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Abstract

The inositol-phosphate messenger inositol(1,3,4,5)tetrakisphosphate (IP4) is essential for thymocyte positive selection by
regulating plasma-membrane association of the protein tyrosine kinase Itk downstream of the T cell receptor (TCR). IP4 can
act as a soluble analog of the phosphoinositide 3-kinase (PI3K) membrane lipid product phosphatidylinositol(3,4,5)tri-
sphosphate (PIP3). PIP3 recruits signaling proteins such as Itk to cellular membranes by binding to PH and other domains. In
thymocytes, low-dose IP4 binding to the Itk PH domain surprisingly promoted and high-dose IP4 inhibited PIP3 binding of
Itk PH domains. However, the mechanisms that underlie the regulation of membrane recruitment of Itk by IP4 and PIP3

remain unclear. The distinct Itk PH domain ability to oligomerize is consistent with a cooperative-allosteric mode of IP4

action. However, other possibilities cannot be ruled out due to difficulties in quantitatively measuring the interactions
between Itk, IP4 and PIP3, and in generating non-oligomerizing Itk PH domain mutants. This has hindered a full mechanistic
understanding of how IP4 controls Itk function. By combining experimentally measured kinetics of PLCc1 phosphorylation
by Itk with in silico modeling of multiple Itk signaling circuits and a maximum entropy (MaxEnt) based computational
approach, we show that those in silico models which are most robust against variations of protein and lipid expression
levels and kinetic rates at the single cell level share a cooperative-allosteric mode of Itk regulation by IP4 involving
oligomeric Itk PH domains at the plasma membrane. This identifies MaxEnt as an excellent tool for quantifying robustness
for complex TCR signaling circuits and provides testable predictions to further elucidate a controversial mechanism of PIP3

signaling.

Citation: Mukherjee S, Rigaud S, Seok S-C, Fu G, Prochenka A, et al. (2013) In Silico Modeling of Itk Activation Kinetics in Thymocytes Suggests Competing Positive
and Negative IP4 Mediated Feedbacks Increase Robustness. PLoS ONE 8(9): e73937. doi:10.1371/journal.pone.0073937

Editor: Francesco Pappalardo, University of Catania, Italy

Received March 28, 2013; Accepted July 25, 2013; Published September 16, 2013

Copyright: � 2013 Mukherjee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by funding from the Research Institute at Nationwide Childrens Hospital to J.D., NIH grant AI070845 and The Leukemia and
Lymphoma Society Scholar Award 1440-11 to K.S, and NIH grant MH086117 to V.J.V. Part of this work was supported by NIH grant AI070845 to K.S. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ksauer@scripps.edu (KS); Jayajit.Das@nationwidechildrens.org (JD)

Introduction

Hydrolysis of plasma membrane phospholipids generates

various cellular messengers [1]. Among these, multiple isomeric

inositol phosphates (IP) [1–4] form an ‘‘IP code’’ [5] whose

members can regulate critical decision processes downstream of

many receptors in diverse cell types. However, the specific

mechanisms and precise molecular circuitries that underlie the

regulation of cell functions by soluble IPs are poorly understood.

We and others previously reported an essential role for

inositol(1,3,4,5) tetrakisphosphate (IP4) in regulating T cell

development [2,3,6,7].

T cells are key mediators of adaptive immune responses.

Through a plasma-membrane anchored TCR, they recognize

pathogen-derived peptides bound to Major Histocompatibility

Complex proteins (pMHC) on the surface of antigen-presenting

cells. TCR engagement triggers activation, proliferation and

effector functions in peripheral T cells that then kill pathogen-

infected cells and control immune responses. During T cell

development in the thymus, somatic mutation of the antigen-

binding TCR a/b subunit genes creates a thymocyte repertoire

with random TCR specificities. However, many of these TCRs are

non-functional or interact with the body’s self-antigens with high

affinity, causing autoimmune disorders if the respective T cells

were allowed to mature. To prevent this, thymic selection

processes eliminate thymocytes carrying TCRs that fail to interact

with, or interact with too strong affinity with self-peptide-MHC

(pMHC) complexes. The latter process is known as negative

selection, a key mechanism of central tolerance. Only those

thymocytes whose TCR generates mild signals are positively

selected to mature into T cells, which then populate peripheral

organs. Balanced positive and negative selections are critical for
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generating a diverse but self-tolerant T cell repertoire [8–10].

Recent experiments provided a more complex picture of thymic

selection, where certain high affinity peptides can ‘agonist select’

distinct regulatory T cell types [11,12].

TCR-pMHC binding triggers a series of signaling reactions,

resulting in the formation of a plasma membrane-proximal

signalosome containing Src (Lck, Fyn) and Syk family protein

tyrosine kinases (Zap70), cytosolic (such as SLP-76, Gads, Grb-2),

and transmembrane adapter proteins (such as LAT). TCR-

activation of phosphoinositide 3-kinase (PI3K) converts the

abundant membrane phospholipid phosphatidylinositol(4,5) bi-

sphosphate (PIP2) into phosphatidylinositol(3,4,5) trisphosphate

(PIP3). By binding to pleckstrin homology (PH) or other protein-

domains, PIP3 recruits key effectors such as the Tec family protein

tyrosine kinase Itk (IL-2 inducing T cell activation kinase). Itk also

contains SH2 and SH3 domains that bind to signalosome

components. The Src kinase Lck phosphorylates Y511 in the A-

loop of the murine (Y512 in the human) Itk kinase domain [13].

Subsequently, Itk propagates TCR signals by phosphorylating and

activating signalosome-recruited phospholipase Cc1 (PLCc1).

PLCc1 then hydrolyzes PIP2 into the second messenger molecules

diacylglycerol (DAG) and inositol(1,4,5) trisphosphate (IP3). The

membrane lipid DAG further recruits and activates Rasgrp1 and

PKCs that in turn activate the GTPase Ras and the Bcl-10/

CARMA1/MALT complex, ultimately triggering thymocyte

positive and negative selection, or peripheral T cell responses

[14,15]. Soluble IP3 mobilizes Ca2+ from the endoplasmic

reticulum (ER). Moreover, IP3 3-kinases such as ItpkB can

phosphorylate IP3 at its 3-position into IP4 [2,6,7,14,16]. IP4

chemically resembles the PH domain binding PIP3 tetrapho-

sphoinositol headgroup [14,17].

We and others identified ItpkB as essential for thymocyte

positive selection [2,6,7]. ItpkB2/2 DP thymocytes show intact

proximal TCR signaling but defective IP4 production, Itk PIP3-

binding, signalosome recruitment and activation with ensuing

reduced PLCc1 activation, DAG production, and, Ras/Erk

activation [2]. The ability of soluble IP4 to bind to the Itk PH

domain and in low mM doses promote PIP3 binding, and the

ability of the Itk PH domain to oligomerize suggested that IP4

might promote Itk recruitment to membrane-PIP3 through a

cooperative-allosteric mechanism. In this model, IP4-binding to

one PH domain in an oligomer allosterically increases the ligand

affinities of the other PH domains in the same oligomer [2]. IP4

promoted Itk activation appears to be required for sufficient Itk

activation to ensure positive selection, because an exogenous

DAG-analog restored positive selection of ItpkB2/2 thymocytes

[2]. However, high-dose IP4 inhibited Itk PH domain binding to

PIP3 in vitro [2]. Whether it does so in vivo is unknown [14]. In

neutrophils, NK cells and myeloid progenitors, IP4 competitively

limits Akt PH domain binding to membrane PIP3[18–20]. Which

PH domains are positively versus negatively controlled by IP4, and

what determines whether IP4 promotes or inhibits PH domain

binding to PIP3 or leaves it unaffected are important open

questions [14,21]. In particular, the Itk PH domain might be bi-

modally regulated by IP4. However, the detailed molecular

interactions between Itk, PIP3 and IP4 in vivo are not well

characterized. This leaves room for multiple alternate hypothe-

ses/mechanisms. For example, one could also propose that the

binding affinity of PIP3 and IP4 for Itk changes from a low to a

fixed high value above a threshold IP4 concentration. Such a

mechanism implies that the interaction of Itk with IP4 and PIP3

after the threshold IP4 concentration is reached does not involve a

positive feedback. The situation is further confounded by elusive

results from experiments probing Itk oligomerization [2,22–28].

