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Oncolytic viruses (OVs) are potential antitumor agents with unique therapeutic
mechanisms. They possess the ability of direct oncolysis and the induction of antitumor
immunity. OV can be genetically engineered to potentiate antitumor efficacy by remodeling
the tumor immune microenvironment. The present mini review mainly describes the effect
of OVs on remodeling of the tumor immune microenvironment and explores the
mechanism of regulation of the host immune system and the promotion of the immune
cells to destroy carcinoma cells by OVs. Furthermore, this article focuses on the utilization
of OVs as vectors for the delivery of immunomodulatory cytokines or antibodies.
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INTRODUCTION

Oncolytic viruses (OVs) are naturally occurring or genetically engineered viruses that can selectively
target malignant tissues while reducing the infection intensity in the normal tissues (1). As a
potential treatment modality against cancer, the past two decades has witnessed a breakthrough in
oncolytic virotherapy. The Food Drug Administration (FDA) approved the first oncolytic agent T-
VEC for the treatment of patients with melanoma in 2015. T-VEC is an attenuated herpes simplex
virus type 1 (HSV-1) that was genetically modified to encode the granulocyte-macrophage colony-
stimulating factor (GM-CSF) (2). Unlike in the general gene therapy, OVs not only serve as vectors
for transgenic delivery but also as active pharmaceutical agents.

The anti-tumor activity of OVs involves a variety of mechanisms, including the natural
interactions among tumor cells, viruses, and the immune system (3). Although it has not been
fully confirmed, the mechanism underlying the anti-tumor activity of OVs can mainly be
categorized into two types. One is the selective killing of tumor cells by OVs. However, this effect
is influenced by the expression of cell surface receptors and the antiviral response of the host cells.
The other mechanism of OV-mediated anti-tumor activity is associated with the induction of
systemic anti-tumor immunity. The local delivery of immune regulatory factors by viral vectors is
beneficial in creating create a proinflammatory tumor microenvironment, which in turn promotes
the systemic antitumor immunity (4). Furthermore, the release of tumor-associated antigens
(TAAs) after tumor cell lysis can promote the adaptive immune responses, which in turn
mediates tumor regression at distant tumor sites that are unexposed to the virus (4). Presently, a
variety of OVs have been developed for the treatment of cancer in pre-clinical and clinical trials,
including the Newcastle disease virus (NDV) (5), reovirus (6), adenovirus (7), and vesicular
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stomatitis virus (VSV) (8), among others. Table 1 lists the several
OVs that are currently underway for clinical trials and
their indications.
A BRIEF DESCRIPTION OF THE TUMOR
IMMUNE MICROENVIRONMENT (TIME)

Tumor microenvironment is a sophisticated niche of developing
cancerous cells and various non-cancerous components; and the
latter mainly consists of cancer-associated fibroblasts (CAFs),
extracellular matrix (ECM), vascular endothelial cells, tumor-
associated immune cells, as well as soluble substances such as
cytokines and chemokines (9). These components together
constitute an environment that is conducive for the
maintenance of tumor cell growth. They are involved in
immune modulation in the tumor microenvironment to varying
degrees, even for non-immune cells such as CAFs. Past studies
have suggested that not only do CAFs induce the epithelial-
mesenchymal transition (EMT) by secreting multiple growth
factors, they also, exhibit immunosuppressive phenotypes
because of the expression of the inhibitory surface proteins such
as PD-L1 (10).The analysis of the immune profiles of tumor is
helpful to predict the disease progression and to customize the
treatment regimen. The TIME may exhibit distinguishing
immunological status based on the heterogeneity in the cell
populations, diseases and patients. Currently, three different
classes of TIME have been proposed, including inflamed,
excluded and deserted TIME (11). Inflamed TIMEs, or “hot”
tumor, are characterized by the abundant accumulation in the
tumor core and the stroma of T cells expressing PD-1 and/or
CTLA-4, myeloid cells and monocytes. It is however
simultaneously accompanied by several proinflammatory
cytokines. Inflamed tumors are often positively associated with
patients’ responses to cancer immunotherapy (12). The excluded
TIMEs are also quite abundant in the immune cells, albeit there is
a relative void of immune effector cells in the tumor core. These
immune cells are mainly present at the border of the tumor mass
possibly due to the absence of specific chemokines and the
presence of substantial barriers or specific inhibitors (13). The
deserted TIMEs are considered to be immunological “cold” tumor.
The typical indication of this status is the lack of immune cells and
cytokines in either the core or in the stroma of the tumor mass.

