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Abstract

The breast is one of the common primary sites of brain metastases (BM). Radiotherapy 

for BM from breast cancer may include whole brain radiation therapy (WBRT), stereotactic 

radiosurgery (SRS), and stereotactic radiotherapy (SRT), but a consensus is difficult to reach 

because of the wide and varied protocols, indications, and outcomes of these interventions. 

Overall, dissemination of disease, patient functional status, and tumor size are all important 

factors in the decision of treatment with WBRT or SRS. Thus far, previous studies indicate 

that WBRT can improve tumor control compared to SRS, but increase side effects, however 

no randomized trials have compared the efficacy of these therapies in BM from breast cancer. 

Therapies targeting long non-coding RNAs and transcription factors, such as MALAT1, HOTAIR, 

lnc-BM, TGL1, and ATF3, have the potential to both prevent metastatic spread and treat BM 

with improved radiosensitivity. Given the propensity for HER2+ breast cancer to develop BM, 

the above-mentioned cell lines may represent an important target for future investigations, and the 

development of everolimus and pyrotinib are equally important.
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Introduction

Brain metastasis (BM) is the most common intracranial tumor, with over 200,000 new cases 

of BM diagnosed each year [1], of which the most common primary tumor site is the lung 

followed by the breast [2]. Of patients with breast cancer, 5-30% are likely to develop brain 

metastasis during the course of their disease [3,4], having a major impact on quality of life 

and mortality. Breast cancer subtypes vary in their propensity to develop BM, with triple 

negative and hormone receptor negative (HR−)/human epidermal growth factor receptor 2 
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positive (HER2+) cancer being most likely to develop brain metastasis when compared with 

HR+/HER2− and HR+/HER2+ breast cancer [5].

Breast cancer brain metastases (BCBMs) are thought to occur from hematogenous spread 

following the epithelial-mesenchymal transition (EMT) [6]. In the EMT model, primary 

cancer cells undergo a transition where they lose their adhesive properties and gain mobility 

as mesenchymal cells. These cells eventually invade through the vasculature and may 

contain stem-like properties allowing them to malign into metastatic tumor cells.

These metastases have a known preference for watershed territories, commonly at the 

gray-white junction. Probably, the small size of distal vasculature facilitates cell adhesion 

and invasion through the vascular layers [7-11] (Figure. 1). In addition to vessel size, 

vascular anatomy plays a role in intracranial seeding due to both blood flow magnitude 

and distinct anatomic pathways from the primary cancer site to the metastatic destination 

[12,13]. Another cause behind the high rate of BCBM is the ‘seed and soil’ theory, which 

proposes that certain primary cancers have specific preferences for metastatic destinations 

based on the hospitality of the microenvironments within their tissue types [14,15].

Compared to BM from other primary cancers, breast cancer has previously shown a 

predilection for specific brain regions, occurring most commonly in the cerebellum, parietal 

lobe, and basal ganglia, and less likely occurring in the distribution of the posterior cerebral 

artery [16-20]. Compared to other breast cancer genetic subtypes, metastases from triple-

negative breast cancer often occur in the frontal lobe, limbic region, and parietal lobe [21].

Treatment of brain metastases include neurosurgical resection, whole-brain radiation therapy 

(WBRT), stereotactic radiosurgery (SRS), stereotactic radiotherapy (SRT), and medical 

management. In this review, we will focus on radiation therapies for patients with BM from 

breast cancer, comparing treatment protocols, indications, and outcomes among WBRT, 

SRS, and SRT. We will also discuss emerging pre-clinical treatment approaches for BM 

from breast cancer, including long non-coding RNAs and transcription factor targets to 

prevent BM and improve radiosensitivity.