The current lack of a mechanistic understanding of how IP4

controls Itk PIP3-interactions and whether Itk PH domain

oligomerization is physiologically relevant arises from difficulties

in quantitatively measuring the interactions between Itk, IP4 and

PIP3, and in generating soluble Itk PH domain preparations for

biophysical studies and non-oligomerizing Itk PH domain mutants

for genetic analyses. Additional limitations arise from difficulties in

measuring membrane recruitment of Itk in cell population based

assays. It is also difficult to measure PIP3 bound Itk or

phosphorylation of PLCc1, a substrate of PIP3 bound Itk, in large

numbers of individual cells using flow cytometry techniques due to

limited antibody quality. In vitro and cell-based studies based on

ectopic Itk expression suggest the existence of several different

monomeric and oligomeric Itk species, including head-to-head

and head-to-tail dimers [2,22–28]. Andreotti and colleagues [22]

showed that Itk molecules can self associate via their SH2–SH3

domains into auto-inhibitory oligomers. This is hindered by SLP-

76 interactions with the Itk SH2–SH3 domains. It was suggested

that Itk molecules might exist as auto-inhibited multimers in the

cytosol, but after plasma membrane recruitment, Itk monomers

might mediate downstream activation [22,26]. Other experiments

[27,28] employing fluorescence complementation showed that

formation of Itk head-to-head and head-to-tail dimers requires the

PH domain and may primarily occur at the plasma membrane,

although low-abundance cytoplasmic dimers have not been

excluded. Here, monomeric Itk was proposed to be primarily

cytoplasmic and autoinhibited [27]. At least head-to-head

dimerization is unaffected by mutations in the other (SH2/SH3)

domains [28]. We found that the Itk PH domain can oligomerize

with other Itk PH domains or full length Itk [2]. Thus, the PH

domain is well suited to contribute to at least certain modes of Itk

oligomerization, some of which could have positive or a

combination of positive and negative functions regulated by IP4/

PIP3. This could account for the limited activity-enhancing effect

of disrupting SH3/SH2-domain mediated Itk dimerization [26].

Altogether, whether Itk PH domain dimerization has a

physiological function, whether it promotes or inhibits Itk

activation, whether IP4 controls Itk function through positive or

negative feedback, or both, and whether IP4 has additional

unrelated functions in thymocytes, are all contentious questions in

the field. Resolving them is very important, because PI3K is a

paramount regulator of signaling from many receptors in most

cells. PIP3 hyperactivity is a major contributor to immune,

metabolic and other diseases including cancers [29,30]. IP3 3-

kinases are broadly expressed and IP4 has been found in many cell

types. Thus, IP4 regulation of PIP3 function could be broadly

important and elucidating the precise molecular mechanisms

through which IP4 controls PIP3 signaling improves our under-

standing of a very fundamental and important signaling pathway

with great therapeutic relevance [14].

To further explore how the presence or absence of Itk PH

domain oligomerization, of positive or negative IP4 feedback or

both, or of specific molecular modes of association of Itk, PIP3 and

IP4 impact TCR signaling, we constructed seven different

molecular models (Table 1 and Figure S1B). We used a Maximum

Entropy (MaxEnt) [31–33] based approach to quantify the

robustness of each model against variations in rate constants and

protein expression levels at the single cell level. Each model was

constrained to reproduce the Itk activation kinetics of an entire cell

population measured in biochemical experiments. We found that

those models involving dimeric Itk molecules with IP4 mediated

competing positive and negative feedbacks are most robust. As in

many other cell signaling systems [34], the actual signaling kinetics

in thymocytes are likely to be robust against such variations, while

In Silico Modeling of Itk Activation Kinetics
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retaining their sensitivity to small variations in antigen affinity or

dose. On this basis, our simulations best support biphasic Itk

regulation by IP4 in thymocytes. Future testing of this exciting

hypothesis will require the so far unsuccessful generation of non-

oligomerizing Itk PH domain mutants and their expression in

Itk2/2 mice, along with currently impossible single-cell measure-

ments of IP4 levels in large cell populations.

Results

Multiple Molecular Models can be Constructed to Probe
Itk, IP4, and PIP3 Interactions in silico

We constructed seven different molecular models (Table 1,

Figure S1B) based on available details about interactions between

Itk, PIP3 and IP4 from the biochemical studies described above.

Including Itk kinase domain activation by Lck only caused

qualitative changes in the relative robustness of the models (Fig.

S17, Tables S9–S15). Therefore, for simplicity, we considered

models that do not contain Itk activation by Lck explicitly. We also

did not consider Itk autophosphorylation explicitly in the models

as it does not affect Itk catalytic activity. In addition, the role of Itk

autophosphorylation in PLCc1 activation remains unclear [22].

Since we aimed to elucidate general characteristics of the kinetics

of PIP3 binding to Itk, we used a simplified modeling scheme

(Fig. 1) and did not consider the detailed molecular composition of

the TCR and the LAT associated signalsome. The models also do

not investigate different mechanisms for formation of Itk

oligomers. Rather, they probe the functional consequences of

having Itk PH domain dimers versus monomers and how these

can affect interactions between Itk, PIP3 and IP4 in the presence or

absence of IP4 mediated positive feedback. The kinetics of PIP3

production due to signal-dependent recruitment of PI3K are not

considered explicitly as PIP3 is produced at a much faster time

scale (in seconds, [35] [36] [37]) than the time scales of PLCc1

activation (up to 60 min, Figure S18). The concentrations of LAT

bound Itk and of PIP3 were considered approximate markers for

the strength of the stimulation generated by antigen-TCR

interactions. Therefore, we considered fixed initial concentrations

of Itk and PIP3 in the models. We approximated the production of

IP4 from PIP2 by a single one-step reaction to simplify the models

further.

The models can be broadly classified into two types: (i) Models

M1–M4 and M7 containing IP4 mediated positive feedbacks. (ii)

Models M5 and M6 lacking IP4 positive feedback. In each type,

we further considered models that contained Itk dimers (models

M1–M3, M5, M7), or monomers (models M4, M6). In models

M1–M3, each of the two PH domains in the Itk dimer can

independently bind to either IP4 or PIP3 with a weak affinity when

the other PH domain is unoccupied. However, once a PH domain

is bound to an IP4 molecule, it allosterically increases the affinity of

the other PH domain for PIP3 and IP4. Models M1–M3 differ

from each other in the relative increase in the affinities of one PH

domain in the Itk dimer toward IP4 vs. PIP3 caused by IP4 or PIP3

binding to the other PH domain in the dimer. In contrast, in M7,

binding of PIP3 to one PH domain in a dimer increases the affinity

of the other PH domain for PIP3 but not for IP4. These models

probed potential secondary interactions between Itk dimers and

the membrane lipids. In the monomeric model, M4, IP4 binds the

single Itk PH domain with a weak affinity and induces a

conformational change that increases the affinity of this PH

domain for both PIP3 and IP4. Models M5 and M6 lack positive

IP4 feedback. Instead, the Itk PH domain binds to IP4 and PIP3

with equal affinity. These models probed a mechanism where the

Itk PH domain interacts with IP4 and PIP3 once a small threshold
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IP4 concentration is generated. We assumed that the small

threshold level of IP4 is generated at a time scale much smaller

than the timescale (min) of robust Itk activation and did not

consider the kinetics generating the threshold level of IP4 explicitly

in M5 and M6. The models are summarized in Table 1, Figure

S1B, and Tables S1–S8.

