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Abstract

Objective: To construct deep learning (DL) models to improve the accuracy and efficiency of

thyroid disease diagnosis by thyroid scintigraphy.

Methods: We constructed DL models with AlexNet, VGGNet, and ResNet. The models were

trained separately with transfer learning. We measured each model’s performance with six

indicators: recall, precision, negative predictive value (NPV), specificity, accuracy, and F1-score.

We also compared the diagnostic performances of first- and third-year nuclear medicine (NM)

residents with assistance from the best-performing DL-based model. The Kappa coefficient and

average classification time of each model were compared with those of two NM residents.

Results: The recall, precision, NPV, specificity, accuracy, and F1-score of the three models ranged

from 73.33% to 97.00%. The Kappa coefficient of all three models was >0.710. All models per-

formed better than the first-year NM resident but not as well as the third-year NM resident in

terms of diagnostic ability. However, the ResNet model provided “diagnostic assistance” to the NM

residents. The models provided results at speeds 400 to 600 times faster than the NM residents.

Conclusion: DL-based models perform well in diagnostic assessment by thyroid scintigraphy. These

models may serve as tools for NM residents in the diagnosis of Graves’ disease and subacute thyroiditis.
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Introduction

The incidence of thyroid functional diseases
has increased in recent years, and such dis-
eases have become the second most
common endocrine disorders. In China, 40
million people have been diagnosed with
hypothyroidism and more than 10 million
people have been diagnosed with hyperthy-
roidism.1 Unlike ultrasonography and
computed tomography (CT), which are
commonly used to identify thyroid nodules,
thyroid scintigraphy with (99m)Tc-pertech-
netate is used to determine the functional
status of the thyroid gland or thyroid nod-
ules. As a powerful tool that provides infor-
mation regarding the location, size, shape,
and functional status of the thyroid gland,
thyroid scintigraphy is a necessary part of
the clinical workup of thyroid functional
diseases. Numerous studies have shown
that thyroid scintigraphy with (99m)Tc-per-
technetate is the most effective way to dis-
tinguish Graves’ disease from thyroiditis,
the two most common causes of thyrotoxi-
cosis.2–5 However, the interpretation of thy-
roid scintigraphy results largely relies on the
experience of nuclear medicine (NM) resi-
dents, making diagnostic reporting some-
what subjective.

In recent years, deep learning (DL) has
been introduced into computer-aided diag-
nosis (CAD) systems to improve the accu-
racy of medical imaging diagnosis, save
time, and explore new directions and
opportunities in radiology.6,7 Applying
CAD systems may not only reduce radiol-
ogists’ workload but also lessen subjective
and ambiguous reporting. Many CAD
studies on thyroid imaging have been per-
formed,8–12 including the application of
CAD to ultrasound images for the discrim-
ination of benign and malignant thyroid
nodules8,9 and CT-based CAD10,11 for the
detection of thyroid abnormalities.

Few reports have described the use of
CAD in thyroid scintigraphy, especially

for the diagnosis of thyroid disease. Ma
et al.12 used deep convolutional neural net-
work (DCNN) models to assess thyroids.
Because of the small number of thyroid
nodule images and significant variations
across those images, the authors did not
perform DL assessment of the thyroid
nodules.12

This study was performed to construct
several DL-based CAD systems for the
detection of Graves’ disease and subacute
thyroiditis. Three DCNNs (AlexNet,
VGGNet, and ResNet) were used to extract
imaging features and classify the thyroid
scintigraphy images according to the diag-
nostic results. We also compared the diag-
nostic performances of a first-year NM
resident (C.Z.J.) and third-year NM resi-
dent (L.S.M.) with assistance from the
best-performing DL model to assess the
model’s efficacy as a “diagnostic assistant.”
Notably, the residents were not permitted
access to the true diagnostic results.

Materials and methods

Datasets

All thyroid scintigraphy images were
obtained using a Discovery NM/CT 670
scanner (GE Healthcare, Chicago, IL,
USA). The imaging conditions and
methods were as follows. First, 370 MBq
of (99m)Tc-pertechnetate was injected
through the cubital vein before thyroid
scintigraphy. After 15 to 30 minutes, a
low-energy, high-resolution parallel-hole
collimator was used for thyroid plane imag-
ing. Upon completion of the planar imag-
ing, a low-energy, high-resolution pinhole
collimator was used for local magnification
of the thyroid. The matrix was 128� 128,
and the acquisition count was 5� 105.

