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Intracranial electroencephalography (IEEG) involves recording from electrodes placed
directly onto the cortical surface or deep brain locations. It is performed on patients
with medically refractory epilepsy, undergoing pre-surgical seizure localization. IEEG
recordings, combined with advancements in computational capacity and analysis
tools, have accelerated cognitive neuroscience. This Perspective describes a potential
pitfall latent in many of these recordings by virtue of the subject population—namely
interictal epileptiform discharges (IEDs), which can cause spurious results due to the
contamination of normal neurophysiological signals by pathological waveforms related
to epilepsy. We first discuss the nature of IED hazards, and why they deserve the
attention of neurophysiology researchers. We then describe four general strategies used
when handling IEDs (manual identification, automated identification, manual-automated
hybrids, and ignoring by leaving them in the data), and discuss their pros, cons, and
contextual factors. Finally, we describe current practices of human neurophysiology
researchers worldwide based on a cross-sectional literature review and a voluntary
survey. We put these results in the context of the listed strategies and make suggestions
on improving awareness and clarity of reporting to enrich both data quality and
communication in the field.
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INTRODUCTION

Intracranial electroencephalography (IEEG) transcends many physical limits of scalp
electroencephalography (EEG) and magnetoencephalography (MEG) by recording signals
directly from brain tissue. Rapid advances in computer processing in recent decades has expanded
software and hardware capacities, enabling simultaneous recordings from hundreds of intracranial
sites at microsecond precision. These increases in temporal and spatial resolution have enhanced
diagnostic precision for seizure localization (Andrews et al., 2019; Cuello Oderiz et al., 2019) and
led to an acceleration in human intracranial neurophysiology research (Chang, 2015; Parvizi and
Kastner, 2018).

Along with emerging computational tools and capacities for massive dataset analysis, the
wealth of neuroscientific opportunities and potential discoveries is promising. However, signal
analysis on human intracranial recordings invokes inherent pitfalls that are presumably addressed
but minimally acknowledged in many neurophysiological studies of human patients—namely,
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interictal epileptiform discharges (IEDs). IEDs are transient
bursts of activity produced by groups of neurons that are
pathologically connected due to epilepsy, resulting in distinct

and prominent waveforms during IEEG recordings (Figure 1A).
This Perspective will draw attention to IED hazards, potential
effects on common analysis strategies, and describe common

FIGURE 1 | Interictal epileptiform discharges (IED)-related data contamination. (A) Example of an IED from a single channel during a 2-s intracranial
electroencephalography (IEEG) recording. Classic features are apparent including a sharp, large-amplitude displacement of voltage and an after going slow-wave,
otherwise with a relatively normal baseline mix of frequencies before and afterward. (B) Hilbert transform spectrogram of the data in (A). Note the transient but
substantial increase in power across nearly all frequencies, due to the sharp component of the waveform, and a subtle sustained increase in low-frequency power
related to the after going slow-wave. (C) Wavelet transform spectrogram of the data in (A), with similar findings as in (B). (D) Fourier transform of A (Mitra and Bokil,
2007; Chronux Home, 2019) with 0.25-s overlapping windows, sliding point-by-point to provide similar time resolution as (B,C). Similar findings as in (B,C), with an
additional duration of the power increase in the faster frequencies due to the nature of the consistent time window across frequencies for the FFT calculation. Panels
(E–G) each display IEEG data from 50 trials, recorded from a single channel during a speech listening task (one pre-recorded sentence played aloud for each trial
starting at time zero). In panel (F), 10 trials were swapped with trials that contained IEDs, shown in red. A hybrid of manual and automated approaches (Baud et al.,
2018) was used. Panel (G) increases this to 20 trials with IEDs. Panel (H) shows the average high gamma across trials in each group (Hilbert transform, 50–200 Hz)
from one electrode contacting the inferior temporal gyrus that was not truly modulated by the sentence-listening task. Asterisks denote time points during which one
of the latter groups deviates significantly from baseline (two-way repeated-measures ANOVA, p < 0.05). As the proportion of trials with IEDs increases, additional
falsely positive timepoints emerge.
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strategies to avoid them so that the growing wave of discoveries
in human neurophysiology continues to advance hopefully
without missteps.