The Shape of Transient Itk Activation Kinetics Depends
on Specific Molecular Wirings and Feedbacks in the
Different Models

We studied the kinetics of Itk binding to PIP3 using

deterministic mass-action kinetic rate equations described by

ordinary differential equations (ODE) for all the models, ignoring

stochastic fluctuations in the copy numbers of signaling proteins

occurring due to the intrinsic random nature of biochemical

reactions [38]. Including such fluctuations did not change the

kinetics qualitatively (Figures S2–S3). In all seven models, the

kinetics of PIP3 bound Itk showed a transient behavior (Fig. 2A);

PIP3 bound Itk started with a low concentration, reached a peak

value at an intermediate time, and then fell back to a small

concentration at later times. We found that initially few Itk

molecules were bound to PIP3. With increasing time, more Itk

molecules became associated with PIP3 molecules due to the

binding reactions between Itk and PIP3. This produced the rise in

the Itk-PIP3 concentration. However, as the concentrations of

PIP3 bound Itk molecules increased, they also induced increased

production of IP4 molecules. IP4 competed with PIP3 for binding

to the Itk PH domain, and when the number of IP4 molecules

exceeded that of PIP3 molecules, most of the Itk molecules were

sequestered to the cytosol by forming stable complexes only with

IP4. This reduced the rate of PIP3 association of Itk and eventually

resulted in the decrease of the PIP3 bound Itk molecules. IP4

outnumbered PIP3 at later times because the number of PIP2

molecules, the source of IP3 and IP4 in a cell, is considered not

limiting in contrast to PIP3 [37,39]. We emphasize that the results

of our models do not depend on the cytosolic nature of Itk-IP4

complexes, but on the model assumption that Itk (or Itk oligomers)

Figure 1. Relevant basic interactions between Itk, PIP3 and IP4. Following TCR-pMHC binding, Itk molecules are bound by the LAT
signalosome via SLP-76 (not shown). Itk molecules (monomers or dimers, blue diamonds), bind the membrane lipid PIP3 with low affinity through
their PH domains. PIP3 bound Itk phosphorylates and thereby activates LAT-bound PLCc1. Activated PLCc1 then hydrolyzes the membrane lipid PIP2

into the soluble second messenger IP3, a key mediator of Ca2+ mobilization. IP3 3-kinase B (ItpkB) converts IP3 into IP4 (red filled circle). For our in silico
models, we simplified this series of reactions, encircled by the orange oval, into a single second order reaction where PIP3 bound Itk converts PIP2

into IP4. In models M1–M4 and M7, IP4 modifies the Itk PH domain (denoted as ItkC, purple diamonds) to promote PIP3 and IP4 binding to the Itk PH
domain. At the onset of the signaling, when the concentration of IP4 is smaller than that of PIP3, IP4 helps ItkC to bind to PIP3 (left lower panel).
However, as the concentration of IP4 is increased at later times, IP4 outcompetes PIP3 for binding to ItkC and sequesters ItkC to the cytosol (right lower
panel). In models M5/M6, IP4 and PIP3 do not augment each other’s binding to Itk. However, IP4 still outcompetes PIP3 for Itk PH domain binding
when the number of IP4 molecules becomes much larger than that of PIP3 molecules at later times.
doi:10.1371/journal.pone.0073937.g001
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bound to IP4 at every PH domain does not induce any PLCc1

activation.

We characterized the ‘shape’ of the temporal profile of PIP3

bound Itk in terms of (i) the largest concentration of PIP3 bound

Itk in the entire temporal profile (peak amplitude value A); (ii) the

time taken for PIP3 bound Itk to reach the peak value (peak time

tp); and (iii) the time interval during which the PIP3 bound Itk

concentration is greater than or equal to half of the peak value

(peak duration tw, Fig. 2B). A dimensionless variable quantifying

the asymmetry in the shape of the kinetics, denoted as the

asymmetry ratio R = tw/tp (Fig. 2B), turned out to be a useful

indicator for differentiating temporal profiles of concentrations of

PIP3 bound Itk in simulations and experiments. R also quantifies if

the time scale for the decay of the concentration of PIP3 bound Itk

after the peak value is reached is larger than or comparable to tp

(the timescale for producing the peak value A). E.g.,when R > 1, it

implies that the tp is comparable to decay time. R . 1 indicates a

more persistent signal with long decay times. Differences (transient

vs. persistent) in the shapes of kinetic profiles of signals

downstream of Itk activation have been observed to influence

thymocyte decision outcomes [2,40]. Therefore, R, which

characterizes the persistent or transient nature of Itk activation,

also contains details directly relevant for thymic selection

outcomes. We found that the shape of the transient kinetics of

PIP3 binding to Itk varied substantially depending on the

feedbacks and the molecular wiring of the networks. Since the

reaction rates used in the models are difficult to measure in vivo for

thymocytes, we estimated the rates based on interaction strengths

measured in vitro between PH domains and inositol phosphates in

other cells, and from temporal profiles of PLCc1 activation

measured in experiments with T cells (Tables S1–S7). Previous

work demonstrated the essential role of phosphorylated PLCc1

and its kinetics in regulating thymocyte positive, negative and

agonist selection [41,42]. Phospho-PLCc1 is also known to mirror

other indicators of T cell activation such as TCRf- or

Figure 2. Different molecular interactions in models M1–M7 produce different temporal profiles of PIP3 binding to Itk. (A) Kinetics of
PIP3 association of Itk for fixed initial PIP3 and Itk concentrations (100 and 370 molecules, respectively) in models with feedbacks (M1–M4, and M7, left
panel) and no feedbacks (M5–M6, right panel). (B) The shapes of the temporal profiles can be characterized by the parameters peak time (tp), peak
width (tw), and peak value or amplitude (A). The dimensionless asymmetry ratio R = tw/tp quantifies how symmetric the shape of the time profile is. A
larger R value indicates larger asymmetry. (C) Variations in R in models M1–M7 for different initial concentrations of Itk and PIP3. Color scales for R
values are shown on the right of each panel.
doi:10.1371/journal.pone.0073937.g002
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LAT-phosphorylation, or Erk-activation [2,40]. Therefore phos-

pho-PLCc1 is a relevant marker for functional T cell responses.

We studied variations in the kinetics of PIP3 bound Itk for

different initial concentrations of Itk and PIP3. This probed how

different ligand doses or affinities affected the PIP3 binding of Itk.

We found that the peak concentration of PIP3 bound Itk increased

in a graded manner with increasing initial Itk and PIP3

concentrations in all models (Figure S4). However, the peak time

tp (Figure S5), and the asymmetry ratio R (Fig. 2C), were affected

differently in different models. Among the feedback models, M1–

M3 and M7 containing Itk dimers generated smaller values (varied

between 2 to 6) of R compared to monomeric model M4 which

produced a much larger range of R (,20 -120) (Fig. 2C). The

models lacking positive feedbacks (M5 and M6) generated large

values (,100–700) of R compared to feedback models with Itk

dimers (Fig. 2C). In the feedback models, the initial low affinity

binding-unbinding interactions between Itk and PIP3/IP4 are

converted into high affinity interactions due to the positive

feedback. Therefore, a large part of tp is spent in building up the

positive feedback interactions controlled primarily by the weak

affinity binding-unbinding rates (or KD). The small values of R in

models M1–M3 and M7 occurred because stronger negative

feedbacks resulted in much smaller timescales for substantially

reducing the concentration of PIP3 bound Itk after it reached its

peak value compared to the other models. In the models lacking

positive feedback (M5, M6), concentrations of PIP3 bound Itk

decreased at a much slower rate than the peak time leading to

large values of R. In the monomeric model, the relatively weaker

strength of positive and negative feedbacks resulted in larger decay

time scales for the PIP3 bound Itk, producing large values of R.

These results are analyzed in detail in the web supplement and

Figures S6–S11. We will show below how the ability of feedback

models with Itk dimers to produce R values within a small range

leads to higher robustness of these models against parameter

variations at the single cell level.

