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Abstract: Accumulating evidence suggests that the pineal hormone melatonin displays protective
effects against renal fibrosis, but the mechanisms remain poorly understood. Here, we investigate the
effect of the pineal hormone on transdifferentiation of renal fibroblasts to myofibroblasts invoked by
transforming growth factor-β1 (TGF-β1). Increased proliferation and activation of renal interstitial
fibroblasts after TGF-β1 treatment were attenuated by melatonin pretreatment. Mechanistically,
melatonin suppressed Smad2/3 phosphorylation and nuclear co-localization of their phosphorylated
forms and Smad4 after TGF-β1 stimulation. In addition, increased phosphorylations of Akt,
extracellular signal-regulated kinase 1/2, and p38 after TGF-β1 treatment were also suppressed
by the hormone. These effects of melatonin were not affected by pharmacological and genetic
inhibition of its membrane receptors. Furthermore, melatonin significantly reversed an increase
of intracellular reactive oxygen species (ROS) and malondialdehyde levels, and a decrease of the
reduced glutathione/oxidized glutathione ratio after TGF-β1 treatment. Finally, TGF-β1-induced
proliferation and activation were also suppressed by N-acetylcysteine. Altogether, these findings
suggest that the pineal hormone melatonin prevents TGF-β1-induced transdifferentiation of renal
interstitial fibroblasts to myofibroblasts via inhibition of Smad and non-Smad signaling cadcades by
inhibiting ROS-mediated mechanisms in its receptor-independent manner.

Keywords: transforming growth factor-β1; fibroblast-myofibroblast transdifferentiation; reactive
oxygen species; renal interstitial fibroblasts; melatonin

1. Introduction

Renal fibrosis is critically involved in the pathogenesis of chronic kidney disease (CKD) and
attributed to excessive deposition of extracellular matrix (ECM). Its underlying mechanisms are complex
and involve various cellular pathways [1]. Among them, fibroblast-myofibroblast transdifferentiation
is one of the critical steps in the fibrotic process. Myofibroblasts synthesize and secrete large amount
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of ECM into the renal interstitial region. Thus, blocking fibroblast-myofibroblast transdifferentiation
would be a promising preventive or therapeutic approach against renal fibrosis.

Transforming growth factor-β1 (TGF-β1) is a crucial mediator in the pathophysiology of fibrotic
diseases such as renal fibrosis [2,3]. Its downstream signaling involves Smad and non-Smad signaling
cascades that regulate gene expression required for fibrotic processes including fibroblast-myofibroblast
transdifferentiation. It has been shown that Smad proteins are overactivated in the kidneys of patients
and animals with CKD [4–7]. TGF-β1 induces phosphorylation of Smad proteins including Smad2
and Smad3, which form complexes with Smad4 [2]. Then, the complexes are translocated into the
nucleus to modulate expression of fibrosis-related genes. In addition, the cytokine can also activate
various non-Smad signaling pathways such as Akt and mitogen-activated protein kinase (MAPK)
pathways [8].

The pineal hormone melatonin plays an essential role in regulating the sleep–wake cycle [9].
Besides, the hormone has been reported to exert multiple biological actions such as anti-inflammatory
and anti-oxidant effects [10,11]. Accumulating evidence suggests that fibrotic processes in a variety of
organs were ameliorated by the hormone [12]. Indeed, melatonin was shown to have protective effects
against renal fibrosis in several animal models [13–16]. However, mechanisms for the beneficial effects
of the hormone against renal fibrosis remain poorly understood.

The present study aimed to explore the effects of melatonin on TGF-β1-stimulated
fibroblast-myofibroblast transdifferentiation and investigate its underlying mechanisms. We noted
that melatonin prevents TGF-β1-induced proliferation and activation of renal fibroblasts through
suppressing Smad and non-Smad signaling cascades. These effects of melatonin were mediated by
inhibiting reactive oxygen species (ROS)-mediated mechanisms in its receptor-independent manner.
These findings provide a novel mechanistic insight into the preventive effects of melatonin against
renal fibrosis.