We conducted a retrospective analysis of
1430 patients who underwent thyroid scin-
tigraphy in the Department of Nuclear
Medicine at Shanghai Tenth People’s
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Hospital from May 2016 to June 2019. The
dataset included 175 patients with no thy-
roid disease, 834 patients with Graves’ dis-
ease, and 421 patients with subacute
thyroiditis during hyperthyroid status. All
samples used met the following two criteria:

1. All diagnoses were confirmed through
clinical history and auxiliary examinations
including thyroid function tests (thyroid-
stimulating hormone, free triiodothyro-
nine, and free thyroxine), radioiodine
uptake tests, and ultrasonography. Many
cases were confirmed following treatment
at follow-up.

2. The imaging results of all thyroid scintig-
raphy scans corresponded to the final
clinical diagnosis.

System architecture

DL-based CAD performance is superior
to traditional CAD system perfor-
mance.8–12 DL-based CAD takes thyroid

scintigraphy data as an input and auto-

matically outputs the diagnostic results,

as shown in Figure 1(a). Building a

DCNN model involves two aspects: data

augmentation and model training. We

used progressive auxiliary classifier gener-

ative adversarial networks to augment the

samples within each class, so that each

class contained 1000 cases.
Initialization using transfer features can

improve performance, and it is therefore a

universally useful technique for improving

the performance of deep neural networks.13

We used the pre-trained ImageNet to per-

form transfer learning by fine-tuning the

last fully connected layer and freezing

the previous network layers, as shown in

Figure 1(b).
We split the dataset at a ratio of 7:3, with

70% of the data used for the training set

and 30% of the data used for the validation

set. We iteratively trained 1000 epochs with

the training set for each network. We used

Figure 1. (a) Architecture of the CAD system. (b) Schematic diagram of transfer learning
CAD, computer-aided diagnosis; Fc: fully connected layer; conv: convolutional layers.
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the trained network to classify the valida-

tion set, and the output results were used to

calculate the evaluation metric.

Data augmentation

To reduce the negative effect of class

imbalance on the classifier, we generated

synthetic samples with auxiliary classifier

generative adversarial networks,14 which

generated the specified type of samples.

We introduced the concept of progressive

growth14 to improve the quality of the syn-

thetic images. The progressive growth pro-

cess of the network is shown in Figure 2(a).
The network starts by generating low-

resolution images and gradually increases

the resolution of the generated images. By

learning the pixel features of the images at

different resolutions, the synthetic images con-

tain more details. The synthetic images at dif-

ferent resolutions are shown in Figure 2(b),

which presents the progressive transition of

generated images from low resolution to

high resolution.

Model training

AlexNet. AlexNet is composed of five con-

volutional layers followed by three fully

connected layers,16 as shown in Figure 3

(a). For the nonlinear portion, AlexNet

uses a rectified linear unit instead of a

tanh or sigmoid function, which was the

earlier standard for traditional neural net-

works. The rectified linear unit trains much

faster than the sigmoid because the deriva-

tive of the sigmoid becomes very small in

the saturating region, and therefore the

updates to the weights almost vanish.

Additionally, AlexNet reduces the overfit-

ting by using a dropout layer after every

fully connected layer. The dropout layer

has a probability associated with it, and it

is applied at every neuron on the response

map separately, as shown in Figure 3(b).

VGGNet. VGGNet17 offers an improvement

over AlexNet by replacing large kernel-

sized filters with multiple 3-� 3-kernel-

sized filters, one after another (Figure 3

(c)). Within a given receptive field, multiple

stacked smaller kernels are more effective

than larger ones because multiple nonlinear

layers increase the depth of the network.

This enables the network to learn more

complex features at a lower cost. Blocks

with the same filter size are applied multiple

Figure 2. (a) Progressive auxiliary classifier generative adversarial network growth process. (b) Synthetic
thyroid scintigraphy at different resolutions.
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times to extract more complex and repre-

sentative features.