THE NATURE OF IED HAZARDS IN HUMAN
IEEG NEUROPHYSIOLOGY

The crux of our view is that the paradigm of human intracranial
neurophysiology exposes well-meaning scientists to risks of
erroneous results due to two main factors:

(1) Electrodes are implanted in regions of the human brain that
are deemed likely to reveal neurophysiological signatures of
epilepsy in both ictal and interictal contexts—which are often
sharp large-amplitude waveforms.

(2) Signal processing analyses that are commonly used for
human neurophysiology are exquisitely sensitive to the sharp
large-amplitude waveforms described in #1, which cause
spurious results.

Therefore, IEEG datasets commonly contain electrical
signatures of epilepsy that convey risk for distorted results
when included in common signal analyses such as power and
coherence measures, and related methods such as power-phase
co-modulation (Kramer et al., 2008). One way to account for
this problem is that many neural signals processing methods
such as Fourier, Wavelet, and Hilbert-based analyses assume
a sinusoidal data substrate (van Drongelen, 2018). Convolving
large amplitude waves or sharp deflections (large or even small
amplitude) therefore predisposes to representations of many
frequencies that can be largely spurious, since many consecutive
sinusoidal functions may fit these elements of the waveform.
In Figures 1B–D, we show examples of how IEDs can easily
misrepresent neurophysiological signals in this manner across
commonly used spectral methods of Hilbert, Wavelet, and
Fourier transforms. In lower frequency bands, both the sharp and
slow-wave components of IEDs can induce a power increase in
any frequency that fits these features. In higher frequency bands,
this striking power burst across vast stretches of continuous
frequency levels becomes even more obvious and can be referred
to as a ringing or spectral leakage (Scheffer-Teixeira et al.,
2013). This can be evident across the entire high gamma band
(50–200 Hz or other similar range), a concerning issue given
many neurophysiology laboratories utilize high gamma activity
given its potential value as a surrogate for local neural activity
(Ray et al., 2008). The example in Figure 1H demonstrates
how cumulative inclusion (Figures 1E–G) of trials with spikes
adds spurious variability (risking a false negative) or otherwise
influences statistical significance (risking a false positive).

This problem could be more pervasive than in EEG or MEG
recordings due to direct neural tissue contact, which can convey
larger spike amplitudes and sharper deflections particularly in
the case of IEDs, contaminating neurophysiological analyses.
Furthermore, intracranial electrodes are specifically placed in
regions that are likely to be clinically associated with the epileptic
seizure focus, leading to strong and/or frequent IEDs in some
IEEG datasets.

Anecdotally, most researchers in human neurophysiology
would agree that data contamination by IEDs is common
knowledge, although the impact of this may vary for certain types
of analyses (Meisler et al., 2019). In fact, one would anticipate
that many research labs have strategies in place to circumvent,
or at least minimize this problem. However, when practically
assessed, this problem and its potential ramifications may be
much more pervasive than anticipated. A third complicating
factor may illustrate how this can be so:

(3) Neurophysiology researchers (especially early trainees such
as students and postdoctoral researchers) may not receive
direct training in the identification of IEDs or electrical
artifacts. In addition, the spectrum of potential IED
morphologies, and how their distinct features can be
expected to contaminate signal analyses, may not be
engrained within standard training.

As a further complication, the inter-rater agreement for
IED detection is surprisingly poor, even among fully trained
epileptologists (Barkmeier et al., 2012; Janca et al., 2015).

STRATEGIES FOR HANDLING IEDs

There are a variety of approaches when encountering IEDs in
data, which may or may not depend on their rate and spatial
extent (for example, a researcher may not be inclined to curate
and ‘‘clean’’ a dataset for one spike per minute but may for
10 spikes per minute). We distilled the potential approaches of
researchers into four main strategies. The first is to manually
identify and remove any trials or periods during which IEDs
occur, referred to here as Strategy 1. The data are screened
through by examining plots of the recorded data with or
without some pre-processing (notch and/or bandpass filtering)
and segments of data that contain IEDs are marked so that any
trials that overlap with these segments can be left out of the
analyses or converted to missing values.