2. Materials and Methods

2.1. Cell Culture and Treatments

The rat kidney interstitial fibroblast cell line NRK-49F cells were purchased from the American
Type Culture Collection (Rockville, MD, USA). Cells were grown in Dulbecco’s Modified Eagle’s
Medium containing 10% fetal bovine serum at 37 ◦C under 5% CO2 and 95% air. To explore the effect
of melatonin on TGF-β1-stimulated activation of fibroblasts, the cells were incubated with TGF-β1 (5
ng/mL; R&D Systems, Minneapolis, MN, USA) for 24 h after pretreatment with melatonin (0.1 mM or 1
mM) for 30 min in the presence or absence of luzindole (20 µM or 100 µM). In addition, the cells were
treated with TGF-β1 (5 ng/mL) for 24 h after preincubation with N-acetylcysteine (NAC, 10 mM) or 1
mM melatonin for 30 min. Melatonin, lunzindole, and NAC were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Melatonin and luzindole were dissolved in dimethyl sulfoxide (DMSO). The solvent
was added to the control cells in the experiments with these compounds. The final concentrations of
DMSO in each well did not exceed 0.5% (v/v), which by itself did not affect the cell viability.

2.2. Cell Viability Assay

To evaluate the effect of melatonin on TGF-β1-stimulated proliferation of fibroblasts, NRK-49F
cells were treated with TGF-β1 (5 ng/mL) after preincubation with melatonin (0.01 mM, 0.1 mM, or 1
mM) for 30 min in the presence or absence of luzindole (100 µM). In another experiment, cells were
treated with TGF-β1 (5 ng/mL) after preincubation with NAC (10 mM) or melatonin (1 mM) for 30 min.
Cell viability was analyzed using the Cell Counting Kit-8 (CCK-8; Dojindo Laboratories, Kumamoto,
Japan) assay at 0, 24, and 48 h after TGF-β1 stimulation according to the manufacturer’s instructions.
The absorbance at 450 nm was assessed using a microplate reader (Thermo Fisher Scientific, Waltham,
MA, USA).
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2.3. Western Blot Analysis

Western blotting was performed as described previously [17]. Briefly, protein samples were
resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and then
transferred from the gels onto nitrocellulose membranes. The membranes were proved with primary
antibodies overnight at 4 ◦C, followed by incubation with a horseradish peroxidase-conjugated
secondary antibody for 1 h at room temperature. The following primary antibodies were used
in this study: anti-collagen I (1:1000; ab34710; Abcam, Cambridge, MA, USA), anti-fibronectin
(1:1000; ab2413; Abcam), anti-α-smooth muscle actin (α-SMA; 1:1000; A2547; Sigma-Aldrich),
anti-p-Smad2/3 (1:1000; #8828; Cell Signaling, Danvers, MA, USA), anti-Smad2/3 (1:1000; #3102;
Cell Signaling), anti-p-Akt (1:1000; #9271; Cell Signaling), anti-Akt (1:1000; #9272; Cell Signaling),
anti-p-extracellular signal-regulated kinase 1/2 (p-ERK1/2; 1:1000; #4370; Cell Signaling), anti-ERK1/2
(1:1000; #9102; Cell Signaling), anti-p-p38 (1:1000; #9215; Cell Signaling), anti-p38 (1:1000; #8690; Cell
Signaling), anti-melatonin receptor type 1A (MT1; 1:1000; orb11085; Biorbyt, San Francisco, CA, USA),
anti-melatonin receptor type 1B (MT2; 1:1000; NLS932; Novus Biologicals, Littleton, CO, USA), and
anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH; 1:3000; #2118; Cell Signaling) antibody.
The protein expression levels were normalized with GAPDH. Quantitative analysis of protein levels
was performed using NIH ImageJ software (National Institutes of Health, Bethesda, MD, USA).