Effectual oncolytic virotherapy is closely linked to the tumor
microenvironment. On one hand, tumor microenvironment may
limit the efficacy of OVs. For example, viral transmission after
intratumoral injection may be weakened by the substantial
barriers present at the tumor mass, such as the dense ECM
network (14). The degradation of ECM by the use of relaxin or
specific enzymes, such as hyaluronidase, has been demonstrated
to promote viral spread among tumor tissues (15, 16). In
addition, elevated interstitial hydrostatic pressure caused by
fibrosis and vascular abnormalities in tumors have been
reported to provide another barrier to oncolytic virotherapy
(17). There are a few related reviews that have elaborated on
the challenges of tumor microenvironment to OVs and have
Frontiers in Oncology | www.frontiersin.org 2
proposed reasoned solutions (18). On the other hand, OVs serve
as powerful immunological stimuli and possess the ability of
remodeling of the TIME (Figure 1), which is also the focus of
this opinion article. OVs influence the entire immunological
process via multiple mechanisms and promote the recruitment
and activation of immune cells. Thus, the capability of OVs to
“hot” TIME can enhance the sensitivity of tumors to
immunotherapy (19).
REMODELING THE TIME VIA ONCOLYTIC
VIROTHERAPY

Recruitment and Activation of Dendritic
Cells (DCs)
DCs are well-known antigen-presenting cells (APCs) that are
responsible for processing and presenting antigens to the
effector cells in the context of the major histocompatibility
(MHCs). They play an important role in the initiation of innate
and adaptive immune responses, particularly, matured DCs
provide T cells co-stimulatory signals and are essential for T cell
priming (20). However, it is often inadequate to induce potent
antitumor immune responses in a tumor mass due to the
immunosuppressive TIME. Currently, several researchers have
proposed anticancer agents that target of DCs, such as the DC
vaccines aiming at activation and accumulation of functional DCs
(21). Alternatively, activating DCs via oncolytic virotherapy can
unleash T cell responses, which is also a potential therapeutic
strategy. After OV infection, the innate immune system rapidly
recognizes virus particles and promotes DC maturation. Although
viral infection initially induces a virus-targeting immune response,
DCs process the ability to cross-present tumor antigens to
cytotoxic T lymphocytes, thereby initiating a tumor-specific
immune response (22).

Oncolysis induced by a recombinant poliovirus-rhinovirus
chimera exposed the tumor antigens, while DCs co-cultured with
the supernatant from the chimera-infected tumor cells exhibited
increased expression of type I IFNs, CD40, CD80, and CD83,
suggesting that this virus promotes APC maturation (23). A high
proportion of splenic CD11c+CD8+DCs was detected in a mouse
model treated with an engineered adenovirus, moreover, tumor-
infiltrating plasmacytoid DCs displayed a mature phenotype
with the ability to prime tumor-specific cytotoxic T cell
responses (24). In addition, several studies have demonstrated
that other OVs, such as vaccinia virus (25), measles virus (26),
and HSV (27), can also enhance the antigen presentation ability
of DCs, which is often accompanied by an increased expression
of costimulatory/activation molecules, such as CD80, CD86, and
MHC II. OVs assist DCs in its functions in two main ways. First,
OVs promote DCs to recognize the tumor antigens by
upregulating antigen presentation pathways in tumors. It is
already well-established that, to evade immunosurveillance,
tumor cells upregulate immune-inhibitory surface receptors
and downregulate functional molecules related to antigen
processing and presentation (28, 29). In this setting, OVs can
overcome some evasion strategies. For example, an ovarian
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TABLE 1 | List of part of ongoing clinical trials of OVs on Clinical trials.gov.

tion Indication Status/phase ClinicalTrial.gov
identifier

Glioblastoma Recruiting; phase 1 NCT03896568
Prostate cancer Recruiting; phase 1/2a NCT04097002
Pancreatic cancer Recruiting; phase 1/2a NCT02705196