Optimal treatment protocol and radiation dosing schemes for BCBMs

All radiation dosing schemes must balance tumor-minimizing therapeutic effect with 

toxicities associated with treatment. Acute toxicities include dermatitis, alopecia, and 

fatigue, while late toxicities include neurologic decline, leukoencephalopathy, and radiation 

necrosis [22]. The standard WBRT dose-fractionation schedule for BM remains at 30 Gy 

in 10 fractions or 20 Gy in 5 fractions [23], though several studies have explored alternate 

dosing schemes. A lengthened dose regimen of 37.5 Gy in 15 fractions was associated with 

more acute toxicity events but had no significant effects on overall survival (OS) or tumor 

control in a cohort of 194 patients with up to 3 BM (in which 5% of patients had BCBM) 

[24]. Similarly, larger dose regimens of 40 Gy in 20 fractions and 45 Gy in 15 fractions were 

associated with longer treatment times and increased cost, with no significant improvement 

in terms of OS or recurrence in a study of BM with 25% of tumors from BCBM [23].
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A systematic review by Tsao et al. demonstrated that of eight alternative dose-fractionation 

schedules, none had a significant benefit on OS or symptom control for BM [25]. Taken 

together, these results support the standard-of-care dosing scheme of 30 Gy in 10 fractions 

or 20 Gy in 5 fractions.

Widespread radiation dosing in WBRT is contrasted with localized radiation in SRS. Due 

to variance in SRS dosing by tumor size, maximum tolerable SRS doses were established 

in 2000 by the Radiation Therapy Oncology Group (RTOG) 90-05 dose escalation trial, 

which recommended no more than 24 Gy for tumors less than or equal to 20 mm in size, 18 

Gy for tumors 21-30 mm, and 15 Gy for 31-40 mm tumors [26]. Though these guidelines 

remain the standard of care today, some work has found limited toxicity associated with 

SRS at these doses [27], suggesting that fractionated SRT may allow for higher cumulative 

doses. Indeed, SRT is less costly and more comfortable for patients [28] and has been 

reported to be associated with significantly better tumor control in patients with intracranial 

meningiomas [29]. Emerging studies have also suggested improved local control in SRT 

when compared to SRS for BM [30], which is currently being studied in an Alliance clinical 

trial [31].

The American Society for Radiation Oncology (ASTRO) guidelines in 2012 recommended 

several protocols for treatment of BM. Level 1 evidence suggests that patients with 

single BM ≤ 3-4 cm should be treated with surgery + WBRT, SRS + WBRT, or SRS 

alone, while patients with BM > 3-4 cm should be treated with surgery + WBRT [32]. 

However, according to the recently released ASCO-SNO-ASTRO guidelines, SRS alone is 

recommended for 1-4 unresected BM and for patients following resection of 1-2 BM [33]. 

Level 1 evidence also supports treatment of patients with unresectable single BM ≤ 3-4 cm 

with SRS + WBRT or SRS alone, while patients with multiple BM ≤ 3-4 cm may be treated 

with SRS + WBRT, SRS alone, or WBRT alone [32]. Some recent work even supports 

treatment of patients with more than 10 BM with SRS only [34]. In total, the majority of 

studies regarding radiation dosing schemes for BM involve BM from multiple primary sites, 

and there has been limited study on specific BCBM regimens.

Whole-brain radiation therapy versus stereotactic radiosurgery

Along with neurosurgical resection, SRS and WBRT form the cornerstone of treatment for 

most patients with BCBM (Table 1). However, given the rapid evolution of SRS and the lack 

of randomized controlled trials till date comparing these treatment options specifically for 

BCBM, there is some controversy in the literature regarding an optimal treatment algorithm. 

A myriad of other reviews [35-45] have detailed the state of current evidence and provided 

recommendations regarding when each modality is preferred; herein we summarize these 

findings with regard to the use of WBRT and SRS.