2.4. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Total RNA was extracted from cells with TRIzol (Invitrogen, Carlsbad, CA, USA)
and cDNA was synthesized from 2 ug of total RNA using RNA to cDNA EcoDry
Premix (TaKaRa, Tokyo, Japan) according to the manufacturer’s instructions. The
cDNA was amplified by PCR with the following primers: MT1 (NM_008639.3),
5′-TGTCAGCGAGCTGCTCAATG-3′ and 5′-GGTACACAGACAGGATGACCA-3′; MT2 (NM_145712.2),
5′-GAACAGCTCAATCCCTAACTGC-3′ and 5′-ACGACTACTGTAGATAGCATGGG-3′, GAPDH
(NM_008084.2), 5′-GACAACTTTGGCATCGTGGA-3′ and 5′–ATGCAGGGATGATGTTCTGG-3′.

2.5. Knockdown of MT1 and MT2

NRK-49F cells were seeded onto a 60-mm culture dish and transfected with rat MT1/MT2 small
interfering RNA (siRNA) (#1330001; Thermo Fisher Scientific) or control siRNA (AM4611; Invitrogen)
using Lipofectamine 2000 (Thermo Fisher Scientific) according to the manufacturer’s instructions. At
24 h after transfection, the cells were pretreated with melatonin (1 mM) for 30 min and then incubated
with TGF-β1 (5 ng/mL).

2.6. Evaluation of Iintracellular ROS and Redox Status

Amounts of intracellular ROS and malondialdehyde (MDA) were measured using the
2’,7’-dichlorofluorescin diacetate (DCFDA)-Cellular ROS Assay Kit (ab113851; Abcam) and the Lipid
Peroxidation (MDA) Assay Kit (MAK085; Sigma-Aldrich), respectively, according to the manufacturer’s
instructions. The reduced glutathione/oxidized glutathione ratio (GSH/GSSG) were measured using
the Glutathione (GSSG/GSH) Detection Kit (ADI-900-160; Enzo Life Sciences, Farmingdale, NY, USA)
according to the manufacturer’s instructions.

2.7. Immunofluorescence Analysis

NRK-49F cells were fixed for 20 min at room temperature with 4% paraformaldehyde in
phosphate-buffered saline. After permeabilization and blocking, the cells were probed with primary
antibodies against p-Smad2/3 (1:200; #8828; Cell Signaling), Smad4 (1:200; sc7966; Santa Cruz
Biotechnology, Santa Cruz, CA, USA), or α-SMA (1:200; A2547; Sigma-Aldrich), followed by incubation
with secondary antibodies directed against the primary antibody. Nuclei were counterstained with
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4′,6-diamidino-2-phenylindole (DAPI). The stained cells were visualized using a confocal microscope
(Nikon, Tokyo, Japan).

2.8. Statistical Analysis

Data are presented as the mean ± standard error of the mean (SEM). Comparisons between
groups were assessed using one-way ANOVA with Bonferroni’s post-hoc tests. All experiments were
performed at least 2 times. A p value less than 0.05 was considered statistically significant.

3. Results

3.1. Melatonin Inhibits TGF-β1-Induced Proliferation and Activation in NRK-49F Cells

Given that proliferation and activation of fibroblasts are key processes for their transdifferentiation
to myiofibroblasts, we first investigated the effects of melatonin on TGF-β1-stimulated proliferation of
renal interstitial fibroblasts. NRK-49F cells were preincubated with melatonin (1 mM) and then treated
with TGF-β1 (5 ng/mL). Cell viability was evaluated using CCK-8 assay at 0, 24, and 48 h. Pretreatment
with melatonin significantly suppressed TGF-β1-stimulated proliferation, while melatonin alone did
not affect cell proliferation (Figure 1A).
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Figure 1. Effects of melatonin on transforming growth factor-β1 (TGF-β1)-stimulated proliferation and
activation in renal interstitial fibroblasts. (A) NRK-49F cells were treated with TGF-β1 (5 ng/mL) after
preincubation with vehicle (Veh) or melatonin (Mel; 1 mM) for 30 min. Cell viability was analyzed
using the Cell Counting Kit-8 (CCK-8) assay at 0, 24, and 48 h. The optical density (OD) was measured
at 450 nm. (B) Western blot analysis for collagen I , fibronectin, and α-smooth muscle actin (α-SMA).
Cells were treated with TGF-β1 (5 ng/mL) for 24 h after preincubation with Veh or Mel (0.1 mM or
1 mM) for 30 min. The graphs show the results of quantitative analysis of collagen I (C), fibronectin
(D), and α-SMA (E). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. Veh-treated cells. # p < 0.05 vs.
TGF-β1-treated cells.
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We next examined the effects of the hormone on fibroblast activation invoked by TGF-β1.
Treatment with TGF-β1 (5 ng/mL) significantly increased expression of ECM proteins including
collagen I and fibronectin, and α-SMA when compared with the control (Figure 1B–E). These changes
were significantly suppressed by melatonin (1 mM).