Non-small cell lung cancer; head and neck
squamous cell carcinoma

Recruiting; phase 1 NCT03647163

Melanoma; hepatocellular carcinoma; non small
cell lung cancer; endometrial cancer

Recruiting; phase 2 NCT04291105

Cerebellar brain tumor Recruiting; phase 1 NCT03911388

Pancreatic cancer Recruiting; phase1b/2 NCT04637698

Solid tumor Recruiting; phase 1 NCT04348916

Solid tumor Recruiting; phase 1 NCT03889275

mab Metastatic breast cancer Recruiting; phase 2 NCT04215146
Pancreatic cancer Active, not recruiting;

phase 2
NCT03723915

Metastatic breast cancer Recruiting; phase 1 NCT04521764

Medulloblastoma; atypical teratoid rhabdoid
tumor

Recruiting; phase 1 NCT02962167

Invasive breast cancer Recruiting; phase 1 NCT03564782

Recurrent malignant glioma Recruiting; phase 1b NCT03043391

Malignant solid tumors Recruiting; phase 1/2a NCT04226066

Advanced solid tumors Recruiting; phase 1/2a NCT04301011
Advanced/metastatic solid tumors Recruiting; phase1b/2 NCT04521621
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Oncolytic
virus

Gene modification Combina

Adenovirus DNX-2401 D24-RGD insertion /
Adenovirus ORCA-010 D24-RGD insertion; insertion of T1 mutation in E3/19K gene /
Adenovirus LOAd703 Encoding for TMZ-CD40L and 4-1BBL Gemcitabine

+nabpaclitaxel
+/-atezolizumab

Vesicular
stomatitis virus

VSV-IFNb-NIS Encoding for interferon b (IFNb) and the sodium iodide
symporter (NIS)

Pembrolizumab

Vesicular
stomatitis virus

VSV-IFNb-NIS Encoding for interferon b (IFNb) and the sodium iodide
symporter (NIS)

Cemiplimab

Herpes
simplex virus

G207 Deletion of both g134.5 loci; insertional inactivation of UL39 /

Herpes
simplex virus

OH2 Encoding for human granulocyte macrophage colony-
stimulating factor (GM-CSF)

/

Herpes
simplex virus

ONCR-177 Encoding for IL-2, CCL4, FLT3L, antagonists CTLA-4 and
PD-1

Pembrolizumab

Newcastle
disease virus

MEDI5395 Encoding for GM-CSF Durvalumab

Reovirus Pelareorep Wild-type variant Paclitaxel+avelu
Reovirus Pelareorep Wild-type variant Pembrolizumab

Measles virus MV-s-NAP Expressing the helicobacter pylori neutrophil-activating
protein

/

Measles virus MV-NIS Expressing the sodium-iodide symporter (NIS) /

Poliovirus PVSRIPO Containing a heterologous internal ribosomal entry site
(IRES) derived from the human rhinovirus type 2

/

Poliovirus PVSRIPO Containing a heterologous internal ribosomal entry site
(IRES) derived from the human rhinovirus type 2

/

Vaccinia virus T601 Deletion of genes of thymidine kinase and ribonucleotide
reductase; insertion of FCU1 gene

Flucytosine

Vaccinia virus TBio-6517 Expressing an anti-CTLA-4 antibody, Flt3 and IL-12 Pembrolizumab
Coxsackievirus V937 Wild-type variant Pembrolizumab
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cancer cell line exhibited higher expression of MHC class I and
other molecules involved in antigen processing, such as the
transporter associated with antigen processing (TAP) and b2-
microglobulin (b2M) when exposed to an oncolytic reovirus.
This effect promoted DC maturation, which resulted in CD8+ T
cell-mediated adaptive immune responses (30). The second one
is that OVs facilitate the penetration of proinflammatory
cytokines in the TIME, thereby creating a favorable
environment for DC activation.