The number of metastases is the most common factor to decide whether to utilize WBRT 

or SRS. When deciding between radiation-based therapies for BCBM, SRS is preferred 

for oligometastatic disease (1-4 BM), while WBRT is often reserved for patients with 

more diffuse disease and more than 4 metastases [39,40,42]. Though traditionally used for 

oligometastatic BCBM [37], WBRT carries a risk of neurocognitive decline due to damage 

to healthy brain tissue, especially in the domains of memory, executive functioning, and 
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processing speed, and deficits are more pronounced over time [46]. The more targeted SRS 

can avoid this complication, though SRS is associated with a higher chance of recurrent 

BM in studies of BM from multiple primary tumor sites [47]. When WBRT is used, data 

suggest that hippocampal-avoidance WBRT (HA-WBRT) may provide similar outcomes 

with improved neurocognitive outcomes when compared to standard WBRT [45]. Despite 

the higher chance of recurrence of BM with SRS, several studies have demonstrated no 

significant difference in overall survival (OS) when comparing WBRT to SRS in BM 

from multiple primary tumor sites (with 4-30% of patients with BCBM) [47,48]. However, 

BCBM has previously been shown to be particularly sensitive to WBRT when compared to 

BM from other primary cancer types [49]. WBRT+SRS was found to be superior to WBRT 

alone in improving local control on magnetic resonance imaging for BM from multiple 

primary tumors, but the WBRT+SRS did not significantly improve OS [50] and has been 

shown to worsen cognitive outcomes [51]. Further, Yamamoto et al. [52] demonstrated the 

non-inferiority of SRS for 2-4 BM compared to the same therapy for 5-10 BM. A growing 

body of evidence regarding the efficacy of SRS for even high numbers of BM has led 

towards greater adoption of SRS over WBRT. Bailleux and colleagues argue that WBRT 

alone is a good option for patients with more than 10 BM that can not be treated locally or 

for patients with new metastases that are not amenable to SRS [53]. However, this trend is 

not universal, and currently WBRT still does play a role in treatment of BCBMs.

The number of metastatic lesions is not the only factor when deciding on therapeutic 

options. Notably, patient functional status, tumor size, age, time from primary to BM 

diagnosis, molecular subtype, prior radiation, primary and extracranial tumor control are 

other potentially important factors in deciding whether to adopt SRS or WBRT. Ideally, 

patients need to have a high functional status – Karnofsky Performance Score (KPS) of at 

least 70 – and a tumor diameter less than 6 cm [54] to be considered for SRS. Additionally, 

the presence of extracranial metastasis may classify the patient as “high risk”. It has been 

proposed that this should prompt early treatment with WBRT rather than SRS. Further, OS 

is not the only important clinical outcome;

WBRT treatment has been reported to be associated with greater chances of appetite loss 

and general motor dysfunction compared to treating with SRS. These outcomes of poor 

quality of life are important to consider [55]. There is evidence that certain molecular 

subtypes may respond differentially to radiation with ER+/HER− having better outcomes, 

though further work is needed to determine a differential response between WBRT and SRS 

[56]. Additionally, evidence has shown that in SRS, factors such as smaller tumor volume 

and lack of prior WBRT have been shown to be associated with greater success in a study 

with 14% of patients with BCBM [57]. Given the possibility of greater recurrence after 

SRS, but the quality of life function is not affected compared to WBRT. This therapy may 

have higher utility with increasing age [47,55]. As evidence emerges in abundance, better 

selection of patients for optimal treatment will be possible. In sum, a comprehensive and 

individualized approach to treatment selection is necessary, and machine learning algorithms 

that are capable of processing individual patient factors to predict outcomes after WBRT or 

SRS may become valuable tools. A list of significant prognostic indicators as evidenced by 

the literature are provided in Table 1 [58].
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The controversy of WBRT and SRS also exists in in the treatment of leptomeningeal 

metastasis (LM). LM is a rare sequela of breast cancer and carries a substantially poor 

prognosis, with a median survival of 4 months [59]. Standard of care for LM generally relies 

on brain radiotherapy and intrathecal chemotherapy [60,61]. Concurrent radiotherapy and 

intrathecal methotrexate are thought to be associated with improved remission of symptoms 

and survival, as demonstrated in a prior study of patients with LM (18% of which had 

LM from breast cancer) [62]. Though some work has suggested an elevated incidence of 

LM following SRS when compared to WBRT [63], one study found that the only predictor 

of LM was active extracranial metastases from breast cancer that were present during 

SRS treatment [64]. Additionally, an increased risk of leptomeningeal dissemination after 

SRS has been observed with increasing number of BCBM [51]. Taken together, optimal 

management of LM is a poorly understood and controversial matter that requires further 

high-powered studies.

As mentioned previously, SRT is being investigated as an alternative local radiation 

treatment to the single-treatment of SRS, though the literature offers limited guidance as 

to the selection of one protocol rather than the other. Retrospective reviews comparing single 

fraction SRS to multifractionated SRT mostly show no difference in local control (in which 

8-17% of patients had BCBM) [65-70] though etiology of tumor, tumor volume, and the 

biologically effective dose of radiation vary. Loo and colleagues [67] did find a slightly 

higher incidence of radionecrosis for patients who underwent SRT; the balance between 

the improved patient comfort and lower cost of SRT should be maintained. However, 

prospective randomized controlled trials (RCTs) comparing the two are necessary to provide 

level 1 evidence for better guidelines. Furthermore, although several studies have examined 

WBRT vs. SRS, there has been limited analysis on WBRT vs. SRT.

While there is an increasing trend towards greater adoption of SRS over WBRT, evidence to 

support this shift for BCBM is lacking. There are no randomized clinical trials comparing 

WBRT to SRS for treating patients with primary breast cancer, leading some to argue that 

WBRT remains as important as SRS in the treatment of most patients with BCBM [71]. 

Advances in medical therapy and combination of multiple forms of treatment may influence 

the preferred therapy. Finally, the preferred outcome likely differs among patients: those 

with worse prognosis and short life expectancy will most likely benefit more from palliative 

treatment, whereas patients in the early stages of disease may benefit from more aggressive 

treatments at the potential temporary expense of functional status. Future trials focused 

specifically on patients with BCBM.

Evaluating a range of outcomes will be instrumental in providing robust evidence that 

interdisciplinary teams including the patient can be used to select optimal care.

SRS Timing

SRS combined with neurosurgical resection can be delivered as either the initial treatment 

before surgery (neoadjuvant) or as a postoperative (adjuvant) treatment. Postoperative 

radiation to the tumor cavity was initially popularized as it was found to reduce the risk 

of recurrence after surgical resection. However, adjuvant SRS does have some associated 

risks. The size of the resection cavity may not be the same as the initial tumor volume, 
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and the size can further change over time, which can necessitate the expansion of target 

volume and risk damaging healthy brain parenchyma [70]. Further, since the recovery course 

from neurosurgical tumor resection may be variable, the timing of postoperative SRS may 

also vary, and some patients are at risk of loss to follow-up [72]. This is important because 

time for postoperative radiosurgery is associated with local recurrence of BM from multiple 

primary sites (18% of which were BCBM) [73]. Finally, compared with adjuvant WBRT, 

higher rates of leptomeningeal tumor spread (thought to occur iatrogenically during surgery) 

and symptomatic radiation necrosis have been observed in adjuvant SRS in BM from 

multiple primary sites (27% of which were from breast cancer) [74].

For these reasons, neoadjuvant SRS has recently become a relatively novel treatment 

paradigm for BCBM. Preoperatively, the tumor volume is well-defined and easily identified, 

allowing utilization of a more focused beam [75]. Since the treatment is delivered before 

surgery, timing, and loss to follow-up are not of concern. Patel and colleagues compared 

adjuvant to neoadjuvant SRS and found improvements in OS, leptomeningeal disease, and 

radiation necrosis in the neoadjuvant group but no significant difference in recurrence 

rates [74]. However, this was a retrospective study without matched cohorts; Randomized 

controlled trials (RCTs) comparing the two treatment paradigms are lacking in this study. 