Models Containing Dimeric Itk and IP4 Mediated Dueling
Positive and Negative Feedbacks are the Most Robust
Models

Quantification of robustness in in silico models. The

reaction rates describing non-covalent primary and secondary

interactions between Itk, PIP3 and IP4 can depend on specific

properties of the local cellular environment, such as local

membrane curvature [43], molecular crowding [44,45], and the

presence of different lipid molecules in the proximity [46]. Since

these factors can vary from cell to cell, the reaction rates can vary

at the single cell level. In addition, protein expression levels can

vary between cells. Such variations are also known as extrinsic

noise fluctuations [47,48]. The IP4 production rate depends on the

concentrations of ItpkB, Calmodulin (CaM), and released calcium

[3]. Hence, the IP4 production rates in our models which

approximate all such dependencies with a one-step reaction will

vary between individual cells as well. The above variations are

capable of producing differences in the shapes of temporal profiles

of activation of signaling proteins in individual cells [49]. In the

coarse-grained or approximate models we have constructed, many

molecular details have been approximated. For example, multiple

phosphorylation sites or SH2/SH3 binding sites of Itk, LAT, SLP-

76 and their regulation via TCR induced signaling are not

considered explicitly [3,22,50,51]. These detailed molecular

signaling events can depend on the concentrations of proteins,

enzymes, and lipids, and can thus be regulated differently in

different cells due to extrinsic noise fluctuations. Consequently, the

rates in our in silico models that effectively describe those detailed

signaling events can vary from cell to cell. Consistent with this

view, our simulations with the ODE models showed that the shape

of the kinetics of PIP3 bound Itk, characterized by, A, tp, and R,

changed significantly as the rate constants and initial concentra-

tions in a model were varied (Figures S12–S14). Thus, activation

kinetics of a marker molecule (e.g. PLCc1) measured in

experiments (e.g., immunoblots) assaying a large cell population

represent averages over a range of temporal profiles with different

shapes occurring at the single cell level.

We found that for some ranges of the reaction rates, multiple

different in silico models can produce the same values of A, tp, and

R (Figures S12–S14). This implied that more than one in silico

model could reproduce the mean temporal profile measured in cell

population assays. However, it is possible that each model could

show a different degree of robustness to variations in reaction rates

and initial concentrations at the single cell level. Robustness of

time dependent responses in a cell population against variations at

the single cell levels has been observed in several systems, e.g.,

oscillations in adenosine 39,59 cyclic monophosphate (cAMP)

concentrations in a population of Dyctostelium [52,53], or damped

oscillations of protein 53 (p53) in a population of human breast

cancer epithelial cells [54]. Robustness of cellular functions against

variations in external conditions and cell-to-cell variability has

been proposed as a required design principle for a wide range of

biochemical networks [55–58]. We therefore decided to ask:

Which model(s) can accommodate the largest variation in reaction

rates and initial concentrations, while reproducing the mean

temporal profile of PIP3 bound Itk measured as generation of

phosphorylated PLCc1 in cell population experiments? We

postulate that the answer to this question will point us to the

molecular circuitry most likely to be the relevant model, in the

sense that it robustly produces a specific temporal response at the

cell population level despite variations in the kinetics in individual

cells.

To identify the most robust model(s), we quantified robustness

using a method based on the principle of Maximum Entropy

(MaxEnt) [31–33]. MaxEnt provides a mechanism for estimating

the probability distribution of the rate constants and initial Itk and

PIP3 concentrations under constraints derived from experimental

data (Fig. 3A–B, 4A–B). Here, we used the experimentally

obtained values tp
expt and Rexpt as the constraints. It is difficult to

directly relate the amplitude (in units of number of molecules in

the simulation box) in the in silico models to experiments, where

amplitudes are calculated from the fold change of the immunoblot

intensities upon stimulation. Therefore, the experimental values of

A can be related to the number of activated molecules, at best,

through a proportionality constant dependent on specific protocols

used in an assay. Because of these issues we chose a value of Aexpt,

representing A in experiments, where every in silico model

produced amplitudes at Aexpt for a set of parameters within the

range of variations considered here. We then varied Aexpt to

investigate the change in robustness of the models and address the

arbitrariness in the choice of Aexpt. We constructed a relative

entropy measure (Kullback-Leibler distance, DKL, calculated on

the log10 scale) [59] that measures the deviation of the constrained

MaxEnt distribution from the unconstrained MaxEnt distribution,

in which all values of the rate constants and initial concentrations

are equally likely (uniform distribution). Thus DKL is being used as

a measure of how ‘‘close’’ each model can get to one which is

completely indifferent to the values of the rate constants, given the

experimental constraints. We then compared DKL across our

models in order to find the most robust model compatible with

experimental results. Note that the minimum value of DKL is 0,

with smaller values indicating greater robustness. We have also
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analyzed DKL for different models when tp
expt and Rexpt were

constrained but the amplitude Aexpt was not constrained (Figure

S23). The results are qualitatively similar to that of the case when

tp
expt, Rexpt, and Aexpt were constrained. This indicates that the

robustness of the temporal shape of Itk membrane recruitment

kinetics rather than the amplitude contributes substantially toward

the increased robustness of the feedback models with Itk dimers.

Experimental analysis of Itk activation kinetics in mouse

thymocytes. To determine which Itk activation profile predict-

ed by models M1–M7 produces maximum robustness while

reproducing experimental data, we analyzed Itk activation kinetics

in mouse CD4+CD8+ double-positive (DP) thymocytes, the

developmental stage where positive selection occurs [9,60]. To

generate a homogeneous cell population in which every cell

expresses the same TCR and in which the TCR has not been

stimulated by endogenous ligands prior to in vitro stimulation, we

used OT1 TCR-transgenic, RAG22/2, MHCI(b2m)2/2 mice.

Their DP cells express exclusively the transgenic OT1 TCR,

which recognizes the ovalbumin-derived peptide ligand OVA and

recently identified endogenous peptide ligands presented by

MHCI molecules [40,61]. In MHCI2/2 mice, no endogenous

ligands are presented to OT1 TCR-transgenic T cells and their

development is blocked at the DP stage due to impaired positive

selection. In vitro, OT1 TCR transgenic DP cells can be stimulated

with MHCI tetramers loaded with OVA peptide [40,61]. Due to

its high affinity for the OT1 TCR, OVA stimulation generates

strong TCR signals and induces DP cell deletion. A number of

OVA-derived altered peptide ligands (APL) have been generated

which carry single or multiple amino acid substitutions compared

to OVA. In the peptide series OVA.Q4R7.Q4H7.G4, such

substitutions progressively reduce OT1 TCR affinity and signaling

capacity [40]. Consequently, OVA and Q4R7 cause OT1 TCR-

transgenic DP cell negative selection, whereas Q4H7 and G4 trigger

positive selection.

We used MHCI tetramers presenting either one of these four

peptides to stimulate RAG22/2MHC2/2 OT1 TCR-transgenic DP

cells for various time points. We analyzed PLCc1 phosphorylation

at Y783, normalized to total PLCc1 protein levels, as a measure for

Itk activation [2] (Fig. 3A). Stimulation by all peptides induced fast

PLCc1 phosphorylation already at 1 min which peaked at 2 min

and then decreased over the next 60 min to very low levels which,

however, were still above background levels in unstimulated cells.

The decrease was fastest between 2 and 5 min and then

progressively slowed down. As expected, overall levels of PLCc1

phosphorylation progressively decreased with decreasing peptide

affinity/signaling capacity in the order OVA.Q4R7.

Q4H7.G4. An asymmetric peak shape with an extended right

flank was preserved across all signal intensities. We calculated the

peak durations (tw), peak times (tp) and asymmetry ratios R = tw/tp

in Table 2 for stimulation with OVA, Q4R7, Q4H7 and G4,

respectively. Consistent with preserved peak asymmetry, all ratios

R were .1.

Comparison between experiments and conclusions. The

phospho-PLCc1 levels (representing active Itk) for different affinity

peptides peaked at tp = 2 mins with R values from 1.9–4.3

(Table 2). Therefore, we fixed tp
expt = tp = 2 mins (the bar

indicates average over the cell population) for quantifying

robustness in the in silico modeling. The low, medium and large

initial Itk and PIP3 concentrations represent stimulation by weak

(G4), moderate (Q4R7, Q4H7) and high affinity (OVA) ligands,

respectively. Analyzing DKL (Fig. 3C) showed that for large initial

PIP3 and Itk concentrations (representing OVA stimulation) the

feedback models incorporating Itk PH domain dimers (M1–M3,

M7) were substantially more robust (Smaller DKL values) than the

models lacking feedbacks (M5, M6) for small values of R (,3).

