
Supporting Information1

A Tissue deformation analysis by texture tensors2

We summarize the texture tensor analysis utilized in the main text to quantify cell3

and tissue deformations. This method involves calculating strain tensors that result4

from morphogenetic cell events by examining temporal changes in the texture tensor5

M̂(0) (Eq. 10 of the main text). While our approach is based on the method outlined by6

Guirao et al. [1], we offer an alternative derivation of the deformation gradient tensor,7

F̂ (Sect. A2). Furthermore, the specific expression of the strains to be measured differs8

slightly from the previous ones, with the deviation being of the order O(∆t2) (Sect. A3).9

The data analysis workflow is summarized in Fig. S1. In this study, coarse-grained10

measurement were performed using ROIs defined by cell-tracking data (i.e., the same11

cells are tracked from the initial to the final time points; Sect. 3.7 and Sect. 3.8 in12

the main text). This allows for evaluation of temporal changes in the cell shape field13

M̂ without accounting for influx and efflux, in other words, we evaluate the Lagrange14

derivative of M̂ at each time point.15

A1 Temporal changes in the texture tensor16

The change in M̂(0) between two consecutive time frames is defined as follows:17

∆M̂ = m̂− M̂ =
∑
nh

1

2
ωl⊗ l−

∑
Nh

1

2
WL⊗L. (S1)

In this expression, uppercase and lowercase letters represent quantities measured at the18

earlier and later time points of the consecutive frames, respectively (i.e., at time t and19

t +∆t). With the cell-tracking data, m̂ and M̂ are calculated from ROIs composed of20

the same cells, or their mother or daughter cells (Sect. 3.7 in the main text; Fig. S1c,21

d). Thus, ∆M̂/∆t evaluates Lagrange derivatives Ṁ ≡ ∂tM̂ + v · ∇M̂ at time point22

t (Sect. 3.8). At time t + ∆t, the total number of half-links nh is the sum of the23

number of conserved links, nc, and the number of links that appeared, na, between the24

time frames. Similarly, at time t, the total number of half-links Nh is the sum of the25

number of conserved links, Nc = nc, and the number of links that disappeared, Nd. The26

decomposition of Eq. S1 is as follows:27

∆M̂ =

(∑
nc

1

2
ωclc ⊗ lc −

∑
Nc

1

2
WcLc ⊗Lc

)
−

(∑
na

1

2
ωala ⊗ la −

∑
Nd

1

2
WdLd ⊗Ld

)
= C+T . (S2)

The first term enclosed in brackets in Eq. S2 comprises links that maintain their neigh-28

boring relationships, denoted as C. The second term, T, signifies the overall change29

attributed to the topological processes and can be decomposed as T =
∑

P P =30

R + D + A
(
+J
)
, where R, D, A, and J indicate that rearrangement, division, ap-31
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optosis, and flux (J appeared only in the Eulerian description and is absent in our32

analysis). The abbreviations C = m̂c − M̂c and T = m̂a − M̂d are utilized. These33

tensors have squared length dimensions.34

The decomposition of T into R, D, and A was performed as follows: T was calculated35

from the links that disappeared or appeared between consecutive frames. As explained36

in the main text, each link comprises two half-links lik and lki(= −lik) (or Lik and37

Lki = −Lik), with both half-links belonging to the same link being assigned to the38

same morphogenetic cell event. The allocation of half-links to division and apoptosis39

took precedence over rearrangements. An example of the assignment is shown in Fig. 1b.40

For further discussion on this topic, refer to Sect. 4.5 in the main text and Sect. B in41

the Supporting Information.42

A2 Deformation gradient tensor F for tissue deformation43

Deformation of a continuum material can be described using a deformation gradient44

tensor F [2]. In our texture tensor analysis, we calculate the empirical deformation45

gradient tensor F̂ based on the half-links obtained through in vivo measurements. Con-46

sider the deformation of a continuum object, where a material point r at time t is47

mapped to R = r+u at time t+∆t, with u representing the displacement vector. The48

relative position dr between two points at infinitesimal distances changes to dR = Fdr49

owing to deformation, where F is the deformation gradient tensor defined as50

F ≡ ∂R

∂r
= I+∇u (S3)

with the identity matrix I.51

In practice, F is evaluated using half-links contained in the corresponding ROI52

between consecutive time frames. When the tissue deforms without topological changes53