Certain researchers have received formal clinical training
in reading EEG/iEEG, though this is less common for many
non-clinical researchers who are trained through graduate-
science academic tracks. While many have received either
didactic and/or one-on-one training on how to identify
and remove IED trials from datasets, some may have
not. Complicating the matter, IEEG datasets are far from
standardized because of recording differences: the layout
of seizure-generating networks differs for each patient
resulting in variable numbers of electrodes, not to mention
individual differences in neuroanatomy and the laterality of
the implantation. There are mixed contact modes (grids, strips,
depths) of varying densities, along with customized ordering
of the channels (montages). These factors all lead to increased
difficulty in the interpretation of IEEG analyses, particularly
for those who have not received adequate training (formal or
informal) for IED identification in these recording layouts.
Lastly, as the duration of recordings increases, Strategy 1
diminishes in practicality due to time and effort constraints.

Computerized spike detection algorithms have been
developed in recent decades to equip the next generation
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of scientists with effective and standardized spike-detecting
abilities, save time, and circumvent human error. The use
of IED detectors and removal of affected trials/data in an
automated fashion constitutes another approach, which we
will call Strategy 2. Fortunately, IEDs tend to have the features
that are often salient to many algorithms: large-amplitude,
sharp components, and at times with pathophysiological
high-frequency oscillations that are less-often encountered in
the normal brain (though see Frauscher et al., 2018b). Ideally,
an algorithm will maximize both sensitivity and specificity,
while decreasing or removing the contribution (supervision,
such as threshold-setting) required from the user. It is difficult
to satisfy this wish-list completely, however, and thus many
algorithms have been developed using a variety of automated
and unsupervised approaches. These include EEG derivations
(White et al., 2006), line-length and power transforms (Esteller
et al., 2001; Bergstrom et al., 2013), adaptive directed transfer
functions (Wilke et al., 2009), spatial filters (Liu et al., 2015),
and spike-template matching algorithms such as spatiotemporal
regression (Tousseyn et al., 2014) and non-negative matrix
factorization (Baud et al., 2018) among many other approaches.
All tools have sensitivity and specificity trade-offs; no approach
provides 100% certainty, and this is further complicated by
the lack of a dependable human gold standard. Specifically,
the poor inter-rater agreement of manual detection among
highly trained individuals noted above, and the ‘‘quantitative
gray-zone’’ of small questionable IEDs they may ignore, are
fundamental caveats for algorithm testing. Lastly, while nearly
all new methods are compared to manual detection or one
other automated method, a broad comparison across most or
all automated methods is difficult due to technical challenges
of implementing each in turn on a sufficiently large dataset
(Westover et al., 2017). Nevertheless, the automated removal
of interictal spikes using unsupervised and/or supervised
approaches can save time, approach standardization, and
improve neurophysiology data quality.

As a result of the caveats (and potential fallacies) of
automated detection algorithms, some researchers who employ
them may hesitate to allow full discretion to this mechanism.
Since automated detection approaches can drastically increase
efficiency for the bulk of obvious detections, a third strategy
(Strategy 3) is a hybrid approach of Strategies 1 and 2, in which
the automated detections are also manually screened (often in
this order, although the opposite order or multiple iterations
can also be applied). An example of this hybrid is through the
use of distributions of morphological features (e.g., slope, power
measures, etc.) to which a threshold can be applied, followed by
manual inspection for potential false positives and/or negatives.

Given the complexity of gathering this precious data and
its associated scarcity, a drawback common to Strategies 1,
2 or 3 is that trial removal reduces statistical power.
Accordingly, another bias—toward keeping more trials—allows
more potential spurious signal results to be introduced, adding
the risk of false negatives and positives as described above.