Monomeric feedback model M4 produced large DKL values (1.5–

5). M5, M6 and M4 produced much larger ranges of R (Figure

S14) as the parameters were varied compared to the feedback

models with Itk dimers where the values of R were clustered

around Rexpt ,2. This behavior contributed substantially to the

increased robustness of the feedback models with dimers as these

models could accommodate for larger ranges of parameter

variations while being able to maintain the constraint imposed

by Rexpt. The relative robustness of the feedback versus feedback-

free models showed similar qualitative trends for the other ligands,

Q4R7, Q4H7, and G4 (Figure S15–S16). This suggests that the

models containing feedbacks and Itk dimers are substantially more

robust than models with Itk monomers or lacking feedbacks.

Evaluation of robustness in polyclonal thymocytes. The

molecular wiring of Itk, PIP3 and IP4 interactions is unlikely to

depend on the clonal nature of the T cells. Thus, the feedback

models with Itk dimers should also be more robust than the other

models when used to describe the kinetics of PLCc1 activation in

polyclonal DP thymocytes expressing many different TCRs with

different ligand specificities, stimulated by antibodies against the

common TCR subunit CD3 alone or with co-ligation of the

common coreceptor CD4. Stimulation of non TCR-transgenic

MHC2/2 DP cells with 1 mg/ml or 5 mg/ml of aCD3 or

combined aCD3/aCD4 antibodies produced different Rexpt and

tp
expt values than the OT1 system above (Fig. 4A–4B, Figure S18,

Table. S16). Calculation of the robustness constrained by Rexpt,

tp
expt and A showed that feedback models M1, M2, M3 and M7

are again substantially more robust than the other models (Fig. 4C–

4F, Figure S19, S20). Large variations of R in M4, M5 and M6 as

parameters were varied again made these models substantially less

robust than the feedback models with Itk dimers.

Discussion

Here, we used in silico simulations combined with a novel

Maximum Entropy (MaxEnt) based method and cell population

averaged measurements of PLCc1 activation kinetics to distinguish

between multiple models constructed to elucidate different

mechanisms of Itk activation in TCR signaling. Our analysis

quantified the robustness of seven different models employing

monomeric or dimeric Itk PH domains with or without positive

and negative IP4 feedback against variations of parameters (rates

and concentrations) at the single cell level. MaxEnt has been

widely used in diverse disciplines ranging from physics [62] via

information theory [63] to biology [64–67] to estimate probability

distributions of variables subject to constraints imposed by

experimental data [33,65]. However, to our knowledge these

methods have not been used for evaluating the robustness of

dynamic models in cell signaling or gene regulatory systems. Using

thymocyte positive selection as a physiologically important model

process, our results show the usefulness of MaxEnt methods for

such studies. We are currently working on extending the methods

to include additional information from experiments (such as

variances), and also evaluating their performance in comparison

with closely related approaches such as Bayesian analysis [68].

Our simulations predict that the models containing IP4

feedbacks and Itk dimers are most robust. This is consistent with

our previously proposed model of cooperative-allosteric regulation

of Itk-PIP3 interactions via IP4-binding to oligomeric Itk PH

domains [2]. Thymocyte selection critically depends on TCR

induced signals. Small differences in antigen peptide concentration

or affinities for the same TCR can produce opposite (negative vs.

positive) selection outcomes [40]. Thus, we consider it plausible
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Figure 3. Experimentally measured PLCc1activation kinetics in DP thymocytes stimulated with TCR ligands of different affinities
and robustness of in silico models. (A) Immunoblots showing Y783-phosphorylated (upper panels) and total (lower panels) PLCc1 protein
amounts in RAG22/2MHC2/2 OT1 TCR-transgenic DP thymocytes stimulated for the indicated times with MHCI tetramers presenting the indicated
altered peptide ligands (APL). (B) Phospho-PLCc1 levels normalized to total PLCc1 protein amounts plotted over time for the indicated APLs. Their
TCR affinity decreases in the order OVA (black).Q4R7 (red).Q4H7 (blue).G4 (green). Band intensities were quantified via scanning and analysis with
ImageJ software. Representative of several independent experiments. (C) Variation of the Kulback-Leibler distance DKL with R for models M1–M3
(blue, red and black, respectively), M7 (yellow), and M4–M6 (orange, purple, and maroon, respectively) at high initial Itk (Itk0 = 140 molecules) and PIP3

concentrations (PIP3
0 = 530 molecules), representing high-affinity OVA stimulation for tp = 2 min and A (shown as Aavg) = 40 molecules. Note we use A

to represent the amplitude Aexpt in experiments measuring fold change in Itk phosphorylation (see the main text for further details). The vertical
orange bar indicates Rexpt for OVA. Color legend in (D). (D) The color map shows which model is most robust (has the lowest DKL) as Rexpt and A
(shown as Aavg) are varied for the same parameters as in (C). The color legend is depicted on the right.
doi:10.1371/journal.pone.0073937.g003
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that for a fixed antigen dose and affinity (or average initial

concentrations of Itk and PIP3 in our models), TCR signaling in

thymocytes should be robust against cell-to-cell variations of

protein/lipid concentrations, rate constants and local environ-

ment. But TCR signaling should retain sensitivity to small

variations in antigen affinity or dose. A direct experimental

validation of this assumption will require to test the probability

distributions of tp, R, and A in cell populations where PLCc1

activation kinetics are measured in individual cells. However, we

were unable to perform such single cell comparisons due to the

insensitivity of FACS-based PLCc1 signaling assays. This indicates

the importance of studying the effects of network architecture, rate

constants, protein and lipid concentrations on system robustness in

DP thymocyte selection in detail in the future. Thymocytes are an

excellent in vivo model to probe the exquisite dependency of cell

fate decisions on the affinity of TCR ligands with important

physiological and pathological implications. This provides a

valuable addition to the experimental and theoretical investiga-

tions of robustness in synthetic systems or transformed tissue

culture cells in vitro.

On the basis of robustness, our simulations support bimodal

positive and negative Itk regulation by IP4 in thymocytes. They

make a supportive argument that Itk PH domain oligomerization

and IP4 feedback are physiologically important, consistent with the

severely defective TCR signaling, IP4 production, Itk/PLCc1

activation, positive selection and resulting immunodeficiency in

ItpkB2/2 mice, the ability of IP4 to bimodally control Itk PH

domain binding to PIP3 in vitro, and the reported Itk PH domain

oligomerization [2,6,7,28]. They do, however, not exclude the

possibility that IP4 also has additional, unknown functions in DP

cells [14].

Testing this exciting hypothesis will require currently impossible

single-cell measurements of IP4 levels in large cell populations.

Moreover, the physiological roles and modes of Itk oligomeriza-

tion, the specific PH domain contributions to Itk oligomerization,

whether Itk oligomerization occurs in the cytoplasm or at the

plasma membrane or both, whether it exclusively inhibits or can

also promote Itk activation, and whether IP4 promotes or inhibits

Itk PH domain binding to PIP3 or does both depending on its local

concentration are all matters of active debate [2,22–28]. Their

conclusive elucidation requires quantitative biophysical studies of

full length Itk with or without mutational perturbation of

individual and combined interactions among the different Itk

domains implicated in its monomeric and oligomeric self-

association, and the reconstitution of Itk2/2 mice with these

mutants at endogenous expression levels. Unfortunately, difficul-

ties to produce sufficient quantities of soluble full-length Itk or Itk

PH domain protein, and a tendency of Itk and its PH domain to

aggregate in vitro have precluded more quantitative analyses of Itk

PH domain oligomerization and IP4/PIP3 interactions, as well as

the generation of non-oligomerizing Itk PH domain mutants.

Despite progress regarding SH2/SH3/proline-rich domain inter-

actions [22–26] and some evidence for PH domain involvement

[2,27,28], formation of several different homotypic Itk dimers with

differing subcellular localization and functions further complicates

such analyses and their interpretation. Our in silico results suggest

that by enabling competing positive and negative IP4 induced

feedback, Itk PH domain oligomerization could render Itk

signaling in DP thymocytes much more robust to parameter

fluctuation between individual cells than could be achieved

without Itk dimers, or without IP4 feedback. Models M1–M3

and M7 involving Itk dimers and IP4 feedbacks showed

substantially larger robustness than models lacking feedbacks

(M5–M6) or containing only monomeric Itk (M4). M1–M3 and

M7 can describe the experimentally observed PLCc1 kinetics with

similar robustness. They differ only at the level of secondary Itk/

IP4/PIP3 interactions. Similar robustness and the inherent

variability of experimental data preclude the identification of

one of these dimeric Itk feedback models as the only one operative

in vivo thus far.