(T = 0), all links are conserved between two consecutive time frames. In such cases,54

a conserved link changes from Lc to lc, satisfying lc = FLc. Even in cases involving55

topological changes (T ̸= 0), we can assume that most links are conserved, with only a56

small fraction of half-links appearing and disappearing. Assuming affine deformation in57

each ROI and a constant F, F is determined from the experimental data by minimizing58

the function59

Φ0(F̂) =
Nc∑
i

ωi|li − F̂Li|2 . (S4)

where the summation is performed over the conserved links. F is estimated as follows:60

F = F̂0 ≡ ⟨l⊗L⟩c⟨L⊗L⟩−1
c (S5)

where 2×2 tensor ⟨l⊗L⟩c is defined by ⟨l⊗L⟩c ≡
∑Nc

i ωili⊗Li, and ⟨L⊗L⟩c is defined61
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similarly. Furthermore, F can be determined by considering an alternative function1;62

Φ1(F̂) =
Nc∑
i

Wi|F̂−1li −Li|2 (S6)

and Φ1(F̂) is minimal at63

F = F̂1 ≡ ⟨l⊗ l⟩c⟨L⊗ ℓ⟩−1
c . (S7)

Notably, F̂0 and F̂1 satisfy the following relationships:64

m̂c = F̂1M̂cF̂
T
0 . (S8)

Furthermore, because m̂c and M̂c are both symmetric tensors, that is, m̂c = m̂T
c =65

F̂0M̂cF̂
T
1 , F̂0 and F̂1 satisfy F̂1M̂cF̂

T
0 = F̂0M̂cF̂1.66

F̂0 and F̂1 represent two empirical approximations of the deformation gradient tensor67

F, anticipated to have a similar construction. Moreover, they should align in the case68

of the ideal pure affine deformation, resulting in the following relationship:69

m̂c = FM̂cF
T . (S9)

We chose the deformation gradient tensor as the arithmetic mean in our analysis.70

F̂ ≡ 1

2

(
F̂0 + F̂1

)
. (S10)

This quantity, calculated from conserved half-links in the ROI, was utilized for the71

analysis discussed in the main text.72

We evaluated the relative mismatch using data from Drosophila epithelial tissues73

(pupal wing and notum).74

δ =
||m̂c − F̂M̂cF̂

T ||
||C||

, (S11)

where the norm of the second-order tensor a is defined as ||a||2 ≡
∑

ij a
2
ij. The mis-75

match δ is sufficiently small (< 4.0 × 10−3), validating the appropriateness of F̂ as the76

definition of the deformation gradient tensor. Moreover, we examined the mismatch77

using the geometric means of F̂0 and F̂1, F̂g ≡
(
||F̂1||/||F̂0||

)1/2
F̂0, instead of F̂. The78

small mismatch (< 8.0 × 10−3) between F̂0 and F̂1 suggests that they are similar, and79

our analysis results are not significantly influenced by the choice of their means. The80

symmetric part of the total strain-rate tensor is calculated using F̂ as follows:81

Ĝ =
1

2∆t

(
F̂T F̂− I

)
, (S12)

which was utilized in our analysis (Eqs. 2, 4, and 11 in the main text).82

1Φ1(F) expressed as Φ1(F) =
∑Nc

i Wi (li − FL)
T
B−1 (li − FL), using the left Cauchy-Green tensor

B ≡ FFT . In studies on continuum mechanics, B−1 is interpreted as the metric tensor of the x-space [3].
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For deformations without topological processes, m̂c = m̂ and M̂c = M̂ applies.83

Eqs. S3 and S9 lead to m̂ = (I+∇u) M̂ (I+∇u)T , and then ∆M̂ = m̂ − M̂(Eq. S1)84

reads85

∆M̂ = (∇u)M̂+ M̂(∇u)T +∇uM̂(∇u)T . (S13)

The equation obtained by omitting the third term on the right-hand side (higher-order86

term with respect to ∆t) corresponds to Eq. 16 in the main text.87

A3 Dimensionless symmetric strain rate tensors88

The strain rate tensors G, S, R, D, and A utilized in the continuum theory have units89

of the inverse of time. We outline the calculation of the corresponding empirical strain90

tensors Ĝ, Ŝ, R̂, D̂, and Â from experimental data. Assuming the preservation of most91

links, the conserved half-links are utilized to derive the deformation gradient with M̂c92

as the reference state. The dimensionless symmetric tensors for Q ∈ C,R,D,A are93

defined as follows:94

Q̃ =
1

4

[
QM̂−1

c + M̂−1
c QT

]
(S14)

where the tilde denotes an operation that produces dimensionless symmetric tensors95

using M̂c. C̃ is calculated as96

C̃ =
1

4

[
CM̂−1

c + M̂−1
c C

T
]