3.2. Melatonin Suppresses TGF-β1-Induced Smad and Non-Smad Signaling Cascades

In order to explore mechanisms for the inhibitory effects of the hormone on fibroblast-myofibroblast
transdifferentiation, we first investigated its effects on TGF-β1/Smad signaling pathway. TGF-β1
induces phosphorylation of Smad2 and Smad3, which form a heteromeric complex with Smad4 [2].
Then, the complex is translocated into the nucleus to regulate expression of fibrosis-related genes.
We found that pretreatment with melatonin (1 mM) suppressed TGF-β1-induced phosphorylation of
Smad2/3 (Figure 2A,B). Immunofluorescent staining revealed that increased nuclear co-localization of
their phosphorylated forms and Smad4 after TGF-β1 treatment was decreased by melatonin (Figure 2C).
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Figure 2. Effects of melatonin on TGF-β1-stimulated activation of Smad signaling pathway in renal
interstitial fibroblasts. NRK-49F cells were treated with TGF-β1 (5 ng/mL) for 24 h after preincubation
with vehicle (Veh) or melatonin (Mel; 0.1 mM, or 1 mM) for 30 min. (A) Western blot analysis for
p-Smad2/3 and Smad2/3. (B) The graph shows the result of quantitative analysis of p-Smad2/3 (C)
Representative immunofluorescence staining of p-Smad2/3 (green) and Smad4 (red) in cells treated
with Veh, cells treated with TGF-β1 (5 ng/mL), or cells treated with TGF-β1 (5 ng/mL) plus Mel (1 mM).
Nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI) (blue). Scale bar: 50 µm. *** p < 0.001
vs. Veh-treated cells. # p < 0.05 vs. TGF-β1-treated cells.
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In addition, the cytokine can also induce activation of non-Smad signaling pathways such as Akt
or MAPK cascades [8]. We observed that phosphorylations of Akt, ERK1/2, and p38 after TGF-β1
treatment were also significantly inhibited by the hormone (1 mM) (Figure 3A–D). Collectively, these
findings indicate that melatonin suppresses Smad and non-Smad signaling pathways stimulated by
TGF-β1.
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Figure 3. Effects of melatonin on TGF-β1-induced activation of non-Smad signaling pathway in renal
interstitial fibroblasts. NRK-49F cells were treated with TGF-β1 (5 ng/mL) for 30 min after preincubation
with vehicle (Veh) or melatonin (Mel; 0.1 mM, or 1 mM) for 30 min. (A) Western blot analysis for p-Akt,
Akt, p-extracellular signal-regulated kinase 1/2 (ERK1/2), ERK1/2, p-p38, and p38. The graphs show the
results of quantitative analysis of p-Akt (B), p-ERK1/2 (C), and p-p38 (D). *** p < 0.001 vs. Veh-treated
cells. # p < 0.05 vs. TGF-β1-treated cells.

3.3. Inhibitory Effects of Melatonin on TGF-β1-Induced Proliferation and Activation Is Independent of Its
Membrane Receptors

It has been shown that melatonin displays multiple actions through its membrane
receptor-dependent and -independent mechanisms [10]. To date, two subtypes of melatonin membrane
receptors, MT1 and MT2, have been identified. To evaluate whether the inhibitory effects of the
hormone on proliferation and activation invoked by TGF-β1 is dependent on its receptors, we evaluated
the effects of luzindole, an antagonist of melatonin receptors, on the action of melatonin. We first
confirmed the presence of MT1 and MT2 in NRK-49F cells using RT-PCR (Figure 4A). Treatment with
luzindole at a routinely used concentration (100 µM) [18,19] did not affect the inhibitory effects of
melatonin on TGF-β1-stimulated proliferation (Figure 4B). Additionally, increased levels of α-SMA and
phosphorylated Smad2/3 after TGF-β1 treatment were not significantly modified by the compound
(Figure 4C–E), suggesting that the receptors are dispensable for the suppressive effects of the hormone
on TGF-β1-stimulated fibroblast-myofibroblast transdifferentiation.