Materials and Methods

Signaling Kinetics in the in silico Models
We constructed ODE based models. The ODEs described

kinetics of concentrations of proteins and lipids in two well-mixed

compartments representing plasma membrane and cytosol (Figure

S1A). The biochemical signaling reactions for each model are

shown in Tables S1–S7. The details regarding the construction of

the ODEs and the parameters are given in the web supplement

and Figure S1. We use the rule based modeling software package

BioNetGen [69] to generate time courses for the species kinetics

for the signaling networks described by models M1–M7. This

program produces a set of ODEs corresponding to the mass-action

kinetics describing biochemical reactions in the networks and

solves them numerically using the CVODE solver [70]. The

ODEs for each model are listed in the supplementary material.

Quantification of Robustness Based on the Maximum
Entropy Principle

When a variable x can assume multiple values and is distributed

according to a probability distribution p(x), then the uncertainty

associated with the distribution can be quantified by the entropy

(S) defined as,

S~{
X

x

p(x) ln p(x) ð1Þ

S is non-negative and is maximized when x is distributed

according to a uniform distribution (i.e., x can take any value

within a range with equal probability). Suppose p(x) is unknown,

but we do know the average value of a variable, f, that is a function

of x, i.e., f = f(x). We can then maximize S under the constraint

X

x

f (x)p(x)~f ð2Þ

The constrained MaxEnt distribution is given by p(x) /
exp(2lx), where the constant l, also knovn as the Lagrange

multiplier, is determined by solving Eq. (2) for l when the above

MaxEnt distribution for p(x) is used in Eq. (2). The method can be

Table 2. Values of peak time, peak width, and asymmetry
ratio R calculated from the PLCc1 activation kinetics in Fig. 3
for different ligands.

Ligand
Peak time
(tp) (min)

Peak vidtg
(tw) (min) R

OVA 2.0 3.9 1.9

Q4R7 2.0 8.6 4.3

Q4H7 2.0 7.5 3.8

G4 2.0 4.3 2.1

doi:10.1371/journal.pone.0073937.t002
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Figure 4. Models containing Itk dimers and dueling feedbacks also show higher robustness for polyclonal T cells stimulated by
anti-CD3 antibodies. PLCc1 phosphorylation kinetics in MHC2/2 T cells stimulated by antibodies against (A) CD3 or (B) CD3 and CD4 at 1 mg/ml
versus 5 mg/ml. (C) Variation of DKL with R for the in silico models M1–M3 (blue, red and black, respectively), M7 (yellow), and M5–M6 (purple and
maroon, respectively) at initial Itk (Itk0 = 100 molecules) and PIP3 concentrations (PIP3

0 = 370 molecules) at tp = 1 min and Aavg = 60 molecules,
representing anti-CD3 stimulation at 5 mg/ml. The orange bar indicates Rexpt. Note we use Aavg to represent the amplitude Aexpt in experiments
measuring fold change in Itk phosphorylation (see the main text for further details). (D) Variation of DKL with R for anti-CD3/CD4 stimulation at 5 mg/
ml at tp = 1 min and Aavg = 80 molecules. The initial Itk (Itk0 = 140 molecules) and PIP3 concentrations (PIP3

0 = 530 molecules) were used. The orange
bar indicates Rexpt. (E) and (F) show maps of the most robust models (with the lowest DKL) as Rexpt and A (shown as Aavg) are varied for the same
parameters as in (C) and (D), respectively.
doi:10.1371/journal.pone.0073937.g004
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easily generalized to accommodate multiple variables and

constraints. We used the constraints imposed by tp
expt, Rexpt,

and Aexpt, or, tp
expt and Rexpt that are measured over a cell

population. Therefore, the MaxEnt distribution of the parameters

in our calculation is given by, p({ki}) / exp(2l1tp({ki}) – l2 R({ki})

2 l3 A({ki})), where l1, l2 and l3 denote the Lagrange’s

multipliers, and {ki} denote the values of rate constants and initial

concentrations in individual cells. The Lagrange multipliers can be

calculated from the constraint equations,

X

kif g
tp kif gð Þp kif gð Þ~texpt

p

X

kif g
R kif gð Þp kif gð Þ~Rexpt

X

kif g
A kif gð Þp kif gð Þ~Aexpt

ð3Þ

The MaxEnt distribution thus describes how tp, R, and A, in

individual cells are distributed over a cell population. The

distribution also produces an estimation of the probability

distributions for the rate constants and initial concentrations that

regulate tp, R, and A, through the functions tp({ki}), R({ki}), and,

A({ki}), respectively. The specific relationship between the

parameters, {ki}, and the observables (tp, R, and A) is dependent

on the molecular details of the models, M1–M7. In all the models

prior to the MaxEnt calculation, the rate constants were chosen

from a uniform distribution with lower and upper bounds equal to

1/10 and 10 times, respectively, of the base values shown in

Tables S1–S7. Similarly, the initial concentrations of proteins (e.g.,

Itk) and lipids (such as PIP3) were varied within a 35% [71] range

from uniform distributions centered at the base values shown in

Table S8. The joint uniform distribution in the parameters is given

by q({ki}). We then used these MaxEnt distributions to quantify

relative robustness of the models by calculating the Kullback-

Leibler distance [59]

DKL~
X

kif g
p kif gð Þ ln p kif gð Þ=q kif gð Þ½ � ð4Þ

That is, for each model, we first find the probability distribution

for the rate constants and initial concentrations that maximizes the

entropy (robustness) for that model under the experimental

constraints, giving the model a kind of ‘‘maximum benefit of the

doubt.’’ We then compare the resulting MaxEnt models with one

another to evaluate their relative robustness to variation in the rate

constants, in order to select the model(s) most likely to correctly

represent the actual kinetics. When p({ki}) is equal to q({ki}), DKL

assumes the minimum value 0; as the distribution p({ki}) starts

deviating from the uniform distribution, say by becoming sharply

peaked around a particular value, DKL increases. Thus maximiz-

ing the entropy S, is equivalent to minimizing DKL in Eq. (4). The

calculations of DKL were done at a specific antigen dose which

fixed the average values of initial concentrations of Itk and PIP3.

Therefore, the robustness calculations did not exclude the

sensitivity of PLCc1 activation to changes in PIP3 concentrations

resulting from antigen dose variations. We calculated p({ki}) by by

minimizing the DKL subject to the constraints imposed by Eq. (3).

We used DKL to rank order the models for a particular measured

value of tp
expt, Rexpt, and, Aavg. All the calculations were carried out

using MATLAB. Additional details can be found in the

supplementary material (Figures S12–S15). Note that DKL is

unaffected by inclusion of additional parameters that do not

influence the experimentally measured variables (Figure S21,

Table S17). Thus having extra variables in a model does not in

and of itself affect the relative robustness of models with variable

numbers of parameters. We have used 100,000 sample points,

which we have shown to be statistically sufficient in Figure S22 for

the faithful calculation of DKL.

Thymocyte Stimulation and Immunoblot Analysis
All mice were housed in The Scripps Research Institute specific

pathogen-free vivarium monitored by The Scripps Research

Institute Department of Animal Resources. All animal studies were

approved by The Scripps Research Institute IACUC and conform

to all relevant regulatory standards.

DP cells were prepared as in [2] and rested at 37uC for 3 hours.

Then, 107 DP cells per sample were incubated on ice for 15 min

with 2.4 mM MHCI tetramers pre-loaded with either one of the

altered peptide ligands OVA, Q4R7, Q4H7 or G4 [40],

stimulated by rapidly adding 37uC warm PBS for the indicated

times and quickly lysed in 100 mM Tris, pH 7.5, 600 mM NaCl,

240 mM n-octyl-b-D-glucoside, 4% Triton, 4 mM EDTA and a

protease/phosphatase inhibitor cocktail (Roche). Lysates were

cleared by centrifugation at 14000 rpm for 10 minutes at 4uC,

resolved by SDS-PAGE and analyzed via immunoblot as

previously described [2]. Band intensities were quantified via

densitometry using NIH ImageJ software, and phosphoY783-

PLCc1 intensities normalized to total PLCc1 amounts.