Recruitment and Activation of T Cells
T cells are highly heterogeneous cell populations with different
immunophenotypes and play an indispensable role in adaptive
cancer immunity. The main T-cell subsets in the TIME consist of
regulatory T cells (Treg), helper T cells (Th), cytotoxic T cells,
exhausted T cells, and anergic T cells. These T cell subsets are
involved in different immune functions, such as immune effects
mediated by cytotoxic T cells or immune suppression mediated by
Treg cells (31, 32). T cells can only respond to cancer cells
effectually when multiple factors are coordinated. They need to
Frontiers in Oncology | www.frontiersin.org 4
be first primed and activated and then trafficked to for infiltration
in the tumors while circumventing the immunosuppressive cells
and other inhibitory factors in the TIME (33). However, T cells
often dysfunction in cancer (34). OVs that serve as immune-
modulating platforms can help overcome barriers and strengthen
the T cell-mediated antitumor immunity.

Naïve T cells are primed by T cell receptor (TCR)-mediated
recognition of antigenic peptides presented in the context of
MHC complex. Antigens of sufficient magnitude play a crucial
role in the process of T cell priming. OVs can function as in situ
vaccines, and, in the appropriate setting, tumors directly serve as
an in situ source of neoantigen vaccination. Indeed, local OV
infection causes direct lysis of tumor cells together with the
release of TAAs. For example, an oncolytic adenovirus has been
shown to broaden the cancer-specific neoantigen repertoires and
enhance the cytotoxic T cell responses to cancer in a murine
model of liver cancer (35). In addition, arming OVs with a tumor
antigen can further potentiate the T cell immunity. The
heterologous prime-boost regimen involving different OVs
encoding for the same TAA can help direct cytotoxic T
FIGURE 1 | Oncolytic virotherapy process the ability to remodel the tumor immune microenvironment (TIME). Oncolytic viruses (OV) infection can enhance the
infiltration and activity of immune cells, including innate and adaptive immune cells, within the TIME (A–B). At the same time, these therapeutic viruses reduce the
populations of immunosuppressive cells and promote the immunophenotypes of immune cells shift toward antitumor status, thereby, overcoming immune
suppression within the TIME (C). In addition, activation of antitumor immunity by oncolytic virotherapy is often accompanied by the production of a variety of
proinflammatory cytokines, which is beneficial to further “hot” the TIME (D).
February 2021 | Volume 10 | Article 561372
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lymphocytes toward cancer-specific new epitopes and away from
the virus antigens. This approach has proven successful. For
instance, it has been demonstrated that an enhanced tumor
antigen-specific T cell response, following priming with an
adenovirus encoding for tumor antigen human dopachrome
tautomerase (hDCT), in combination with the utilization of a
Maraba virus encoding for the same antigen, acted as a booster
dose (36).

Differentiated effector T cells possess the ability for circulation
and trafficking. Following recruitment by chemokines, the effector
T lymphocytes migrate to the established tumor site in order to
induce tumor cell killing. OVs can increase infiltration of the T
cells in a variety of ways. Local viral infection causes type I IFN
response followed by release of T cell-recruiting cytokines and
chemokines in the tumor microenvironment. It is well-established
that, after oncolytic virotherapy, the immunophenotype of the
tumor can switch from the so-called “cold” state to the “hot” state,
thereby allowing cytotoxic T cells to infiltrate in the TIME and
perform tumor cell killing (37). More importantly, OVs possess
the capacity to enhance T cell activation. Indeed, in a past study,
the authors showed that although rotavirus vaccines did not
significantly increase the overall frequency of T cells in the
TIME, they resulted in a highly significant proportion of T cells
with increased expression of the activation markers OX40 and
CD137 (38).OVs stimulate the secretion of inflammatory
mediators such as interleukin-1b, tumor necrosis factor (TNF),
and complement components, causing an increase in the
expression of selectin on endothelial cells, which acts as the key
signal for T cell infiltration. After infiltrating in the TIME, T cells
continue to face interference from immunosuppressive cells and
other inhibitory factors. OVs can induce the conversion of
immunosuppressive cells to proinflammatory phenotypes and
promote the development of T cell responses both in vitro and
in vivo (23) Furthermore, exploiting engineered OVs to mediate
the direct engagement between T cells and tumor cells, such as
OVs armed with a bispecific T cell engager (BiTE), a bispecific
affinity reagent that binds to CD3 (or other T cell activators) and
target antigens on cancer cells is also a potential strategy.
Freedman and colleagues demonstrated that an oncolytic
adenovirus expressing EpCAM targeting BiTE led to the
activation of both CD4- and CD8-positive T cells to destroy
tumor cells (39). Moreover, OVs can be used in conjunction
with chimeric antigen receptor-modified T cell therapy (CAR-T).
Wing and colleagues have explored the combination of CAR T
cells targeting folate receptor alpha (FR-a) with oncolytic
adenovirus expressing BiTE targeting EGFR. In the study, they
demonstrated that oncolytic adenoviruses carrying BiTE could
enhance the CAR T cell activation and proliferation and thereby
promoted the re-targeting of CAR-T cells in the absence of FR-a
as well as improving the tumor killing by CAR T cells (40).