To more clearly demonstrate that the inhibitory effects of melatonin on fibroblast-myofibroblast
transdifferentiation is independent of its receptors, we next examined the effects of genetic inhibition
of MT1 and MT2 using siRNA on the action of the hormone. We found that knockdown of melatonin
receptors (MT1 and MT2) using siRNA did not significantly affect the inhibitory effects of the hormone
on TGF-β1-induced proliferation (Figure 5A) and expression of fibronectin and α-SMA (Figure 5B–D).
Altogether, these results suggest that the inhibitory action of melatonin on TGF-β1-stimulated
proliferation and activation is independent of its receptors.
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of melatonin receptor type 1A (MT1) and type 1B (MT2) in NRK-49F cells. (B) NRK-49F cells were
treated with with TGF-β1 (5 ng/mL) after preincubation with vehicle (Veh) or melatonin (Mel; 1 mM) in
the presence or absence of luzindole (Luz; 100 µM) for 30 min. Cell viability was assessed using CCK-8
assay at 0, 24, and 48 h. The OD was measured at 450 nm. (C) Western blot analysis for α-SMA and
p-Smad2/3. Cells were treated with TGF-β1 (5 ng/mL) for 24 h after preincubation with Veh or Mel (1
mM) in the presence or absence of luzindole (Luz; 20 µM or 100 µM) for 30 min. The graphs show
the results of quantitative analysis of α-SMA (D) and p-Smad2/3 (E). ** p < 0.01 and *** p < 0.001 vs.
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Figure 5. Effects of siRNA-mediated knockdown of melatonin receptors on inhibitory effects of
melatonin on TGF-β1-induced proliferation and activation in renal interstitial fibroblasts. NRK-49F
cells were treated with negative control siRNA (siCon) or siRNAs targeting MT1 and MT2 (siMT1&B).
After 24 h, the cells were pretreated with vehicle (Veh) or melatonin (Mel; 1 mM) and then incubated
with TGF-β1 (5 ng/mL) for 24 or 48 h. (A) Cell viability was assessed using CCK-8 assay at 24 and 48 h.
The OD was measured at 450 nm. (B) Western blot analysis for MT1, MT2, fibronectin, and α-SMA.
Cells were incubated with TGF-β1 (5 ng/mL) for 24 h after pretreatment with Veh or Mel (1 mM). The
graphs show the results of quantitative analysis of fibronectin (C) and α-SMA (D). ** p < 0.01 and *** p
< 0.001 vs. Veh-treated cells. # p < 0.05 and ## p < 0.01 vs. TGF-β1-treated cells.
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3.4. Inhibitory Effects of Melatonin on TGF-β1-Induced Proliferation and Activation Is Attributed to the
Inhibition of ROS-Mediated Mechanisms

Melatonin can act as a direct scavenger of ROS. Accumulating evidence suggests that the
antioxidant property of melatonin is closely associated with its membrane receptor-independent
mechanisms [10]. Thus, we next aimed to explore whether inhibitory action of the hormone on
TGF-β1-stimulated fibroblast-myofibroblast transdifferentiation is attributed to the deactivation of
ROS-mediated mechanisms. We first investigated the effects of melatonin on ROS generation in
NRK-49F cells stimulated by TGF-β1. As expected, treatment with TGF-β1 elevated intracellular levels
of ROS and MDA (Figure 6A,B). These effects were significantly attenuated by pretreatment with
melatonin or NAC. Decreased GSH/GSSG ratio after TGF-β1 treatment was also significantly reversed
by the hormone or NAC (Figure 6C). Altogether, these results suggest that melatonin effectively reduces
ROS generation and lipid peroxidation, and changes intracellular redox status in TGF-β1-treated renal
interstitial fibroblasts.
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Figure 6. Effects of melatonin or N-acetylcysteine (NAC) on TGF-β1-stimulated generation of reactive
oxygen species (ROS) and alterations in redox status. NRK-49F cells were pretreated with vehicle
(Veh), melatonin (Mel; 1 mM), or NAC (10 mM) and then incubated with TGF-β1 (5 ng/mL) for 24
h. (A) Intracellular ROS levels. (B) Intracellular malondialdehyde (MDA) levels. (C) The reduced
glutathione/oxidized glutathione ratio (GSH/GSSG). ** p < 0.01 and *** p < 0.001 vs. Veh-treated cells. #

