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Recent advances in understanding and improving photosynthesis
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Abstract

Since 1893, when the word “photosynthesis” was first coined by Charles Reid Barnes and Conway MacMillan, our understanding 
of the elements and regulation of this complex process is far from being entirely understood. We aim to review the most relevant 
advances in photosynthesis research from the last few years and to provide a perspective on the forthcoming research in this field. 
Recent discoveries related to light sensing, harvesting, and dissipation; kinetics of CO2 fixation; components and regulators of 
CO2 diffusion through stomata and mesophyll; and genetic engineering for improving photosynthetic and production capacities of 
crops are addressed.
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Introduction
Photosynthesis is the chemical reaction that sustains most life 
on Earth. Since the description of the Hill reaction and the 
Calvin-Benson cycle1–3, knowledge about their components, 
regulation, and limitations experienced a vertiginous increase. 
It is widely known that plants have important handicaps 
related to photosynthesis. First, the photosynthetic apparatus  
that harvests and transforms light energy into electron trans-
port for the generation of ATP and NADPH

2
 must cope with 

the generation of dangerous reactive oxygen species (ROS)4 
and most of the energy must be “wasted” in dynamic heat  
dissipation mechanisms5. Second, the enzyme that catalyzes CO

2
 

fixation in the Calvin-Benson cycle—ribulose 1,5-bisphosphate  
carboxylase oxidase or rubisco—is inefficient owing to sev-
eral intrinsic characteristics, the most notable being the com-
petitiveness between carboxylation and oxidation processes, 
since the oxidation of D-ribulose-1,5-bisphosphate results  
in the energetically expensive but perhaps convenient pho-
torespiratory pathway6. And, third, the diffusion of CO

2
 from 

the atmosphere surrounding leaves through stomata and the 
leaf tissues to the carboxylation sites in the chloroplast stroma, 
where rubisco is located, is a dynamic pathway that is full of 
barriers and includes gaseous, lepidic, and aqueous phases,  
the latter with a small solubility and diffusivity for CO

2
.

In the last few years, researchers have tried to determine the 
limitations and components of the processes described above. 
Engineering photosynthesis targeting different aspects of pho-
tosynthesis and its regulation has also advanced. The aim 
of this review is to compile and organize these advances in 
photosynthesis from the last few years and suggest a next  
horizon for plant physiologists, ecologists, and geneticists.

Light harvesting and use
Light energy is absorbed and transferred to the photosystem 
II (PSII) core by the light-harvesting complex II (LHCII). The 
way this absorption is regulated is relevant, since excessive  
and/or unbalanced exposure to light can lead to the gen-
eration of ROS and, in the long term, to the initiation of  
senescence processes7. Some isoforms of LHCII upregulate its  
transcription and translation as a response to high irradiance8,9, 
and their interaction with PsbS—a protein that plays a spe-
cial role in photoprotection—has been described in detail10.  
Furthermore, Janil et al.11 discussed the enhanced dimeriza-
tion of LHCII under strong light conditions as a photoprotective 
response partially responsible for the dissipation of excess  
excitation. In line with this, Albanese et al.12 recently described 
how the organization of PSII–LHCII supercomplexes changed  
with the diversification of land plants, contributing to their 
adaptability to different light environments. However, photo-
protective processes and their ecophysiological implications 
remain far from fully characterized5. At the extreme oppo-
site to excess light, shaded leaves within the canopy exhibit  
lower photosynthesis rates and slower activation of rubisco,  
stomata opening, and relaxation of photoprotection states. 
These delays, especially in rubisco activation, have been esti-
mated to decrease wheat assimilation by 21% in shade to sun  
transitions13. Indeed, the fact that light is often in excess in the  

most illuminated leaves while limited in the shaded leaves 
within the canopy has led to the suggestion that lowering  
chlorophyll content may result not only in negligible effects on  
leaf-level photosynthesis rates but also in a higher distribu-
tion of light harvesting through the canopy, hence potentially  
enhancing whole plant photosynthesis rates and yield14,15. On the 
other hand, alterations of the canopy structure have also been 
suggested as a mechanism to improve light interception and  
canopy assimilation (see the recent review by Morales et al.16  
and references therein), mainly through long-term breeding but  
also through hormonal and/or genetic means17.