Supporting Information

Figure S1 (A) Details of the simulation box. We used L = 2 mm,

l = 2 nm and d = 0.02 mm for our simulations. (B) Graphical
networks describing the signaling reactions in models
M1–M7. Itk shown in this figure represents an Itk molecule that is

bound to the TCR and LAT signalosome (not shown). High

affinity binding reactions are shown as green arrows. PIP2

hydrolysis into DAG and IP3 which ultimately produces IP4 (S)

is shown as red arrows. (M1) In model M1, both IP4 and PIP3 can

equally induce allosteric modifications of the PH domains in Itk

dimers. (M2) Model M2. Similar to M1, however, modification of

the PH domains by PIP3 cannot stabilize IP4 or PIP3 binding to

the Itk PH domains. (M3) Model M3. Similar to M1, however,

modification of the PH domains by PIP3 can only stabilize IP4 but

not PIP3 binding to the Itk PH domains. (M4) Model M4. The Itk

PH domains are monomeric and unable to interact allosterically.

IP4 or PIP3, upon binding with a weak affinity, instantaneously

changes Itk to a high affinity conformation (Itk*) where IP4 (or

PIP3) can replace PH domain bound PIP3 (or IP4) with high

affinity. (M5) Model M5. Both IP4 and PIP3 bind to the PH

domains of the Itk dimer with low affinity. No allosteric

modification occurs. (M6) Model M6. Similar to model M5 but

Itk exists only in monomers. (M7) Model M7. Similar to M1,

however, modification of the PH domains by PIP3 can only

stabilize PIP3 but not IP4 binding to the Itk PH domains.

(TIF)

Figure S2 Presence of Intrinsic fluctuations does not
lead to qualitatively different temporal profiles as
compared with the deterministic model. We show 11

different stochastic trajectories for Itk0 = 20 molecules and

PIP3
0 = 50 molecules, the lowest concentration used in our

simulations, for model M3. The stochastic trajectories for

concentrations of PIP3 bound Itk were obtained by solving the
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Master equation associated with the signaling reactions (Table S3)

using the Gillespie algorithm. The curve in red is the solution of

the mass action kinetics given by a set of ODEs. We use the same

kinetic rates and initial concentrations for the stochastic simula-

tions and the ODEs.

(TIFF)

Figure S3 Comparison between the ODE solutions and
the stochastic trajectories averaged over a small num-
ber of cells. We compared the temporal profiles of concentra-

tions of PIP3 bound Itk obtained in simulations including

stochastic copy number variations due to intrinsic noise fluctua-

tions (red) with the solutions of the deterministic mass action

reaction kinetics that ignored such fluctuations (solid black lines).

The stochastic simulations were carried out by using Gillespie’s

method which provided exact numerical solution of the Master

equations associated with the models. We used the same rate

constants and initial concentrations for the stochastic simulations

and ODE solutions. The kinetic trajectories were averaged over

500 realizations (or in silico ‘‘cells’’) for the stochastic simulations.

We show the results for the smallest concentrations of Itk0 (20

molecules) and PIP3
0 (50 molecules) where the effect of the

stochastic fluctuations is expected to be the largest.

(TIFF)

Figure S4 Variation of the peak value (A) with Itk0 and PIP3
0 for

all seven models.

(TIFF)

Figure S5 Variation of tp with Itk0 and PIP3
0 for all six

models. The peak time (tp) of the temporal profile of the

concentration of PIP3 bound Itk varied by an order of magnitude

(roughly from 1 min to 10 mins) in models M1–M4 and M7, while

the peak time did not change appreciably in models M5 and M6

over the entire range of variation. However,tp did not vary

appreciably over a large range of initial Itk (.100) and PIP3

concentrations (.150) even in the models M1–M4 and M7. Most

of the large variations occurred at small concentrations of Itk and

PIP3.

(TIFF)

Figure S6 Estimation of the reaction rates in the
effective binding-unbinding reaction. A) The transient

kinetics of PIP3 bound Itk in M3 (red) is compared with the case

when the negative feedback is removed (black). We use t1/2 and

the steady state concentration of the kinetics of PIP3 bound Itk in

the absence of the negative feedback to calculate the rates in the

effective binding-unbinding reaction 1. B) Kinetics of PIP3 bound

Itk in the absence of the negative feedback in model M3 (black).

Blue, kinetics of PIP3 bound Itk in the corresponding binding

unbinding process where the t1/2 and the steady state concentra-

tion of PIP3 bound Itk is exactly the same as the black curve. (See

Text S1)

(TIFF)

Figure S7 Variation of KD as a function of the sum of
Itk0 and PIP3

0 for models M1 to M4. The KD for the binding

unbinding process has been estimated using the steady state values

of the Itk kinetics in presence of the positive but not negative

feedback. For models M1–M3, KD does not change significantly

with increasing concentrations of initial Itk and PIP3. The value of

KD is much smaller than the sum of (Itk0+PIP3
0) as well. For M4

however, KD increases significantly (by an order of magnitude).

The absolute value of the KD is still a lot less than (Itk0+PIP3
0).

(TIFF)

Figure S8 Variation of k1 as a function of the sum of Itk0

and PIP3
0 for models M1 to M4. k1 decreased roughly 2 fold

with the increase in Itk0 and PIP3
0 for M1 and M3, while, for

model M2, k1 increased 4 times. In M4, k1 did not change

appreciably.

(TIFF)

Figure S9 The saturation of the width in the feedback
models. A) We have varied both Itk0 and PIP3

0 such that PIP3
0

$ Itk0. The plot of the width of PIP3 bound Itk as a function of

(Itk0+PIP3
0) is shown for M1 (black line) and M2 (red line). For

large values of (Itk0+PIP3
0) the width saturates (the orange oval)

both for M1 and M2. For M2 however the rate of decay of the

width of Itk – PIP3 kinetics is much faster than for M1 as can be

seen from the fact that the red curve decays from roughly 12 mins

to 3 mins where as the black curve goes down from 7 mins to

5 mins. B) The transient activation kinetics of the membrane

bound Itk in M1 are shown in black. PIP3
0 = 500, Itk0 = 200. The

dotted red curve is the exponential decay curve of the form e2kt

with the time constant equal to the inverse of the high affinity PIP3

unbinding rate.

(TIFF)

Figure S10 A large concentration of IP4 is required to
replace PIP3 in models M5–M6. A) Variation of the steady state

xs (Itk-PIP3) as a function of initial substrate (PIP2) concentration S0

when the KD = 2000. B) Variation of the steady state xs as a function of

initial substrate concentration S0 when the KD = 200.

(TIFF)

Figure S11 A large concentration of IP4 is required to
replace PIP3 in model M4. A) Variation of the steady state xs

(Itk-PIP3) as a function of initial substrate (PIP2) concentration S0

when the KD = 2000. B) Same as in A) for KD = 200.

(TIFF)

Figure S12 The histograms for R and t as the param-
eters are varied in all 7 models for moderately low
initial concentrations of Itk0 and PIP3

0. All the rate

constants are varied by two orders of magnitude with the

constraint KD
low =a KD

high. For M1–M3, a is distributed

uniformly over 1 to 4000 while for M7 it is distributed uniformly

over 1 to 50. The initial concentrations of species involved are

varied in a 35% window about the base value of Itk0 = 40,

PIP3
0 = 130 and PIP2

0 = 17000.

(TIFF)

Figure S13 The histograms for R and t as the param-
eters are varied in all 7 models for moderately high
initial concentrations of Itk0 and PIP3

0. All the rate

constants are varied by two orders of magnitude with the

constraint KD
low =a KD

high. For M1–M3, a is distributed

uniformly over 1 to 4000 while for M7 it is distributed uniformly

over 1 to 50. The initial concentrations of species involved are

varied in a 35% window about the base value of Itk0 = 100,

PIP3
0 = 370 and PIP2

0 = 17000.