The preference to keep as many trials as possible introduces a
different strategy for dealing with IEDs: agnosticism, in which
IEDs are ignored (not assessed) and no trials are removed

(Strategy 4). One might naturally assume that data afflicted by
IEDs will be infrequent and random enough to where affected
timepoints will blend into the background of an averaged signal,
adding variability but not significantly skewing the results.
Meanwhile, task-related neurophysiological signatures would
hopefully emerge from the analysis and prevail, if present, by
virtue of their consistency across trials. As a signal-to-noise
problem, this assumption may be valid for infrequent IEDs,
especially with a strong experimental effect size (though an
additional safety layer of using nonparametric statistics may be
advised). However, more frequent (Figures 1E–H) and/or larger
or sharper IEDs can undermine this approach. Nevertheless,
robust statistical power is always preferred, and often requires
large numbers of trials that are more likely attained in the
agnostic approach of Strategy 4, particularly for subtle effect
size. In fact, one recent study (Meisler et al., 2019) formally
assessed whether manual, automated or no removal of IEDs
affected their neurophysiological findings in an episodic memory
task—they found no clear effect of any approach, though
emphasized the importance of sufficient numbers of trials.
On a related note, newer machine learning analyses require
large volumes of training data to build accurate models—these
along with deep learning approaches can learn to differentiate
between normal neurophysiologic signals and pathological IED
waveforms, provided the previous training data is accurately
labeled (often manually). Thus, the agnostic strategy has a
certain appeal (including low-effort) and could be a good
default for some studies, assuming there is enough data to
employ it.

CURRENT PRACTICES AMONG IEEG
RESEARCHERS

With these diverse general strategies in mind, how are IEDs
currently handled by human neurophysiology researchers?
We assessed this question of ‘‘Current Practices’’ by first
summarizing how researchers describe their methods in
published literature. We searched PubMed using two broad
queries: (intracranial AND eeg; electrocorticography) and filtered
the results to include only studies published in 2018. We
limited the search results by examining each article (613 unique
articles) and included only those that measured intracranial
neurophysiological signals in humans and appeared to make
conclusions regarding normal neurophysiology (91 total).
Although these search conditions are not exhaustive, they
provide a contemporary snapshot of diverse groups worldwide
studying normal human neurophysiology in vivo. We found
that the majority of these publications alluded to using manual
methods (Figure 2A), including direct identification of IEDs, or
a similar (yet more conservative) approach of identifying and
excluding electrodes that were covering the seizure foci. Less than
5% of manuscripts used fully automated methods, and none of
the included articles used the agnostic approach (Strategy 4).
Again, our sample of included articles was limited and these
results may not fully represent the field.

Given IED handling methods did not appear to be described
in detail in many of the articles, we further assessed our ‘‘Current
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FIGURE 2 | Current practices for handling IEDs among IEEG researchers. (A) Methods of handling IEDs as reported by 2018 manuscripts that matched our
PubMed search and screening criteria. (B) Career levels among survey respondents. (C) Training regarding identification and/or removal of IEDs among survey
respondents. (D) Strategy used for handling IEDs among survey respondents.

Practices’’ question by designing an anonymous survey. This
survey (approximately ∼2 min) consisted of questions regarding
career level, whether they were familiar with IEDs in IEEG, and
had formal or informal or no training on IED identification
and removal, along with a selection of which of the Strategies
(1–4) above they tended to use (or other). We emailed the listed
corresponding authors of the articles described above (79 total,
as some articles overlapped or had multiple corresponding
authors) requesting their voluntary participation, which would
be anonymized (exempt from IRB requirements per UCSF IRB
Office). We asked these individuals to forward the survey to other
colleagues and co-workers as well.