Besides studies on the photosynthetic management of light 
amount, the effect of light quality on photosynthesis-related 
issues has also been addressed. It is widely known that growing 
under blue light conditions induces lower photosynthetic rates, 
increases the synthesis of carotenoids and anthocyanins and 
the photoprotection capacity, and decreases stomata size while 
increasing their density18. Light quality also affects the level of  
ROS and the expression of antioxidant enzymes19. Recently, 
Górecka et al.20 demonstrated that PsbS is not only a com-
pulsory protein for enhancing dissipation of the excess of 
light energy as heat but also relevant for the red/blue light- 
associated enhancement of tolerance to UV-C and chloroplast  
signaling for light memory. A recent study has also described a  
species-specific response of photosynthesis to the quality of 
light independent of its intensity21. These interspecific dif-
ferences in light response represent an opportunity to deeply 
understand the elements of light harvesting and their adaptation  
to different light environments.

Rubisco kinetics and CO2-concentrating mechanisms
Interspecific variation of rubisco kinetics has also been a 
focus over the last several years. In two almost simultane-
ously published works, Hermida-Carrera et al.22 and Orr et al.23 
assessed rubisco kinetics, their temperature dependency, and 
the aminoacidic replacements in the large subunit of rubisco  
in many crop species. Orr et al.23 extended their study to include 
75 angiosperm species and found that some undomesticated 
plants presented inherently better rubisco kinetics, being thus a 
potential source for crop photosynthesis improvement. Iñiguez  
et al.24 and Flamholz et al.25 extended the analysis of differences 
in rubisco catalysis across the phylogeny and correlated them 
with the incidence of CO

2
 concentration mechanisms (CCMs),  

showing that organisms that had evolved CCMs tended to have 
faster rubiscos yet with lower affinity and specificity for CO

2
. 

Hermida-Carrera et al.26 found similar results when comparing 
rubisco catalytic traits of orchids and bromeliads with and with-
out CCMs. These results suggest that equipping C

3
 crops with  

CCMs could be another strategy for fueling their photosynthetic 
capacity.

C
4
 photosynthesis is often envisaged as an efficient CCM 

and thus converting typical C
3
 crops into C

4
 has been a  

long-standing goal, resulting in the development of large-scale 
projects like the ongoing C4Rice (https://c4rice.com/), yet  
the goal has not been fully accomplished yet27. Furthermore,  
transitioning from mostly C

3
 to mostly C

4
 crops may be an 

https://c4rice.com/
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efficient way to enhance productivity in a world exhibiting 
increased global aridity28,29, as it has been shown that in some 
cases C

4
 plants performed better under drought than did C

3
  

species30. In the same vein, introducing crassulacean acid metab-
olism (CAM) into C

3
 crops has been suggested as a strategy 

to increase water use efficiency, i.e. to maximize CO
2
 fixation 

with minimum water loss through transpiration31,32. On the other  
hand, other CCMs like those found in algae and other aquatic 
organisms (e.g. pyrenoids and carboxysomes) have been reported 
to concentrate more CO

2
 around rubisco than C

4
 photosynthe-

sis. Hence, while the C
4
 mechanism allows CO

2
 concentrations 

around rubisco of at least 10-times higher than those of the sur-
rounding atmosphere33, eukaryotic algae like Chlamydomonas 
containing pyrenoids can concentrate CO

2
 40-times34 and  

prokaryotic cyanobacteria possessing carboxysomes 100-times35 
higher than the surrounding atmosphere. Consequently, the 
potential expression of cyanobacterial and algal CCMs in crop  
plants has been proposed as an opportunity to improve their  
photosynthesis36.

Despite the inefficiencies of light harvesting and rubisco, pho-
tochemical and/or biochemical limitations to photosynthesis 
are not larger than the diffusional limitations related to both sto-
matal and mesophyll resistances to CO

2
 in most of the studied  

species37–45. Gago et al.46 recently presented a compilation of  
photosynthetic limitations across land plants’ phylogenies, in  
which angiosperms showed a well-balanced distribution among 
biochemical, stomatal, and mesophyll limitations; photosynthe-
sis in gymnosperms and ferns was co-limited mostly by stomatal 
and mesophyll limitations; and in bryophytes and lycophytes  
the mesophyll limitation largely predominated.