ResNet. Deep network structures can

increase accuracy,18 although this results

in a vanishing gradient and degradation

problems. Residual networks19,20 allow

training of such deep networks by con-

structing the network through modules

called residual modules, as shown in

Figure 3(d). The architecture is similar to

VGGNet, consisting mostly of 3� 3 filters.

Using the VGGNet setup, a shortcut con-

nection as described above is inserted to

form a residual network.

Classifier. We chose the Softmax classifier to

solve the multiclass classification problem.

Softmax is given by:

f xið Þ ¼ ex
i

P
j e

xi

The Softmax classifier is the binary logis-

tic regression classifier’s generalization to

multiple classes. It gives a slightly more

intuitive output (normalized class probabili-

ties) and has a probabilistic interpretation.

Its final conclusion reflects the max proba-

bility category.

Experimental environment. Computing was

performed on the 8 NVIDA GPUs model

V100 PCle (32 GB) hardware. The

Compute Unified Device Architecture

(CUDA) version 10.1 and the CUDA Deep

Neural Network library (cuDNN) version

10.1 were used. The DCNN experimental

code was developed based on the DL frame-

work PyTorch 1.4.0 and Python 3.7.

Performance evaluation. The confusion matrix

is a situation analysis that summarizes the

predicted results of a classification model.

The confusion matrix includes true posi-

tives (TPs), false positives (FPs), true nega-

tives (TNs), and false negatives (FNs). To

further standardize the evaluation of the

classification performance of the models,

the following six indicators were taken

from the confusion matrix: precision,

recall, negative predictive value (NPV),

Figure 3. (a) Structure of AlexNet. (b) Network before and after dropout. (c) Structure of VGGNet.
(d) Structure of ResNet.
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specificity, accuracy, and F1-score. They
were defined as follows:

Precision¼TPs/(TPsþFPs),
Recall¼TPs/(TPsþFNs),
NPV¼TNs/(TNsþFNs),
Specificity¼TNs/(FPsþTNs),
Accuracy¼ (TPsþTNs)/(PsþNs),
F1-score¼ 2�TPs/
(2�TPsþFPsþFNs).

Additionally, the diagnostic performan-
ces of the three models were evaluated using
receiver operating characteristic curve anal-
ysis, with the area under the curve tabulated
for each model.

The Kappa coefficient is an
effective evaluation method for multi-
classification models in machine learning.
It is used in consistency testing and can
also be used to measure classification
accuracy. P-values of <0.05 were consid-
ered statistically significant.

We also tested the accuracy of the
ResNet-based CAD system when used in
conjunction with an NM resident. NPV,
specificity, accuracy, and the Kappa coeffi-
cient were used to describe the diagnostic
performance.

Average diagnostic time. The total time
required for each of the three models as
well as the NM residents to diagnose the
300 cases was measured and then divided
by 300 to determine the average time
required for diagnosis of a single case.

Ethics

The protocol of Research on Automatic
Diagnosis Report Generation Technology
for Diversified Pathological Information
Based on Machine Learning (SHSY-IEC-
KY-3.0/18-147/01) was reviewed and
approved by the ethics committee of
Shanghai Tenth People’s Hospital. All
patients provided verbal informed consent
to participate.

Results

Diagnostic performance of the three
DCNN models

We summarized and compared the classifi-
cation performance evaluation metrics of
the three DCNN models, including the con-
fusion matrices, recall, precision, NPV, spe-
cificity, accuracy, and F1-score, as shown in
Figure 4 and Table 1. The consistency
between the classification results and the
clinical diagnostic results was tested with
the Kappa coefficient. The three DCNN

Figure 4. Confusion matrices for the three
models. (a) AlexNet confusion matrix. (b) VGGNet
confusion matrix. (c) ResNet confusion matrix.
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models achieved areas under the receiver

operating characteristic curves ranging

from 0.85 to 0.90 for the diagnosis of

Graves’ disease, subacute thyroiditis, and

absence of thyroid disease (Figure 5).

Diagnostic performance of NM residents

We used the NPV, specificity, accuracy, and

Kappa coefficient to characterize the diag-

nostic performance of the first- and third-

year NM residents, both with and without

the assistance of the ResNet-based CAD

system, as shown in Tables 2 and 3.