p < 0.05 and ## p < 0.01 vs. TGF-β1-treated cells.

We next examined whether NAC can also exert inhibitory effects on proliferation and activation in
renal interstitial fibroblasts stimulated with TGF-β1. We observed that TGF-β1-stimulated proliferation
was significantly inhibited by NAC or melatonin (Figure 7A). Pretreatment with NAC or melatonin
also decreased protein expression of collagen I and α-SMA after TGF-β1 treatment (Figure 7B–D).
Furthermore, immunofluorescent staining revealed that an elevation in α-SMA expression (Figure 7E)
after TGF-β1 treatment was reversed by NAC as well as melatonin.
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Figure 7. Effects of melatonin or NAC on TGF-β1-stimulated proliferation and activation in renal
interstitial fibroblasts. (A) NRK-49F cells were treated with TGF-β1 (5 ng/mL) after preincubation
with vehicle (Veh), melatonin (Mel; 1 mM), or NAC (10 mM) for 30 min. Cell viability was assessed
using CCK-8 assay at 0, 24, and 48 h. The OD was measured at 450 nm. (B) Western blot analysis
for collagen I and α-SMA. Cells were pretreated with Veh, Mel (1 mM), or NAC (10 mM) and then
incubated with TGF-β1 (5 ng/mL) for 24 h. The graphs show the results of quantitative analysis of
collagen I (C) and α-SMA (D). (E) Representative immunofluorescence staining of α-SMA (green) in
cells treated with Veh, TGF-β1 (5 ng/mL), TGF-β1 (5 ng/mL) plus Mel (1 mM), or TGF-β1 (5 ng/mL)
plus NAC (10 mM). Nuclei were counterstained with DAPI (blue). Scale bar: 50 µm. ** p < 0.01, and ***
p < 0.001 vs. Veh-treated cells. # p < 0.05 and ## p < 0.01 vs. TGF-β1-treated cells.

These molecules also suppressed nuclear localization of p-Smad2/3 (Figure 8A) and
reversed increased expression of p-Akt, p-ERK1/2, and p-p38 (Figure 8B–E) invoked by
TGF-β1. Taken together, these findings indicate that the suppressive effects of melatonin on
fibroblast-myofibroblast transdifferentiation invoked by TGF-β1 is presumably attributed to the
suppression of ROS-dependent mechanisms.
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Figure 8. Effects of melatonin or NAC on TGF-β1-stimulated nuclear localization of p-Smad2/3 in renal
interstitial fibroblasts. NRK-49F cells were pretreated with vehicle (Veh), melatonin (Mel; 1 mM), or
NAC (10 mM) and then incubated with TGF-β1 (5 ng/mL) for 24 h. (A) The images show representative
immunofluorescence staining of p-Smad2/3 (green). Nuclei were counterstained with DAPI (blue).
Scale bar: 50 µm. (B) Western blot analysis for p-Akt, Akt, p-ERk1/2, ERK1/2, p-p38, and p38. The
graphs show the results of quantitative analysis of p-Akt (C), p-ERK1/2 (D), and p-p38 (E). * p < 0.05, **
p < 0.01, and *** p < 0.001 vs. Veh-treated cells. # p < 0.05 and ## p < 0.01 vs. TGF-β1-treated cells.