We received a 44% response rate, with survey respondents
weighted toward post-doctoral and faculty members, likely due
to a sampling bias via emailing a population of corresponding
authors (Figure 2B). Of note, responses from these senior lab
members may likely represent the practice of their lab as a whole
on their IED Strategy, though this is less applicable for the IED
familiarity and training questions. All respondents indicated they
were familiar with IEDs, a reassuring result, though possibly
influenced by the nature of the survey. Regarding training on
recognizing IEDs and handling method(s), the majority were
informally trained (Figure 2C), and some were not trained at
all. Not surprisingly, those who identified as formally trained
were junior and senior faculty, consistent with the fellowship-
level clinical requirements for formal EEG training in most
contexts. The majority of respondents utilized either a manual

approach, whether in isolation or as a manual-automated hybrid
(Strategies 1 and 3; Figure 2D), generally comparable to the
literature review (Figure 2A) as expected. Interestingly, we found
no articles that explicitly indicated the use of the Strategy 4
(‘‘agnostic’’) despite 9% of respondents identifying as such,
and the incorporation of automated methods (Strategies 2 and
3) had a larger representation in the survey responses (55%)
than the literature review (14%). These discrepancies could be
explained by reporting bias however, given the different contexts
of manuscript methods vs. a direct survey, and sampling bias
(survey response rate).

FURTHER CONSIDERATIONS

While this article focuses primarily on IEDs, the hazards and
strategies described herein can and should be extended to
other electrical or non-physiologic artifacts (cable movements,
electrode pops, amplifier saturation, etc.), since they can
involve similar sharp large-amplitude deflections. Regarding
channel exclusion, channels with abundant IEDs are particularly
problematic for automated methods that rely on background
estimates. Furthermore, if normal neurophysiology is to be
studied, these channels and any that are known to be in lesional
tissue should be excluded outright (Frauscher et al., 2018a); this
practice was reflected in about one-third of manuscripts in our
literature review (Figure 2A).
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Regarding proper experimental control, it is often paramount
that IED-marking is performed while blinded to the task
events and experimental conditions (most relevant for manual
Strategies 1 and 3), to prevent biases that could influence study
results (e.g., removing trials with IEDs more often from one
condition than another). Regarding potential confounds in trial-
based studies, IEDs are often assumed to occur unpredictably,
even to the point of randomness: this assumption is favorable
if leaving IEDs in the data (Strategy 4) since false-positives and
-negatives would be diminished through trial averaging which
improves the neurophysiological signal-to-noise ratio. However,
it should be noted that the timing of IEDs may not necessarily be
random in a behavioral task. Task-dependent modulation of the
timing or amount of IEDs has been described (Matsumoto et al.,
2013), which could potentially confound results by preferentially
weighting spurious results in certain trial segments more than
others. This would argue against the use of Strategy 4, though
again, the conundrum of trial numbers and statistical power can
be problematic as noted above.

Lastly, apart from signal processing implications, it is worth
mentioning that IEDs can also transiently disrupt the local neural
dysfunction of the region in which they occur (Krauss et al., 1997;
Kleen et al., 2013; Horak et al., 2017; Ung et al., 2017). This
could lead to cognitive errors that could influence trial-based and
other analyses, posing a separate argument for the exclusion of
trials with IEDs when making conclusions regarding ‘‘normal’’
cognitive processing.

CONCLUSIONS

The acceleration of human intracranial neurophysiology conveys
great excitement for impending discoveries and capabilities,
including expanding the basic neurosciences, improving clinical
therapeutics and the development of brain-machine interfaces.
However, IEDs pose pitfalls of spurious results, difficult to avoid
by the nature of the in vivo epileptic tissue from which data is
recorded. Increased vigilance is needed to avoid IEDs in data
if/when appropriate, which can be afforded by the consideration
and use of the strategies listed above. We also suggest that
mid-level and senior researchers should make attempts to
enhance and provide standardized training presentations or
simulations in their labs for IED identification, detection, and
removal methods. This will equip younger researchers with an
important skill set to understand and constructively scrutinize
their own data and that of others. Furthermore, improvements in

scientific communication are needed (Suthana et al., 2018), such
that manuscripts on normal human neurophysiology should
clearly convey the approach used for handling IEDs and its
justification in the context of their study. Such practices of
increased vigilance and clear communication will hopefully
improve reproducibility so that the field can continue its
acceleration without foreseeable setbacks.
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