Diagnostic time

The average diagnostic time for all three

models (AlexNet, VGGNet, and ResNet)

to classify one case in the test set was <1 s.

The average diagnostic time for the first- and

third-year NM residents to diagnose one

case was 180 s and 120 s, respectively.

Discussion

The incidence of thyroid functional diseases

has significantly increased in recent years.

Graves’ disease and subacute thyroiditis are

often insidious because the early symptoms

can be nonspecific. This can lead to delays

in the diagnosis. Thyroid scintigraphy is

sensitive for the detection of thyroid function-
al disorders. However, limited medical
resources have led to low diagnostic efficien-
cy. Furthermore, variations in NM physi-
cians’ recognition of and the lack of defined
standardized features on the images also con-
tribute to variability in thyroid disease diag-
nosis. Machine learning will be an effective
solution to the shortage of medical resour-
ces,21 especially with regard to automatic
diagnosis of thyroid scintigraphy studies.22–
25 The principal purpose of this paper is to
describe the design of classifier models using
different DL algorithms for the diagnosis of
Graves’ disease and subacute thyroiditis by
thyroid scintigraphy.

DL has greatly improved the accuracy of
machine learning methods in image recogni-
tion, demonstrating many achievements26–28

in the field of artificial intelligence and trig-
gering an upsurge in research and develop-
ment. However, few studies have focused on
DL technology for the intelligent recognition
of thyroid scintigraphy images.12 The thy-
roid has a simple morphology with low var-
iability and requires only simple image
feature recognition, which makes it amena-
ble to artificial intelligence diagnosis. Thus,
we created three DCNN models and deter-
mined which model offers the best diagnostic
accuracy.

Table 1. Comparison of six classification performance indexes (recall, precision, NPV, specificity, accuracy,
and F1-score) of different models.

Model Class Recall Precision NPV Accuracy Specificity F1-score

Kappa

coefficient

Normality 73.33% 88.35% 87.71% 87.89% 95.17% 80.15%

AlexNet Graves’ disease 80.67% 84.32% 90.54% 88.56% 92.50% 82.45% 0.715

Subacute thyroiditis 89.00% 73.35% 93.84% 85.56% 83.83% 80.42%

Normality 76.67% 90.20% 89.15% 89.44% 95.83% 82.88%

VGGNet Graves’ disease 82.33% 86.67% 91.38% 89.89% 93.67% 84.44% 0.758

Subacute thyroiditis 92.67% 77.22% 95.93% 88.44% 86.33% 84.24%

Normality 82.67% 91.85% 91.75% 91.78% 96.33% 87.02%

ResNet Graves’ disease 84.33% 93.36% 92.53% 92.78% 97.00% 88.62% 0.802

Subacute thyroiditis 93.33% 77.99% 96.30% 89.00% 86.83% 84.98%

NPV, negative predictive value.
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Our dataset is class-imbalanced and lim-

ited because thyroid scintigraphy is not part

of the routine physical examination. We

augmented the amount of thyroid scintigra-

phy data to ensure that the DCNN models

had sufficient data to train. In addition, we

used the pre-trained ImageNet to perform

transfer learning and therefore achieve

better-performing models. Nevertheless,

for multiclassification tasks in class-

imbalanced datasets, accuracy alone is not

sufficient to characterize the model’s abili-

ties. Therefore, we measured more thor-

ough evaluation metrics, including recall,

precision, NPV, specificity, accuracy, and

F1-score. The accuracy of all three models

Figure 5. Receiver operating characteristic (ROC) curve comparison across the three models for the
diagnosis of Graves’ disease, subacute thyroiditis, and absence of thyroid disease. (a) ROC curves for patients
without thyroid disease. (b) ROC curves for patients with Graves’ disease. (c) ROC curves for patients with
subacute thyroiditis.

Table 2. Diagnostic performances of two NM residents without CAD system assistance.