Recruitment and Activation of Natural
Killer Cells (NKs)
NK cells, which are one of the key components of the innate
immune system, are the first line of defense against cancer and
other heterologous pathogenic infection (41). Unlike for T cells,
Frontiers in Oncology | www.frontiersin.org 5
the activation of NK cells did not require TCRs, rather it relied on
the balance among the activating, co-stimulatory and inhibitory
receptors (41). NK cells possess a powerful cytolytic activity.
Activated NK cells exert neoplasm killing in a variety of ways,
including via induction of apoptosis (42) and via direct cytolysis
by the release of perforin and granzymes (43), Moreover, previous
findings have shown that NK cells exhibit intrinsic memory-like
properties and possess the ability to undergo rapid clonal
expansion in response to a re-challenge (44).

Some preclinical and clinical studies have demonstrated the
existence of a cross-talk between OVs and NK cells in cancer
immunotherapy. On one hand, NK cells are important immune
effectors in the context of oncolytic virotherapy. For instance, a
study involving oncolytic NDV combined with immune
checkpoint inhibitors demonstrated that the depletion of NK
cells could significantly limit their therapeutic effects, which in
turn suggests that NK cells are necessary for the regimen
including OVs (45). On the other hand, OVs can enhance the
proliferation and activity of NK cells. Oncolytic reovirus can
promote the anti-tumor activity of NK cells by activating DC in
vitro (46). Another study conducted in immune-competent
mouse models of melanoma found that oncolytic VSV induced
the secretion of IL-28 within the tumor microenvironment,
which resulted in the promotion of NK cell activation in vivo
and sensitized tumors to the NK cell-recognition and killing (47).
OVs stimulate NK cell-mediated immune responses via pattern
recognition receptors (PRRs), a class of molecules that are
expressed by innate immune cells responsible for sensing
heterologous substances. For example, surface toll-like receptor
2 (TLR2), one of the PRRs, mediate NK cell responses stimulated
by oncolytic HSV (48). In addition to remodeling the natural
occurring NK cells within the TIME, OVs can also promote the
homing of NK cells to the tumor site. This homing property
correlates with that of the NK cell-recruiting cytokines. For
example, it has been demonstrated that oncolytic parvovirus
can facilitate the recruitment of NK cells by expressing cytokines
IL-2 and MCP-3/CCL7 in a pancreatic ductal adenocarcinoma
model (49). Similarly, a combination of the oncolytic adenovirus
encoding IL-12 and TRAIL, respectively, was also demonstrated
to play an important role in increasing the infiltration of NK cells
into the tumors (50). Moreover, OVs possess the ability to
potentiate NK cells’ adoptive transfer therapy (51).

Modulation of Tumor-Associated
Macrophages (TAMs)
TAMs represent the crucial elements involved in tumorigenesis
that are characterized by the inhibition of antitumor immunity
and the promotion of tumor progress (52). The enrichment of
TAMs in the tumor site is linked to the poor prognosis and the
short survival time in most tumor types (53–55). TAMs produce
high amount of immunosuppressive and proangiogenic factors
such as IL-10, arginase, transforming growth factor b (TGFb), or
vascular endothelial growth factors (VEGFs); factors such as
these enable the tumor-promoting functions of TAMs (56–58).
Macrophages exhibit distinct polarization status in response to
different stress factors. It is commonly considered that M1
February 2021 | Volume 10 | Article 561372
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macrophages are proinflammatory and cytotoxic, whereas M2
macrophages are immunosuppressive. Therefore, agents that can
induce polarization of TAMs toward M1 type together with the
expression of proinflammatory cytokines might be conducive to
cancer therapy.