=
1

4

[
(m̂c − M̂c)M̂

−1
c + M̂−1

c (m̂c − M̂c)
T
]

=
1

4

[
(F̂M̂cF̂

T )M̂−1
c + M̂−1

c (F̂M̂cF̂
T )T − 2I

]
=

1

2

(
F̂T F̂− I

)
+

1

4

[
F̂M̂cF̂

TM̂−1
c − F̂T F̂+ M̂−1

c F̂M̂cF̂
T − F̂T F̂

]
= Ê+

1

4

[
Ψ̂M̂−1

c + M̂−1
c Ψ̂T

]
= Ê+ Ψ̃ (S15)

where we utilized97

Ê ≡ 1

2

(
F̂T F̂− I

)
(S16)

Ψ̂ ≡ F̂M̂cF̂
T − F̂T F̂M̂c . (S17)

Ê = Ĝ∆t represents the Green-Lagrange strain tensor with respect to the deformation98

between two consecutive time frames [4]. Ψ̂ is expressed as Ψ̂ = m̂c − F̂Tm̂cF̂
−T , and99

vanishes if M̂c and F̂ commute.100

Ref. [1] adopted Ê∗ = 1
2

(
F̂F̂T − I

)
as a measure of deformation instead of Ê. The101

difference, Ê− Ê∗ ≃ O(∆t2), is negligible (Fig. S11).102
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A4 Decomposition of the strain rate to cell morphogenetic events103

The tissue strain tensor Ĝ defined in Eq. S12 can be decomposed into the strains res-104

ulting from cell morphogenetic events. By substituting Eq. S15 into Eq. S2, we obtain105

Ĝ∆t = ∆M̃− Ψ̃−
∑
P

P̃ , (S18)

where Eq. S14 was employed. Here, P̃ represents the contribution from topological106

events, with each P̃ calculated from the half-links assigned to the corresponding to-107

pological cellular event. ∆M̃ represents the total deformation of the ROI in terms of108

the size and shape, which is further partitioned into components that correspond to109

the respective cellular events. Notably, Nh = Nc + Nd and nh = nc + na represent the110

numbers of half-links at time t and t+∆t, respectively. Nd and na denote the numbers111

of disappearing and appearing half-links associated with topological cellular events, re-112

spectively. These are further decomposed into Nd =
∑

P NP and na =
∑

P nP, where113

the subscript P denotes either T, D, or A. The change in the number of half-links is114

expressed as ∆N = nh −Nh = na −Nd =
∑

P (nP −NP) ≡
∑

P ∆NP. The deformation115

of the ROI from M̂ to m̂ is partitioned based on the numbers of half-links, as follows:116

∆M̃ =

(
Nh

nh

m̃− M̃

)
+
∑
P

∆NP

nh

m̃. (S19)

The magnitude of m̃ is normalized by Nh/nh, rendering it comparable with M̃. The117

residual fraction of m̃ in the last term is attributed to topological cellular processes. Not-118

ably, the value of ∆NP is expected to be positive for division (D), negative for apoptosis119

(A), and ∆NP ≃ 0 for rearrangement (R) (Fig. 4 for the experimental validation).120

These arguments enable the decomposition of tissue deformation into contributions121

from each cellular event. From Eqs. S18 and S19, we obtain:122

Ĝ∆t =

(
N

n
m̃− M̃− Ψ̃

)
︸ ︷︷ ︸

Ŝ

+
∑
P

(
∆NP

n
m̃− P̃

)
︸ ︷︷ ︸

T̂=
∑

P P̂

= Ŝ+ T̂. (S20)

The notation DT utilized in the continuum model [5] corresponds to T̂ = R̂+ D̂+ Â.123

B Inconsistencies in cell number density equations res-124

ulting from the inappropriate assignment rules125

In the analysis of texture tensor, each half-link is associated with a specific cell126

morphogenetic event: cell shape change (S), rearrangement (R), division (D), or apop-127

tosis (A) (Fig. 1a). However, determining the assignment rule can be complex, particu-128

larly when dealing with topological changes in half-link connections during R, D, and A129

events. Consider a scenario in which a cell divides, as shown in Figs. S5a. The dividing130

cell(s) and their first-neighbor non-dividing cells are colored in green and gray, respect-131
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ively. Cells are categorized based on changes in their relationships with neighboring132

cells. The centers of dividing cells are denoted by light green points. For first-neighbor133