Mesophyll conductance components
Mesophyll conductance to CO

2
 (g

m
) depends on several leaf 

structures that comprise the pathway from sub-stomatal cavi-
ties to carboxylation sites of rubisco. Intercellular air spaces, 
cell walls, plasma membranes, cytosol, double chloroplast  
membranes, and stroma offer resistance to CO

2
 diffusion. Val-

ues of g
m
 vary strongly among species, and short-term changes 

in g
m
 have been reported in response to many different envi-

ronmental variables46–49, although a part of them could reflect 
methodological errors or uncertainties50–52. While interspecific 
differences are largely explained by anatomical traits37–39,53,54, 
short-term changes cannot be explained either by variable leaf 
anatomy or by the temperature coefficient reported for CO

2
  

diffusion55–57. Consequently, it has been suggested that a bio-
chemically facilitated CO

2
 diffusion must contribute to g

m
 

instead of solely physical diffusion56,58–60. Short-term chloro-
plast movement, aquaporins, and carbonic anhydrases have been  
indicated as candidates53,56,61, although their actual involvement  
is far away from being conclusive.

For instance, despite the fact that chloroplast surface area fac-
ing intercellular airspaces per unit leaf area (S

c
/S) is one of 

the anatomical parameters more correlated with g
m

37,53,54, no  
evidence for an association between short-term changes of g

m
 

and chloroplast movement or leaf anatomy has been found57,62,63, 

with the exception of Arabidopsis mutants with phytochrome-
mediated impairment of the chloroplast avoidance response64. 
In a similar way, the contribution of carbonic anhydrases to g

m
  

variations remains elusive and is a matter of ongoing debate65. 
The most recent studies showed that latitudinal variation of g

m
 

correlates with variations in carbonic anhydrase activity66,67 and  
that a coupled inhibition of both g

m
 and carbonic anhydrases is 

obtained with treatment with mercuric chloride68. Han et al.69 
also reported a decrease in the expression of carbonic anhydrase  
(CA1) during drought. On the contrary, Kolbe and Cousins70  
did not find any variation in g

m
 in five lines of maize despite  

their differences in carbonic anhydrase activity.

The role of aquaporins as enhancers of CO
2
 diffusion across 

membranes has been widely reported48,71. Changes in g
m
 had been 

induced by inhibitors of aquaporins68,72 in transgenics73–76 and  
in mutants77–80. Direct measurement of the CO

2
 permeability of 

chloroplasts also revealed a 50% reduction in chloroplasts of an  
Arabidopsis aquaporin mutant as compared to the wild-type81. 
Despite these findings, Kromdijk et al.82 recently reported null 
differences in g

m
 among several knockout aquaporin mutants 

and wild-type, probably due to functional redundancy of  
aquaporin isoforms.

Additionally, the relative importance of these biochemical  
processes and anatomical traits in regulating g

m
 remains 

unknown. Furthermore, recent studies showed uncertainty 
about estimating some relevant anatomical parameters from 
microscopic images of 2D cross-sections compared to 3D 
microscopy, especially the mesophyll surface area exposed to  
air-filled spaces83 and chloroplast volume84. This could partially 
explain the differences in the g

m
 calculated from chloro-

phyll fluorescence and/or gas exchange and g
m
 calculated 

so far from anatomical models38,39,53,85,86. Earles et al.87 have  
emphasized the need to improve 3D techniques and mod-
els to properly characterize leaf-level photosynthesis in its  
whole complexity.