OVs serve as powerful immunological stimuli and are
beneficial to shift the phenotype functions of macrophages, as
demonstrated by oncolytic paramyxovirus infection of
macrophages (59). In this study, virus-treated co-culture
conditions induced an anti-tumor phenotype in macrophage in
vitro accompanied by a higher level of immunostimulatory surface
markers and cytokines (59). The mechanisms of howOV infection
induce the phenotypic changes of macrophages remain uncertain,
but it may be related to virus-induced cytokine release. Indeed,
Brown and colleagues investigated the effect of recombinant
poliovirus (PVSRIPO) on macrophage activity in vitro and
found that PVSRIPO infection activated immunosuppressed
macrophages in a type I IFN-dominant fashion (23). This OV-
mediated remodeling effect is analogously pronounced in solid
tumor, wherein OVs create an inflamed milieu that promotes the
recruitment and activation of macrophages. For example, it has
been reported that the treatment with oncolytic vaccinia virus
GLV-1h68 elicited a significant upregulation of proinflammatory
cytokines such as IL-3, IL- 6, IFN-g, and CXCL10, as well as
enhancing the infiltration of proinflammatory macrophages to the
tumor site in a xenograft colorectal cancer model (60). Similarly, a
triple combination therapy including oncolytic HSV increased
macrophage infiltration and M1-like polarization, which
contributed to glioblastoma eradication (61). Notably, in some
cases, OVs may not significantly reduce the amounts of TAMs
within the tumor site, instead they remodel TAMs mainly by
converting the status of immunosuppressed polarization.

Modulation of Myeloid-Derived
Suppressor Cells (MDSCs)
Myeloid cells are a highly heterologous cell population and can
differentiate into MDSCs in response to pathologically persistent
stimulation such as chronic infection or inflammation associated
with the disease (62). MDSCs are mainly enriched in tumor
tissues and other pathological sites and not present in the healthy
tissues. Accumulating evidence supports that MDSCs in cancer
have emerged as the key contributors to tumor growth and
metastasis (63). MDSCs possess the properties of immune
suppression. They suppress important immunological
processes, particularly in T cell-mediated antitumor responses,
by the production of inhibitory factors such as TGFb,
indoleamine 2,3 dioxygenase (IDO), and COX2 (64–66). In
addition to intrinsic immune-inhibitory characteristics, MDSCs
promote tumor angiogenesis via the secretion of diverse growth
factors (67). It is now clear that MDSCs reduce the efficacy of
cancer immunotherapy; therefore, therapeutics tailored for these
cells represent potential therapeutic opportunities.

Previous reports have determined prostaglandin E2 (PGE2) as
a critical mediator for MDSCs infiltration by the CXCL-12-
CXCR4 pathway (68). In this regard, targeting of PGE2 can help
overcome immunosuppression associated with MDSCs, as in the
Frontiers in Oncology | www.frontiersin.org 6
cases of the expression of PGE2 inactivating enzyme 15-
hydroxyprostaglandin dehydrogenase (HPGD) by oncolytic
vaccinia virus (69). In this study, the engineered OV selectively
depleted the MDSCs in the tumor, and, at the same time, the
reduction of MDSC populations increased the sensitivity of
resistant tumor to oncolytic virotherapy. In addition to serving
as a vector for delivery of therapeutic genes specific for MDSCs,
OVs per se also possess the capacity for remodeling the frequency
and activity of MDSCs. For example, a CpG-rich oncolytic
adenovirus can reduce the inhibition of MDSCs by enhancing
the TLR9 stimulation in a syngeneic mouse model of melanoma
(70). The modulation of MDSCs by OVs may correlate with PRRs
in MDSCs. Apart from the abovementioned TLR9 receptor, other
OVs limit MDSCs by acting on different PRRs and the relevant
signaling molecules, such as in the inhibition of MDSCs by
oncolytic reovirus in a TLR3-dependent manner (71) or by
oncolytic VSV in a MyD88 signaling-dependent manner (72).
MDSCs have intrinsic tumor tropism, which is advantageous,
allowing their exploitation as a vehicle for tumor-specific OVs.
Eisenstein and colleagues have generated a recombinant oncolytic
VSV loaded into MDSCs and found that the MDSCs provided a
protective role for the systemic delivery of OVs (73). Importantly,
the OVs induced the phenotype of MDSCs switch from the
protumor M2 type to antitumor M1 type as a result of virus-
mediated inflammatory response; thus, the combination increased
the tumor killing as well as the therapeutic index (73).