4. Discussion

In this study, we demonstrated that melatonin inhibited TGF-β1-stimulated transdifferentiation
of renal interstitial fibroblasts to myofibroblasts. Pretreatment with melatonin effectively suppressed
TGF-β1-stimulated proliferation. Increased levels of activation-related markers after TGF-β1 treatment
was also inhibited by the hormone. These effects of the hormone were accompanied by suppression
of Smad and non-Smad signaling pathways (Akt, ERK1/2, and p38). Additionally, pharmacological
ad genetic inhibition of melatonin receptors (MT1 and MT2) did not modify the action of melatonin,
indicating that the receptors are not required for the suppressive effects of the hormone on
TGF-β1-induced proliferation and activation. Furthermore, we found that the suppressive effects of
melatonin on TGF-β1-induced transdifferentiation of fibroblasts to myofibroblasts are presumably
attributed to the suppression of ROS-dependent mechanisms. These results provide a novel mechanistic
insight into the preventive effects of the pineal hormone on renal fibrosis (Figure 9).
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Figure 9. A graphical representation of the mechanism for the inhibitory action of melatonin
on TGF-β1-induced transdifferentiation of fibroblasts to myofibroblasts. Melatonin prevents
TGF-β1-stimulated proliferation and activation by suppressing Smad and non-Smad signaling
cascades (Akt, ERK1/2, and p38) in renal interstitial fibroblasts. These effects of melatonin were
attributed to the deactivation of ROS-dependent mechanisms in its membrane receptors (MT1 and
MT2)-independent manner.

The pineal hormone melatonin plays an essential role in modulating the sleep–wake cycle [9].
Besides, the hormone has been shown to exert preventive and/or therapeutic effects against various
diseases [10,11]. The favorable actions of melatonin were primarily attributed to its anti-inflammatory
and anti-oxidant activities. Emerging evidence also reveals that the hormone exerts strong anti-fibrotic
activities in various organs [12]. It has been shown that melatonin ameliorated cyclosporine A [13]- or
carbon tetrachloride [14]-induced renal fibrosis. Additionally, melatonin was found to suppress the
fibrotic process invoked by unilateral ureteral obstruction (UUO) in a rodent model of CKD [15]. A recent
study also showed that melatonin ameliorated renal fibrosis in animals with diabetic kidney disease [16].
However, molecular mechanisms for the favorable effects of the hormone against renal fibrosis remain
unclear. In the present study, we demonstrated that melatonin prevents transdifferentiation of renal
interstitial fibroblasts to myofibroblasts invoked by TGF-β1. During the development and progression
of fibrosis, myofibroblasts synthesize and secret ECM components including collagen and fibronectin.
Given that fibroblast-myofibroblast transdifferentiation is a critical process in the pathophysiology
of renal fibrosis [1], these findings provide a novel mechanistic insight into the preventive effects of
melatonin against renal fibrosis. Consistent with our findings, a previous study showed that melatonin
inhibits TGF-β1-induced epithelial-mesenchymal transition in lung alveolar epithelial cells through
suppressing Smad and Wnt/β-catenin signaling pathways [20]. The hormone was also found to
suppress fibrotic process in rat kidneys and human renal proximal tubular epithelial cells by inhibiting
Smad and MAPK signaling pathways [21]. Additionally, it was recently reported that the anti-fibrotic
effects of melatonin against liver fibrosis induced by carbon tetrachloride was associated with its
inhibitory action on TGF-β1/Smad signaling cascade [22].

Canonical TGF-β/Smad signaling cascade plays a key role in the regulation of
fibroblast-myofibroblast transdifferentiation [2,3]. TGF-β1 induces phosphorylation of Smad2 and
Smad3, which form a heteromeric complex with Smad4. Then, the complex is translocated into
the nucleus to regulate expression of fibrosis-related genes. In this study, we noted that melatonin
suppressed TGF-β1-stimulated phosphorylation of Smad2/3. Furthermore, immunofluorescent
staining showed that the hormone significantly attenuated TGF-β1-induced nuclear co-localization
of their phosphorylated forms and Smad4. In addition, the cytokine can activate various non-Smad
signaling pathways [8]. We also observed that melatonin significantly suppressed an increase in the
phosphorylations of Akt, ERK1/2, and p38 after TGF-β1 treatment. Previous studies showed that Akt
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and ERK1/2 in ligated kidneys were activated in the UUO model [23]. Pharmacological inhibition of
Akt or ERK1/2 induces a reduction in levels of myofibroblast markers in the kidneys. In addition,
phosphorylation of p38 was also shown to be increased in the UUO model [24,25] and a genetic model
of CKD [26]. Treatment with a specific inhibitor of p38 significantly reduced accumulation of interstitial
myofibroblasts and renal fibrosis in both models. Collectively, our findings suggest that melatonin
dampens TGF-β1-induced fibroblast-myofibroblast transdifferentiation through inhibition of Smad
and non-Smad signaling pathways.