non-dividing cells, the centers of cells with an increased number of adjacent cells are134

represented by blue points, whereas those without such changes are denoted by black135

points. The question arises: to which cell morphogenetic event should the half-link136

between dividing and non-dividing cells be assigned? In ref. [1] and the main text of137

this study, the half-links are considered undirected edges, with both half-links between138

the pairs of cells attributed to the same morphogenetic event. Alternatively, considering139

half-links as directed edges could lead to a rule dependent on direction.140

We assessed whether the consistency of the time evolution equation for cell number141

density (Eq. 8 in the main text) was influenced by the different assignment rules of the142

strain-rate decomposition. The assignment rule for the half-links adopted in the main143

text is shown in Fig. S5b. We reproduced the results shown in Fig. 4b. The results of144

the time evolution in Eq. 8 are shown in Fig. S5c with direction-dependent assignment145

rules applied. These rules include: (i) Assigning all half-links from white-dot cells to146

cell division. (ii) Assigning half-links from blue to white-dot cells to cell division owing147

to the division of the opposing cell. (iii) Considering half-links from black to white-dot148

cells as cell shape changes reflecting the consistent relationship with the opposite cell.149

(iv) Classifying half-links between black-dot and blue-dot cells as cell shape changes.150

The application of these rules resulted in a time series of cell number density that did151

not align with those obtained by substituting the deformation field with data from PIV.152

Furthermore, we explored a scenario in which the assignment is independent of the153

direction of the half-links; however, the rules differ from those utilized by Guirao et154

al. [1]. The following assignment rules were employed: (i) Links between (white, white)155

and (white, blue)cells were assigned to cell division. (ii) Links between (black, white)156

and (black, blue)cells were assigned to cell shape changes. As shown in Fig. S5d, these157

rules resulted in a greater discrepancy compared with that observed in Fig. S5c, likely158

resulting from the underestimation of strain from topological deformation.159

C Alternative definitions of the texture tensor160

The texture tensor was introduced in the form of Eq. 10 and is modified as Eq. 13161

in the main text. We also considered other possible forms of the texture tensor:162

M̂(2) =
1

Nc

∑
i∈P

1

2

ni∑
k

ωiklik ⊗ lik , (S21)

M̂(3) =
∑
i∈P

1

2ni

ni∑
k

ωiklik ⊗ lik . (S22)

M̂(4) =
1

Nc

∑
i∈P

(
1

2ni

ni∑
k

ωiklik ⊗ lik

)
. (S23)
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M̂(2) is normalized by the number of cells in the ROI. M̂(3) and M̂(4) take into account163

the polygonal class of cells using a weighting factor proportional to 1/ni; M̂(3) is nor-164

malized by neighboring cells ni to equalize the contribution of each polygonal cell. M̂(4)165

is further normalized by the cell number in the ROI, Nc, and is interpreted as a mean166

of individual cellular shape tensor 1
2ni

∑ni

k ωiklik ⊗ lik over the ROI. All the proposed167

definitions of texture tensors possess a physical dimension of squared length, differing168

primarily in the normalization procedure based on the number of cells and their adjacent169

counterparts.170
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Figure S1. Schematic diagram of data analysis. (a) Flowchart of the data analysis
procedure. (b) Skeletonized time-series image of growing Drosophila wings. (c) Changes in the
texture in the region of interest (ROI) indicated by the closed red lines. Half-links between
cell centers at times t and t + ∆t (red and blue filled circles, respectively) are shown. Color
of half-links indicate their assignment to morphogenetic cell events (gray: conserved, blue:
rearrangement, and green: division). The gray line represents the ROI boundary at each time
point, while the red line at time t+∆t is used for comparison with the ROI bounrady at t. (d)
Spatial maps of mean-field quantities representing total deformation (Ĝ, black lines), cell shape
change (Ŝ, blue lines), and cell rearrangement (R̂, red lines) across the entire wing at 15.5 and
26 h APF, with 15.5 h APF taken as the initial time. Bar shown in each ROI represents the
deformation rates of the respective cellular events derived from the deviatoric component of
each strain rate. The reference line in the top-left corner of each panel corresponds to a 1%
change over 5 minutes. Time averaging was performed over 2-hour intervals.
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(a)

(b)

(c)

(d)