Within the anatomical components, S
c
/S and cell wall thick-

ness (T
cw

) have been recognized as especially determinant for 
g

m
46. Besides the effect of T

cw
, an effect of cell wall composi-

tion and porosity in short- and long-term variations of g
m
 has 

been suggested88,89, and recently the first empirical evidence 
was provided. Thus, a reduction of g

m
 was observed by  

Ellsworth et al.90 in mutants with disrupted β-glucosyl polysac-
charides of the cell wall. More recent studies have shown 
that the decrease of g

m
 provoked by drought, salinity, and low 

temperatures is coupled with variations in the relative levels  
of cellulose, hemicelluloses, and pectins91,92. More evidence is 
needed to understand how cell wall composition affects porosity 
and CO

2
 diffusion.

Stomatal conductance
As mentioned above, an additional important limiting fac-
tor of photosynthesis is the stomatal conductance (g

s
). Several  

internal and environmental factors are widely known to affect  
g

s
. Stomatal shape, size, density, and clustering influence g

s
 



Faculty Reviews 2020 9:(5)Faculty Opinions

and therefore photosynthesis93. These traits are established 
during leaf development and regulated by several phytohor-
mones, especially abscisic acid (ABA)94. Light, CO

2
, and water  

supply also affect g
s
95,96.

The speed of g
s
 responses to light and CO

2
 has been recently 

compared among phylogenetic plant groups. Although fern 
and lycophyte stomata are not insensitive to light and CO

2
, 

their response is lower and slower than that observed in 
angiosperms97–100. Furthermore, unlike angiosperms, fern and lyc-
ophyte stomata do not respond to endogenous levels of ABA97,98  
and their closure is based on a passive response of guard 
cells to dehydration101. The mechanism that explains this  
different response remains unclear, although it is likely related 
to differences in the molecular mechanisms operating in the  
guard cells along the phylogeny. Among other factors affect-
ing g

s
 (kinases, anion channels, etc.), it is known that  

carbonic anhydrases can be involved in the biochemical  
mechanism by which guard cells of angiosperms sense CO

2
 

(see the review by Engineer et al.95), although details of signal  
transduction and the identity of the second messengers (bicar-
bonate, protons) are still debated. Furthermore, a higher  
CO

2
 assimilation related to phosphoenolpyruvate carboxylase  

activity followed by gluconeogenesis and maybe sucrose  
synthesis has been described for guard cells in comparison to  
those of mesophyll cells of C

3
 plants102.

In addition, recent studies suggest that stomata movement is 
regulated by mesophyll-derived signals. Sucrose has been iden-
tified as an important metabolite for the regulation of stomatal 
opening and closure100,103,104. Wang et al.105 reported that the 
maize mutant cst1—with an impaired membrane glucose trans-
porter CST1 located in the subsidiary cell membrane—presented  
lower g

s
, lower photosynthesis, and earlier senescence than the 

wild-type. In line with this, Fujita et al.106 demonstrated that 
stomatal responses are disrupted when a membrane excluding 
molecules of 100–500 Da is transplanted between mesophyll  
and guard cells, which would avoid the transport of sucrose, 
malate, and ABA. In a study of ABA-regulated genes in  
Arabidopsis, Yoshida et al.107 found highly expressed genes in 
guard cells related to the tricarboxylic acid cycle and sucrose 
and hexose transport and metabolism. These studies support the 
hypothesis of stomatal regulation driven by carbohydrate/hor-
mone-related mesophyll signals. However, the differences in 
the mechanism of mesophyll cell signaling and in guard cell 
metabolism among fern, lycophytes, and angiosperms—both  
anisohydric and isohydric species—remain unknown.

Even in angiosperms, the predominance of hormonal vs. hydrau-
lic stomatal regulation is currently under debate108–110. Tradi-
tionally, stomatal closure has been understood as a safety valve 
to prevent cavitation (see Hochberg et al.111 and references 
therein). However, a detailed chronological description of the  
drought response of g

s
 and hydraulic conductance (K

leaf
) in rice 

revealed that the decline in K
leaf

 preceded and probably trig-
gered the decline of g

s
 and g

m
108. Nadal et al.112 suggested that 

both types of drought response are not necessarily incompatible  

and can be related to the spectrum of the iso-anisohydric  
response of angiosperms.