Reader Class NPV Accuracy Specificity Kappa coefficient

Normality 86.55% 84.67% 91.17%

First-year resident Graves’ disease 89.58% 87.33% 91.67% 0.675

Subacute thyroiditis 91.70% 84.67% 84.67%

Normality 92.48% 92.33% 96.33%

Third-year resident Graves’ disease 91.38% 89.89% 93.67% 0.820

Subacute thyroiditis 97.06% 90.33% 88.17%

NM, nuclear medicine; CAD, computer-aided diagnosis; NPV, negative predictive value.
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assessed in this study reached at least

85.56% for the detection of Graves’ disease,

subacute thyroiditis, and absence of thyroid

disease. The comprehensive evaluation

metric (F1-score) for all three models was

>80.15%, and the DL-based models accu-

rately classified the validation set with areas

under the curve ranging from 0.85 to 0.90.

This indicated very good overall perfor-

mance of the models. The Kappa coefficient

for all three models was >0.715, indicating

a high degree of consistency between the

model prediction results and the clinical

diagnostic results. These results suggest

that the three models are effective in dis-

criminating Graves’ disease, subacute thy-

roiditis, and absence of thyroid disease

from one another.
ResNet consistently showed better perfor-

mance than AlexNet and VGGNet. ResNet

was able to solve the degradation and van-

ishing gradient problems through the appli-

cation of residual learning architecture and a

batch normalization technique. Because the

algorithm of VGGNet is better than that of

AlexNet,17 it was not surprising that the

classification performance results of

VGGNet were better than those of

AlexNet. With this in mind, ever-improving

algorithms should lead to continuously

improving classification performances.
The DCNN models significantly outper-

formed the first-year NM resident.

Inexperienced NM physicians may overes-

timate their knowledge and experience,

making decisions on the basis of a limited

number of imaging features. As such, they

may fail to assess all imaging features sys-

tematically. Alternatively, DCNN models

systematically and thoroughly assess all fea-

tures within an image and readily perform

adjustments in the context of noisy data.

Therefore, DCNN models may effectively

facilitate decision-making for inexperienced

NM physicians. However, even the optimal

ResNet model did not outperform the

third-year resident. In a further assessment,

we compared the residents’ abilities with

assistance from the ResNet model. With

assistance from the model, the diagnostic

performance of the first-year resident great-

ly improved, but the beneficial impact on

the third-year resident was relatively small.

This suggests that the benefit provided by

DCNN models to experienced doctors is

limited. The DCNN models provided

results 400 to 600 times faster than the res-

idents, indicating that the models may be

helpful in streamlining clinical work, pro-

viding a reference for physicians’ reports,

and reducing work pressure on doctors.
This study has some limitations. First,

we retrospectively gathered relatively typi-

cal images of patients with Graves’ disease,

subacute thyroiditis, and absence of thyroid

disease to train the models rather than

using thyroid images collected at random.

Second, because of insufficient samples and

class imbalances, some indistinctive image

features that were regarded as suspicious

Table 3. Diagnostic performances of two NM residents with CAD system assistance.

Reader Class NPV Accuracy Specificity Kappa coefficient

Normality 93.53% 91.67% 94.00%

First-year resident Graves’ disease 93.01% 92.11% 95.33% 0.810

Subacute thyroiditis 94.50% 90.89% 91.67%

Normality 94.58% 93.67% 96.00%

Third-year resident Graves’ disease 93.48% 94.11% 98.00% 0.853

Subacute thyroiditis 97.51% 92.67% 91.33%

NM, nuclear medicine; CAD, computer-aided diagnosis; NPV, negative predictive value.

Qiao et al. 9



were neglected and deleted from the model

constructions. This affected the FPs and

FNs of the models. Third, images of more

types of thyroid disease, especially thyroid

nodules, need to be gathered, and greater

participation by experienced professional

physicians would further optimize the

models. Translating technical success to sig-

nificant clinical impact is the ultimate

challenge.
In conclusion, we constructed three

DCNN models to diagnose Graves’ disease

and subacute thyroiditis. Our results demon-

strate that such models can serve as a

“diagnostic assistant” to improve the diag-

nostic performance of NM residents. After

the NM physician loads the image, the

model can identify the image type and auto-

matically generate a preliminary diagnostic

result, helping to improve diagnostic efficien-

cy, accuracy, and consistency. However,

establishing the clinical utility of these

models requires further clinical research.
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