Figure S2. Comparison of the second moments of cell shape for different definitions
of cell shape tensors, M̂(m) (m = 0, 2, 3, 4). (a–d) Each component of the tensors is shown
in the respective panels. Individual dots represent data from single ROIs of 120 pixels × 120
pixels from the entire wing images (hereafter, the average is obtained over ROIs of this size
unless noted otherwise). A scaling factor α was introduced as a fitting parameter for each
measurement: (a) M̂(0): α = 196.61, (b) M̂(2): α = 5.78, (c) M̂(3): α = 32.39, and (d) M̂(4):
α = 0.95.
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(a)                                      (b)                                      WT2 WT3

Figure S3. Validation of strain rate tensors using data from additional samples. (a,
b) Data from WT2 (a) and WT3 (b) are analyzed and plotted similarly as in Fig. 3a.
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(a) (b)WT2 WT3

Figure S4. Validation of the symmetric part of strain rate tensors using data from
additional samples. (a, b) Data from WT2 (a) and WT3 (b) are analyzed and plotted
similarly as in Fig. 3b.
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(a)

time [ h APF ]

1st frame 2nd frame

(c)

(d)

time [ h APF ]

(b)

time [ h APF ]

1st frame 2nd frame

1st frame 2nd frame

1st frame 2nd frame

Figure S5. Evaluation of assignment rules of half-links to each cellular event. (a)
Illustration of cell geometry change resulting from a cell division between the first to second
timeframes. The dividing cells and their first-neighbor, non-dividing cells are distinguished
by their colors (green and gray, respectively). The centers of the dividing cells are indicated
by light blue points. In the case of first-neighbor, non-dividing cells, those with an increase
in the number of adjacent cells are indicated with blue points, whereas those without such
changes are represented by black points. (b-d) Tests of the cell number density equation (Eq. 8
in the main text) using different assignment rules. The left panels illustrate the assignment
rules for half-links, with gray and green lines indicating half-links assigned to “conserved” and
“division,”. (b) Rule employed in the main text (the right panel is identical to Fig. 4b in the
main text). (c, d) Alternative assignment rules for half-links involved in division (Sect. B). In
(b) and (d), undirected links are assigned to the same cellular event for both directed half-
links. In (c), half-links indicated by bi-directed arrows are assigned to different cellular events
depending on their direction. The right panels indicate time-series data obtained by utilizing
the corresponding assignment rules. The same whole-wing data (WT1) as in Fig. 4 was utilized,
with data plotted similarly as in Fig. 4b. The values obtained by dividing the left-hand side of
Eq. 8 by ρ̂ are represented by blue and green lines and are compared with TrDT, represented
by the red line.
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WT2 WT3

Figure S6. Additional data for the validation of the kinematic equation M̂(1) in
ROIs without topological deformation. Data from WT2 and WT3 wings (left and right
columns) are analyzed and plotted similarly as in Fig. 5a.
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(d)                                      (c)                                      

(b)                                      (a)                                      

Figure S7. Validation of kinematics for various definitions of M̂ in ROIs without
topological deformation. (a–d) The components of each tensor were evaluated for the
following definitions of the texture tensor: (a) M̂(0), (b) M̂(2), (c) M̂(3), and (d) M̂(4). The
same whole-wing data (WT1) as in Fig. 5a was utilized, with data plotted similarly as in
Fig. 5a.
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WT2 WT3
(a)                                     

WT2 WT3
(b)                                      

Figure S8. Additional data for validation of the kinematic equation Eq. 7 using M̂(1).
(a, b) Data from WT2 and WT3 wings (left and right columns) were utilized to calculate M̂(1)

using strain rate tensors based on F̂ (a) and PIV-measured ∇v (b), respectively, as shown in
Fig. 5b, c.
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WT2 WT3

Figure S9. Additional data for the validation of the kinematic equation utilizing M̂(0).
Data from WT2 and WT3 wings (left and right columns) were evaluated for the definitions in
M̂(0) similarly to that in Fig. 5d. These point colors indicate the frequency of cell division―
once (red) or multiple times (gray), or none (blue) within the ROI.
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(a)                                      (b)                                      

(c)                                            

Figure S10. Test of the kinematic equation for different definitions of M̂. (a–c) The
components of each tensor are evaluated for the following definitions of the texture tensor: (a)
M̂(2), (b) M̂(3), and (c) M̂(4). The same whole-wing data (WT1) was utilized, as in Fig. 5b,
with data plotted similarly as in Fig. 5b.
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Figure S11. Comparison of the different formulations of the Green-Lagrange strain
tensor Ê. The Green-Lagrange strain tensor utilized in this study (vertical axis) was plotted
against that utilized in ref. [1] (horizontal axis).
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