Engineering photosynthesis
While there are some opposing views113, improving photosyn-
thesis is often envisaged as an important goal for improving 
crop yields114–117, including the cultivation of photosynthetic 
microorganisms, which constitutes a huge and important branch  
of bioengineering for bioenergy production118,119. Regarding land 
plant bioengineering, optimizing production with a minimum 
investment of resources (water, land, and nutrients) is the aim 
of ongoing large-scale projects, such as the already mentioned  
C4rice or the RIPE project (https://ripe.illinois.edu/). Several 
targets for manipulation—including all those mentioned in the 
above sections—have been proposed with the aim of improv-
ing photosynthesis and crop yield120,121. Neglecting which are  
the main limitations for photosynthesis when targeting genes for 
improving photosynthesis is an example of the mutual disregard 
that ecophysiologists and biotechnologists have had for each 
other in the last few decades122, i.e. biotechnologists attempt-
ing to improve photosynthetic targets that ecophysiologists 
were showing to be non-limiting for photosynthesis. Using a  
model approach, Flexas116 showed that only modest improve-
ments of photosynthesis can be expected from relaxing only one 
limiting factor, since photosynthetic limitations are generally 
well-balanced in angiosperms46. Nevertheless, even with this rel-
atively modest approach, increases of yield of >40% have been  
reported in some successful attempts117.

Rubisco kinetics have been among the most common targets  
for improving photosynthesis. All the advances in rubisco  
engineering have implied important improvements in our under-
standing of rubisco regulation and assembly but unsuccess-
fully improved the catalytic performance of rubisco123,124 or  
photosynthesis125. While faster rubisco from cyanobacteria 
have been successfully engineered in transplastomic tobacco126, 
post-transcriptional assembly of functional rubisco in large 
enough quantities remains a limiting factor, likely due to the 
inability of local chaperones to deal with foreign rubisco frag-
ments (see Whitney et al.127 and their attempt to solve this 
problem by the use of ancillary chaperone genes). For this  
reason, this is a very active area of ongoing research127,128. 
Rubisco activase is another potential limiting factor, as  
Fukuyama et al.129 also showed how increased expression of 
rubisco activase resulted in a negative correlation with rubisco  
content.

Besides achieving more efficient rubiscos, an alternative strat-
egy has been to increase CO

2
 concentration by either introduc-

ing elements of algal CCMs or bypassing photorespiration by 
different processes. While theoretically CCMs should increase 
photosynthesis130, introducing CCMs into either tobacco131  
or Arabidopsis failed to increase photosynthesis132,133, probably  
because of insufficient encapsulation of local rubisco in the 
foreign carboxysomes, which can be improved by simultane-
ously replacing the native large subunit of rubisco134. Additional 
elements might also be essential for a proper assemblage of  

https://ripe.illinois.edu/
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fully functional carboxysome–rubisco CCMs, as recently demon-
strated for bestrophin-like proteins135.

More successful results have been obtained when the pho-
torespiration pathway has been manipulated in Arabidopsis 
and tobacco136,137. While photosynthesis increases136, biomass 
production has been shown to vary from decreasing through  
unaffected to increasing by 10–50%117,138. Recently, South et al.137  
obtained a 24% maximum increase of biomass when glycolate 
byproducts of photorespiration are processed by foreign malate 
synthase and a green algal glycolate dehydrogenase, substitut-
ing the native pathway. Tissue-specific overexpression of one 
of the subunits forming in the glycine dehydrogenase system 
also increased biomass yield by 13–38% in tobacco139.  This 
is a very promising approach for improving grain crop yields in  
the near future.

Also, modifications of the Calvin-Benson cycle have resulted 
in improved photosynthesis and yield. Overexpression or 
transgenic insertion of several enzymes involved in the cycle 
(mostly sucrose bis-phosphatase—SBPase—and fructose 
bis-phosphatase—FBPase—but also FBPaldolase) has also 
resulted in increased photosynthesis and dry weights, although  
generally not in improved yield. However, Driever et al.140 
showed an up to 40% increase in grain yield in wheat, 
and Simkin et al.141 a 35–53% increase in seed yield in  
Arabidopsis. Furthermore, overexpression of FBP/SBPase has 
been recently combined with an improved electron transport 
by the addition of the algae cytochrome C

6
, which also resulted 

in up to 53% of increase of biomass142. These results open up  
the possibility of using this approach for improving crop yields in 
the very near future.