Otherwise these trials will help to clarify more clearly on which patients may benefit more 

from neoadjuvant SRS.

Radiotherapy combined with systemic therapy

Although local interventions, like resection and radiation, are the standard of care 

for BCBMs, systemic therapies like ado-trastuzumab emtansine (TDM1), tucatinib, and 

liposomal irinotecan are being used to complement local strategies. Antibody-drug 

conjugates show promise for the treatment of patients with active HER2-positive brain 

metastases, with TDM1 displaying intracranial activity in preclinical models and multiple 

case series [81]. Tucatinib is a HER2-targeted tyrosine kinase inhibitor that has also shown 

intracranial and extracranial effectiveness. In a randomized trial, patients in the tucatinib-

containing arm showed longer progression-free survival (PFS) and OS [82]. Liposomal 

irinotecan is a chemotherapeutic agent that has demonstrated both central nervous system 

(CNS) and extracranial responses in a cohort of patients with BCBM [83]. The combination 

of local therapies such as SRS with these systemic agents can improve outcomes but 

result in significant side effects. In a retrospective study of 45 patients, Stumpf et al. [84] 

found a strong correlation between the development of clinically significant radionecrosis 

after TDM1 and SRS therapy in patients with HER2-positive breast cancer, although the 

case series by Mills et al. did not note such a correlation [85]. The potential toxicities of 

systemic agents when used in combination with local therapies warrants prospective studies 

controlling for variations in radiation and medication dosing to further stratify risks and 

ameliorate toxicities.

Pre-clinical treatment targets

In addition to a number of patient-level prognostic factors for outcomes of radiotherapy 

that we previously described, there are a number of pre-clinical molecular targets that can 

enhance radiotherapy efficacy and improve treatment of BCBM. To this effect, a great 
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deal of preclinical literatures existed evaluate pathways underlying brain metastasis and 

radioresistance for the generation of targeted therapies. Novel pathways under investigation 

include targeting long non-coding RNAs or transcription factors that may drive breast cancer 

metastasis to the brain and reduce treatment efficacy. In addition, therapies focused on 

HER2+ breast cancer are also being trialed due to its propensity to metastasize to the brain.

Long non-coding RNAs (lncRNAs) and radioresistance

LncRNAs comprise a large and heterogenous group of RNA transcripts (greater than 200 

nucleotides and incapable of direct translation) that are implicated in a variety of human 

diseases including breast cancer [86,87]. LncRNAs can carry out various functions such as 

gene expression regulation through multiple mechanisms including direct DNA binding or 

transcription factor modulation, RNA or protein modulation, interference with chromatin 

complexes and alternative splicing [88-92]. As a result, some lncRNAs may function as 

oncogenes, and others as tumor suppressors. One example of a tumor suppressor lncRNA is 

metastasis-associated lung adenocarcinoma transcript 1 (MALAT1).

when MALAT1 is inactivated in a transgenic mouse model of breast cancer, the 

metastasis is promoted [93]. Interestingly, MALAT1-knockout cells showed stronger 

migratory and invasive ability when compared to normal controls. Under video microscopy, 

MALAT1 knockout had increased speed of movement and metastatic colonization, 

which was completely reversed by restoration of MALAT1 expression. In addition, in 

esophageal squamous cell carcinoma, MALAT1 has been shown as a positive regulator 

for radioresistance by promting cyclin-dependent kinase subunit 1 (Cks1) expression. In 

vitro, silencing MALAT 1 and Cks1 improved radiosensitivity of cancer cells [94]. More 

investigation is required regarding MALAT1 activation and its opposing effects on cancer 

cell migration and radioresistance.