Modulation of Cytokines and Immune
Checkpoint Molecules
Tumorigenesis is often aided by the shaping of the TIME by
cytokines. Several reports have demonstrated that the oncogene-
driven expression of cytokines and/or chemokines is associated
with an increase in the number of immunosuppressive cells, such
as Gr-1+CD11b+ myeloid cells (74), as well as a decrease in the
frequency of immune effector cells such as CD103+ DCs (75).
Multifunctional cytokines in the tumor microenvironment are
not only involved in tumor progress, but they also act as pivotal
mediators for the antitumor responses. Oncolytic virotherapy
induce immunogenic cell death (ICD) of cancerous cells together
with abound release of danger-associated molecular patterns
(DAMPs), such as ATP, nuclear high mobility group box 1
(HMBG1), and calreticulin (76–78). These proinflammatory
substances exhibit the intrinsic properties of immune-
stimulating, which is beneficial to the recruitment and
activation of immune effector cells to the tumor site. Moreover,
viral particles are detected by PRRs on the surface and/or
cytoplasm of innate immune cells, which culminates into
intracellular immune responses against viruses in a type I IFN-
dominant fashion (79). This innate antiviral machinery induces
the generation of an inflamed TIME by driving the expression of
IFN-inducible immunomodulatory cytokines (26). In addition,
OVs can serve as a platform for the expression of various
cytokines. For example, the first FDA-approved OV agent
derived from oncolytic HSV-1 was genetically modified to
encode for GM-CSF (80). However, it remains to be
understood how OV-induced production of various cytokines
February 2021 | Volume 10 | Article 561372
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by different cell compositions can be coordinated to determine
the immune landscapes of the TIME.

Tumor cells can evade immune surveillance by virtue of
immune checkpoint molecules that link to ligands expressed on
the immune cells. The typical checkpoint molecules consist of
programmed cell death protein 1 (PD-1) and its ligand (PD-L1),
cytotoxic T lymphocyte- associated protein 4 (CTLA-4), and
lymphocyte activation gene 3 (LAG3). In fact, the immune
checkpoint blockade can reverse the immune effector cell anergy
by targeting the inhibitory signaling pathways and have been
investigated with success in multiple tumor types (81–83).
However, tumors with low mutation burden often correlates
with the resistance of immune checkpoint blockade due to the
dearth of sufficient antigen recognition by T lymphocytes.
Oncolytic virotherapy can increase the expression of checkpoint
molecules within the tumor site. For example, oncolytic Maraba
virus induce the upregulation of PD-L1 in ovarian cancers (84)
and oncolytic NDV induce the upregulation of CTLA-4 in
melanoma (45). A past study demonstrated OV-mediated
production of type I IFN as a key mediator for the upregulation
of immune checkpoint molecules (85). Moreover, following OV
infection, adaptive immune resistance is also involved in the
increase of checkpoint molecules, which may correlate with the
compensatory immunosuppressive pathways (86).
CONCLUSIONS

Accumulating evidence support the potential ofOVs as a promising
therapeutic agent. The potent antitumor activity of OVs can be
attributed to their unique mechanisms of action, including direct
oncolysis and the induction of immune responses. OVs remodel the
Frontiers in Oncology | www.frontiersin.org 7
immune landscape of the TIME by regulating immune cells and the
relevant cytokines within the tumor microenvironment. These
therapeutic viruses possess the ability to recruit and activate
immune effector cells, particularly CD8+ T lymphocytes.
Simultaneously, they reduce the amounts of immunosuppressive
cells and alternatively induce the phenotype of the cells that shift
from the protumor status to the antitumor status. OV-induced
increased infiltration of immune effector cells is often accompanied
by aboundsecretionof proinflammatory cytokines. It is nowevident
that oncolytic virotherapy can create an inflamed TIME, or a “hot”
tumor, which is expected to yield a superior efficacy in combination
with cancer immunotherapy. Further development of oncology and
virotherapy is expected to provide a deeper understanding of the
interaction between OVs and the TIME in the future.
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