Melatonin displays various biological actions through both its receptor-dependent and
-independent mechanisms [10]. To date, two subtypes of mammalian membrane receptors, MT1 and
MT2, have been identified. Membrane receptor-dependent action of melatonin includes regulation
of circadian rhythm and anti-cancer effect [10]. In addition, a number of studies have reported the
receptor-independent action of melatonin on various cellular functions despite existence of melatonin
receptors [27–30]. In the present study, luzindole, an antagonist of melatonin receptors, was used to
evaluate whether the suppressive effects of the hormone on TGF-β1-stimulated fibroblast-myofibroblast
transdifferentiation are dependent on its receptors. We found that the compound did not modify
the suppressive effects of melatonin on TGF-β1-induced proliferation and activation of fibroblasts.
Furthermore, the effects of melatonin were not significantly affected by siRNA-mediated knockdown
of MT1 and MT2, indicating that the receptors are not required for the suppressive effects of the
hormone. The membrane receptor-independent actions of melatonin have been known to be related
to its ROS scavenging property [10]. Because of its high lipophilicity, melatonin can easily enter into
the cytosol through passing the plasma membrane. In cytosol, the hormone can directly scavenge
ROS. In the present study, we noted an elevation of intracellular ROS levels after TGF-β1 treatment.
This observation is consistent with the results of previous reports [31–33]. As expected, melatonin
significantly attenuated ROS production and changed intracellular redox status in renal interstitial
fibroblasts stimulated by TGF-β1, as evidenced by decreased intracellular levels of ROS and MDA and
increased GSH/GSSG ratio. We also found that the antioxidant NAC also exerted inhibitory effects on
TGF-β1-induced proliferation and activation. Immunofluorescent staining clearly revealed that an
elevation in α-SMA expression and nuclear localization of p-Smad2/3 after TGF-β1 treatment were
reversed by NAC as well as melatonin. Pretreatment with NAS also suppressed phosphorylations of Akt,
ERK1/2, and p38 after TGF-β1 treatment. Taken together, these findings indicate that the suppressive
action of melatonin on fibroblast-myofibroblast transdifferentiation invoked by TGF-β1 is presumably
attributed to the suppression of ROS-mediated mechanisms in its receptor-independent manner.

ROS can act as an intracellular second messenger during cell differentiation [34]. Indeed,
accumulating evidence suggests that nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase-generated ROS is critically involved in fibroblast-myofibroblast transdifferentiation and
progression of kidney fibrosis [31,35]. TGF-β1-stimulated conversion of fibroblasts into myofibroblasts
in other organs including heart [36], lung [37], intestine [38], and skin [39] was also mediated by ROS
derived from NADPH. Thus, targeting of NADPH oxidase is considered as a potential preventive
and therapeutic strategy against fibrotic diseases. Altogether, our findings suggest that the ROS
scavenging property of melatonin mainly contributes to its suppressive effects on TGF-β1-stimulated
fibroblast-myofibroblast transdifferentiation.

5. Conclusions

These results demonstrate that the pineal hormone melatonin prevents TGF-β1-stimulated
transdifferentiation of fibroblasts to myofibroblasts by suppressing Smad and non-Smad signaling
cascades. These effects of melatonin were attributed to the deactivation of ROS-mediated mechanisms
in its receptor-independent manner. These results strengthen the idea that melatonin may be a
promising preventive option against fibrotic diseases.
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