Conversely, oncogenic lncRNAs promote tumorigenesis and metastasis. For example, the 

HOX antisense intergenic RNA (HOTAIR) lncRNA has been shown to target polycomb 

repressive complex 2 (PRC2), a chromatin-modifying enzyme and transcriptional repressor 

[95]. In vitro, HOTAIR overexpression in breast cancer cell lines not only promotes colony 

growth, but also increases cell invasion through an extracellular matrix [96]. In breast 

cancer mice models, the same group demonstrated increased metastasis, preferentially to the 

lungs, in mice bearing HOTAIR+ primary tumors. Similar to MALAT1, HOTAIR expression 

has also shown increased radioresistance. Zhang et al. [97] found a positive correlation 

between HOTAIR lncRNA and heat shock protein family A member 1A (HSPA1A) 

levels in irradiated breast cancer cells, depicting a potential mechanism for lncRNA-

mediated decreased radiosensitivity. HOTAIR was shown to sequester miR-449b-5p, a 

micro-RNA. One of the many tumor-suppressive effects of this microRNA is to inhibit 

HSPA1A transcription and allow for the overexpression of HSPA1A. Since HSPA1A is a 

major stress-inducible protein that facilitates protein folding, its overexpression decreases 

radiosensitivity.

Similarly, lncRNA associated with BCBM (lnc-BM) is a separate lncRNA showing 

preferential metastasis to the brain. Wang et al. [98] showed that the use of a nanoparticle 

encapsulated small interfering RNA targeting lnc-BM in BCBM-bearing mice significantly 
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reduces brain metastatic burden by week 4 and significantly prolonges survival rates when 

compared to untreated mice. Novel therapies that target oncogenic lncRNAs or increase 

expression of tumor suppressor lncRNAs are currently being investigated to inhibit brain 

metastases or increase radiosensitivity [99].

Transcription factors and radioresistance

The role of specific transcription factors in promoting breast cancer metastasis and 

radioresistance is also under investigation. Sirkisoon et al. [100] identified truncated glioma-

associated oncogene homolog 1 (TGLI1) as a promoter of preferential breast cancer 

metastasis to the brain. In vivo, they also showed that TLGI1-expressing BCBMs are 

more invasive, vascularized, and proliferative when compared to controls. In essence, these 

tumors would be more difficult to eradicate unless specifically targeted. Accordingly, they 

showed that cells expressing TLGI1 are more radioresistant compared to other cell lines, 

and TGLI1 expression is significantly induced by radiation in a dose-dependent manner. 

They confirmed these findings by comparing tumor samples from patients with BCBMs 

who did have recurrence following radiosurgery (radioresistant) and from patients who did 

not (radiosensitive). As expected, radioresistant samples had significantly increased TLGI1 

expression. The exact mechanism for radioresistance has yet to be identified. Antisense 

oligonucleotides were able to selectively inactivate TLGI1 and decrease brain metastases, 

but no change was observed in metastases to other organs. Targeting TLGI1 or the pathway 

through which it directs preferential metastasis to the brain and contributes to radioresistance 

may allow for increased treatment efficacy and prolonged survival.

Other transcription factors that may affect treatment efficacy have also been identified. 

Changes in activating transcription factor 3 (ATF3) activation have been shown to promote 

tumor metastasis via upregulation of genes involved in cell motility such as urokinase-type 

plasminogen activator, caveolin-1 and Slug [101]. More importantly, among breast cancer 

cell lines, ATF3+ cell lines demonstrated improved survival rates when exposed to radiation 

and survival rates were associated with degree of ATF3 expression. Mechanistically, 

radiation resistance is thought to occur through the modulation of the PI3K/Akt signaling 

pathway, as pAkt is a key radioresistance protein. Interestingly, cell lines with increased 

ATF3 expression also showed reduced caspase-3 activity and apoptosis rate [102]. In vivo, 

mice with silenced ATF3 show a significantly lower rate of tumor progression and higher 

sensitivity to irradiation [103]. Collectively, these data again point to a transcription factor 

that can reasonably and specifically treat and prevent BCBMs (Figure. 2).