(TIFF)

Figure S14 The histograms for R and t as the param-
eters are varied in all 7 models for high initial
concentrations of Itk0 and PIP3

0. All the rate constants are

varied by two orders of magnitude with the constraint KD
low =a

KD
high. For M1–M3, a is distributed uniformly over 1 to 4000

while for M7 it is distributed uniformly over 1 to 50. The initial

concentrations of species involved are varied in a 35% window

about the base value of Itk0 = 140, PIP3
0 = 530 and PIP2

0 = 17000.

(TIFF)
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Figure S15 Checkerboard plot of the most robust
models for different ligand affinities as Ravg and Aavg

are varied for a fixed tavg = 2 mins. a) Plot of the most robust

models for Itk0 = 140 and PIP3
0 = 530 molecules. b) The same plot

as a) for Itk0 = 100 and PIP3
0 = 370 molecules. c) Same plot as a)

for Itk0 = 40 and PIP3
0 = 130 molecules. d) The same plot as a) for

Itk0 = 20 and PIP3
0 = 50 molecules.

(TIFF)

Figure S16 Plots of the relative robustness of all the 7
models for a specific Aavg for different ligand affinities
as Ravg is varies for a fixed tavg = 2 mins. a) For Itk0 = 140

and PIP3
0 = 530 molecules the DKL is shown for an Aavg of 40

molecules. b) The same plot as a) for Itk0 = 100 and PIP3
0 = 370

molecules when the Aavg is held fixed at 20 molecules. c) Same plot

as a) for Itk0 = 40 and PIP3
0 = 130 molecules when Aavg = 10

molecules. d) The same plot as a) for Itk0 = 20 and PIP3
0 = 50

molecules when Aavg = 3 moelcules. The orange vertical bar in all

the plots show the experimentally observed value of Ravg.

(TIFF)

Figure S17 The effect of Lck mediated phosphorylation
of Itk-PIP3 on the relative robustness of M1–M7. Upper

panel (left most corner): For Itk0 = 100 and PIP3
0 = 370 the most

robust models are shown as amplitude and the ratio of the Itk-PIP3

kinetics are varied in presence of the Lck mediated phosphory-

lation of membrane recruited Itk at its Y511 residue. The average

peak time is held at 2 mins. Upper panel (right most corner): The

same plot without any Lck mediated activation. Lower panel (left

most corner): The relative robustness of the models M1–M7 for an

amplitude average of 20 molecules in presence of Lck mediated

activation of Itk. Lower panel (right most corner): Same plot

without the explicit Lck mediated activation.

(TIFF)

Figure S18 Kinetics of induction of PLCc1 phosphory-
lation represented as the fold increase over non
stimulated cells using total PLCc1 protein as a loading
control.
(TIFF)

Figure S19 Checkerboard plot of the most robust
models as Ravg and Aavg are varied for different doses
of anti-CD3 and anti-CD3/CD4 antibodies. a) Itk0 = 40

and PIP3
0 = 130 molecules are used to emulate the 1 mg/mL anti

CD3 stimulation. The tavg is held at 1 mins. The checkerboard

diagram of the most robust models is shown as Ravg and Aavg are

varied. b) Same as plot a) but Itk0 = 100 and PIP3
0 = 370 molecules

are used as the initial concentrations. c) Itk0 = 100 and PIP3
0 = 370

molecules are used to emulate the 1 mg/mL anti CD3/CD4

stimulation. The tavg is held at 5 mins. The checkerboard diagram

of the most robust models is shown as Ravg and Aavg are varied. d)

Itk0 = 140 and PIP3
0 = 530 molecules are used to emulate the

5 mg/mL anti CD3/CD4 stimulation. The tavg is held at 1 mins.

The checkerboard diagram of the most robust models is shown as

Ravg and Aavg are varied.

(TIFF)

Figure S20 The plot of DKL for all the 7 models for a
specific amplitude and different initial conditions for
different doses of anti CD3 or anti CD3/CD4 antibodies.
a) Itk0 = 40 and PIP3

0 = 130 molecules are used to emulate the

1 mg/mL anti CD3 stimulation. The tavg is held at 1 mins. The

DKL is shown for an Aavg = 16 molecules. b) Same as plot a) but

Itk0 = 100 and PIP3
0 = 370 molecules are used as the initial

concentrations and Aavg = 60 molecules. c) Itk0 = 100 and

PIP3
0 = 370 molecules are used to emulate the 1 mg/mL anti

CD3/CD4 stimulation. The tavg is held at 5 mins. Aavg = 60

molecules. d) Itk0 = 140 and PIP3
0 = 530 molecules are used to

emulate the 5 mg/mL anti CD3/CD4 stimulation. The tavg is held

at 1 mins and Aavg is set equal to 80 molecules. The vertical

orange bar shows the observed experimental values.

(TIFF)

Figure S21 Addition of parameters which weakly affect
the Itk-PIP3 kinetics, do not lead to any significant
difference in the DKL. For Itk0 = 100 and PIP3

0 = 370, a) we

have looked at the relative difference in the DKL of our old M3

(black) and M3 with the added reactions (magenta) for an

amplitude average of 30 molecules and peak time average of

2 mins. b) We have looked at the relative difference in the DKL of

our old M3 (black) and M3 with the added reactions (magenta) for

an amplitude average of 40 molecules and peak time average of

2 mins.

(TIFF)

Figure S22 The sample set of 100,000 is a good sample
size. We show the DKL of M1–M7 for Itk0 = 100 and PIP3

0 = 370

for a) 20,000 realizations and b) 100,000 realizations when the

amplitude average is 20 molecules and the peak time average is

2 mins. The KL distances are identical.

(TIFF)

Figure S23 DKL without the constraint on amplitude.
Lower DKL values (shown in log10 scale) denote higher robustness

for any given Ravg. Based on the data in Fig. 4, the average peak

time was fixed at 2 mins in all cases. Experimentally measured

Ravg values are indicated by vertical orange lines. (A) Robustness

for models M1–M3 and M5–M6 at high initial Itk (Itk0 = 140

molecules) and PIP3 concentrations (PIP30 = 530 molecules),

simulating high-affinity OVA stimulation. M2 appears most

robust in the experimentally observed Rave range. M4 fails

produce any R value in the range investigated here. (B) M2 shows

maximal robustness for moderate concentrations of initial Itk

( = 100 molecules) and PIP3 ( = 370 molecules), simulating Q4R7

stimulation. (C) For lower values of Itk0 ( = 40 molecules) and

PIP30 ( = 130 molecules), simulating Q4H7 stimulation, M1–M3

are most robust with similar DKL values in the experimentally

observed Rave range. (D) For low initial concentrations of Itk

(Itk0 = 20 molecules) and PIP3 (PIP30 = 50 molecules), simulating

stimulation by the low affinity peptide G4, M1–M3 are again most

robust inthe experimentally observed Ravg range. Models M4–

M6 fail to produce any value of R in the range investigated here.

Model M7 is not shown.

(TIFF)

Table S1 Reactions and rate constants for model M1.

(DOCX)

Table S2 Reactions and rate constants for model M2.

(DOCX)

Table S3 Reactions and rate constants for model M3.

(DOCX)

Table S4 Reactions and rate constants for model M4.

(DOCX)

Table S5 Reactions and rate constants for model M5.

(DOCX)

Table S6 Reactions and rate constants for model M6.

(DOCX)

Table S7 Reactions and rate constants for model M7.

(DOCX)
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Table S8 Values of the concentrations of different molecular

species used in the models.
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Table S9 Reactions and rate constants for model M1lck.
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Table S10 Reactions and rate constants for model M2lck.
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Table S12 Reactions and rate constants for model M4lck.
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Table S13 Reactions and rate constants for model M5lck.
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Table S14 Reactions and rate constants for model M6lck.
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Table S15 Reactions and rate constants for model M7lck.
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Table S16 Values of peak time, peak width, and asymmetry

ratio R calculated from the PLCc1 activation kinetics in Figure

S18.
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Table S17 New reactions added to M3.
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Text S1 Supporting calculations and discussions.
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