Few attempts have focused on modifying CO
2
 diffusive char-

acteristics of leaves. Altered stomatal density in epidermal  
patterning factor (EPF) mutants of Arabidopsis143 and wheat144 
resulted in an increased photosynthetic water-use efficiency 
(WUE) but not increased photosynthesis itself. Similarly, 
Yang et al.145 showed that overexpression of the ABA receptors  
RCAR6/PYL12 increases the sensitivity of the stomata in  
Arabidopsis lines, reducing g

s
 even in the absence of water 

stress without affecting photosynthesis, thus also enhancing 
WUE. As described in previous sections, g

s
 was also enhanced 

by overexpression of glucose transporters in subsidiary cell  
membranes105.

Generally speaking, increasing stomatal conductance does not 
result in enhanced photosynthesis because stomatal limita-
tions are generally minor in the absence of stress. However,  
during leaf development, the presence of well-developed 
and functional stomata appears to be the main driver of the devel-
opment of mesophyll porosity, which is an essential anatomi-
cal trade favoring g

m
 and hence photosynthesis146. This finding is 

remarkable as it implies that, while it is likely that a mesophyll 
signal is involved in stomata regulation (see above sections), 
stomata define the developmental set-up of the mesophyll  

structure, hence establishing a very intricate co-dependency  
between g

s
 and g

m
 limitations at different time scales that 

deserves further study. In line with this, Lehmeier et al.147 showed 
that it is possible to genetically modify cell density and the  
arrangement of the air channels with an overall decreased 
path tortuosity in the palisade air spaces in a way that  
facilitates g

m
 without affecting g

s
. Similarly, alteration of leaf 

mesophyll anatomy of Eucalyptus has been attempted by the 
overexpression of the transcription factor EcHB1, which is 
involved in multiple genes related to cell wall biosynthesis and 
cell growth, increasing the number of chloroplasts per unit leaf 
area and therefore enhancing CO

2
 diffusion into chloroplasts 

and photosynthesis148. These results offer new possibilities in 
improving photosynthesis by reducing CO

2
 diffusion limita-

tions. Advances in the understanding of cell wall composition 
determinants of g

m
 may open complementary doors in the near  

future.

While significant and important in some cases, the above-
described manipulations aimed to improve maximum photosyn-
thesis rates, i.e. light-saturated photosynthesis in the absence 
of abiotic and biotic stresses. However, photosynthesis in nature 
occurs in largely variable conditions, e.g. in fluctuating light. 
For instance, De Souza et al.43 showed in cassava that, while 
under steady-state high-light conditions, g

m
 and biochemical  

limitations accounted for up to 84% of the total photosyn-
thetic limitation and, under non-steady state conditions during 
shade to sun transition, g

s
 became the most dominant limita-

tion. Thus, in recent years, research has focused on improving  
photosynthesis and efficiency under non-steady-state condi-
tions by decreasing the excess absorption of light15,149 or increas-
ing the relaxing velocity of photoprotection150–152. More sur-
prisingly, overexpressing PsbS in transgenic tobacco resulted 
in enhanced WUE by reducing g

s
, not increasing photosynthe-

sis, again pointing to potential mesophyll signals in stomata  
regulation153. Recently, Papanatsiou et al.154 used an optogenetic 
approach to improve photosynthesis, WUE, and growth in Ara-
bidopsis. They expressed a synthetic light-gated K+ channel in 
stomatal guard cells (BLINK1), which improved the speed of 
stomata kinetics in response to varying light. Increased veloc-
ity of stomata opening from a dark-to-light transition and clos-
ing from a light-to-dark transition resulted in increased plant  
growth and WUE by approximately 30%154.

Conclusion
Light sensing, photoprotection, CO

2
 diffusion, and its fixa-

tion involve numerous and complex processes that are far 
from fully understood. In the last few years, new insights have 
been obtained into how interaction and conformation of light-
harvesting complexes and photosystems affect photoprotec-
tion and heat dissipation. