drug repositioning.

Different types of drug similarities

In our generated DSNS, the edge cost represents the quan-
tified dissimilarity between drugs, and the vertex prize
represents the similarity between the drug represented

by this vertex and all the drugs represented by terminals.
There are different types of drug similarities with physical
meanings, such as chemical similarity, therapeutic simi-
larity, phenotype similarity, and similarity based on their
interacting targets (such as proteins) [44].

In our generated DSNs, drug similarities are calculated
using four types of drug features, which are the chemi-
cal, therapeutic, protein, and phenotype features. In this
section, we generate new DSNs based on new drug sim-
ilarities, and show that the initial drug similarities calcu-
lated using four types of drug features are the best drug
similarities for drug repositioning.

We generate four new types of DSNs, and in each of
them the drug similarities are calculated using a single
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type of drug features. The used drug features are chemical,
therapeutic, protein, and phenotype features. We com-
pare the standard deviations of vertex prizes and edge
costs in the initial type of DSNs and four new types of
DSNEs.

The comparison results are demonstrated in Table 4, in
which SD_VP is the average standard deviation of vertex
prizes, SD_EC is the standard deviation of edge costs in
the corresponding complete graphs, DSN_C is the type
of DSNs where drug similarities are calculated using the
chemical features, DSN_T is the type of DSNs where drug
similarities are calculated using the therapeutic features,
DSN_Pr is the type of DSNs where drug similarities are
calculated using the protein features, DSN_Ph is the type
of DSNs where drug similarities are calculated using the
phenotype features, DSN_01_a/b to DSN_10_a/b are the
initial type of DSNs used for drug repositioning, where
drug similarities are calculated using all the four types of
drug features.

It can be seen from Table 4 that SD_VP and SD_EC of
DSN_C are higher than that of other types of DSN. It is
recommended to select DSNs with high standard devia-
tions for drug repositioning as it is hard to identify drug
repositioning candidates in DSNs with low standard devi-
ations. However, many drugs undergo complex and largely
uncharacterized metabolic transformations, and the phys-
iological effects of drugs may not be able be predicted
by their chemical properties alone [45]. Therefore, it is
not appropriate to only consider chemical similarities for
drug repositioning. Similarly, it is not appropriate to only
consider any other homogeneous drug similarity either
[11]. The initial drug similarities are heterogeneous as
they are calculated using multiple types of drug features.
It can also be seen from Table 4 that SD_VP and SD_EC
of DSN_01_a/b to DSN_10_a/b are also relatively high.
Therefore, the initial heterogeneous drug similarities cal-
culated using four types of drug features are the best drug
similarities for drug repositioning.

The running time in large drug similarity networks

We use the PCST approach to identify subnetworks for
drug repositioning. The Prize-Collecting Steiner Tree
Problem is NP-hard [46], which means that the time
required to solve it may increase exponentially as the
graph size increases. Large DSNs with thousands of
vertices can be generated using the existing pharmacology

Table 4 Standard deviations of vertex prizes and edge costs
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data. Thus, it is necessary to ensure that we can use the
PCST approach to identify subnetworks in large DSNs.

In this section, random DSNs with different sizes are
generated. We employ both PSIA and GW algorithm in
these DSNs using MATLAB R2014a on a computer with
16 GB RAM and the Intel(R) Core(TM) i7-4770 CPU.
The running time of PSIA and GW algorithm in these
DSNs is demonstrated in Table 5, in which DSN_X means
a DSN with X vertices. The unit of the running time is
minute.

It can be seen from Table 5 that both PSIA and GW
algorithm can identify subnetworks in large DSNs with
up to 3000 vertices in a reasonable time. Moreover, the
running time above can be further shortened by using a
low-level programming language. Thus, we can use the
PCST approach to identify subnetworks in large DSN.
Notably, even though the running time of PSIA is longer
than that of GW algorithm, PSIA is considered better
as it can identify more suitable subnetworks for drug
repositioning.

Conclusions

Drug repositioning is important for drug development.
In this paper, the subnetwork identification method is
used to reposition drugs for the first time. A new Price-
Collecting Steiner Tree algorithm is proposed in this
paper to identify subnetworks. The popular GW algo-
rithm is also used to compare with our proposed algo-
rithm. Drug Similarity Networks are generated, in which
vertex prizes and edge costs represent the similarities and
dissimilarities between drugs respectively, and terminals
represent drugs in the cardiovascular class, as defined in
the Anatomical Therapeutic Chemical classification sys-
tem. In the generated Drug Similarity Networks, our pro-
posed algorithm identifies subnetworks with higher Rand
Index than the popular algorithm. Furthermore, nine most
suitable subnetworks are selected for drug repositioning,
and ten drug candidates are identified from these subnet-
works. We find evidence to support previous discoveries
that nitroglycerin, theophylline and acarbose may be able
to be repositioned for cardiovascular diseases. Moreover,
we identify seven previously unknown drug candidates
that also may interact with the biological cardiovascular
system. Therefore, our proposed Prize-Collecting Steiner
Tree approach is shown to be a promising strategy for
drug repositioning.

Table 5 The running time of PSIA and GW algorithm in DSNs
with different sizes

DSN_C DSN_T ~ DSN_Pr DSN_Ph DSN_01_a/bto
DSN_10_a/b DSN_100 DSN_548 DSN_1000 DSN_3000
SD_VP 3.68 3.34 2.32 224 242 GW 0.001 min 0.039 min 0.196 min 7.345 min
SD_EC 15.63 7.72 743 8.90 10.14 PSIA 0.036 min 0.638 min 2.102 min 19.169 min
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