Targeted therapies improve radiosensitivity for HER2+ breast cancer

Among breast cancer subtypes, HER2+ cancers have shown a high propensity for 

developing BM, in addition to triple negative and HR−/HER2+ [5,99,103]. Up to half of 

patients with HER2+ breast cancer develop tumor metastasis, while the brain is the main 

site of recurrence in these patients, and targeted therapies that inhibit cancer migration and 

proliferation are essential for a successful treatment [104]. Pyrotinib, an irreversible inhibitor 

of HER2 and its downstream signaling, has shown promising antitumor activity [105]. In 

a recent randomized phase 2 trial, women with HER2+ metastatic breast cancer treated 

with pyrotinib combined with chemotherapy yielded significantly better overall response 
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rate and PFS than those given lapatinib combined with chemotherapy [106]. This therapy 

can enhance cancer cell radiosensitivity, from which it is inferred that it may be particularly 

beneficial for patients undergoing radiotherapy for brain metastases [107,108]. This was 

shown in a study by Tian et al. [108] where patients with BCBMs were divided into two 

groups: radiotherapy with capecitabine or radiotherapy with pyrotinib and capecitabine. 

Patients in the pyrotinib group had shown the significantly increased overall treatment 

response rate, PFS, and the reduced response duration. The mechanism underlying this 

effect is currently under investigation but is thought to function via significantly inhibiting 

cell proliferation of cultured cells.

Additional targets have been identified for more sustained responses. Hyperactivation of 

the phosphoinositide-3-kinase (PI3K)/ mammalian target of rapamycin (mTOR) pathway 

is a primary driver of metastasis in HER2+ breast cancer and treatment resistance 

[109]. Everolimus is an inhibitor of this pathway. Two recent phase two trials evaluating 

everolimus in BCBMs patients have demonstrated therapeutic efficacy and survival 

outcomes, like current standard of care and low toxicity [110,111]. Although patients with 

brain metastases have not been tested with the combination of everolimus and radiotherapy, 

the literature postulates that it may have increased the efficacy. This is thought to be due 

in part to increased radiosensitization caused by RAS inhibition [112]. Su et al. [113] 

did demonstrate everolimus’ radiosensitizing effects primarily through an autophagy-driven 

pathway (Table 3).

Conclusions

Overall, number of brain metastases, dissemination of disease, patient functional status, 

age, and tumor size are all important factors in treatment decisions between WBRT 

and SRS. Although WBRT improves tumor control compared to SRS, it increased side 

effects. No randomized trial has specifically compared these therapies in BCBM. Although 

SRS is traditionally applicable to patients with less than 5 metastases, some studies 

have shown that the more metastases, the more effective, but the risk of recurrence and 

leptomeningeal dissemination may also increase. Future trials and prospective studies can 

help predict metastatic zones and tailor radiotherapies accordingly in order to improve 

the risk profile of radiation and avoid low-risk metastasis areas [114]. Evidence for 

treatment guidelines of leptomeningeal disease is currently limited, though treatment 

conventionally consists of concurrent radiotherapy and intrathecal medical therapy. Prime 

areas for future investigation include BCBM-specific studies across different molecular 

subtypes,management of leptomeningeal disease, combination therapies, radiation timing 

(adjuvant vs. neoadjuvant) and management of patients with an intermediate number of 

metastases of 5-10 tumors. Furthermore, radiotherapy efficacy can be further improved using 

therapies targeting unique lncRNAs and transcription factors.

By analyzing the propensity of HER2+ breast cancer for forming BM, future studies can 

use these cell lines to identify additional treatment targets including the HER2 receptor and 

PI3k/mTOR pathways, and the function of pyrotinib and everolimus also require further 

validation. Future studies should evaluate further mechanisms and targets of radiosensitivity 

in order to improve outcomes after WBRT or SRS.
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Figure 1. 
Vascular routes from a breast cancer primary tumor to a cerebral metastasis
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Figure. 2. 
Targeted therapies to both prevent and treat metastatic spread
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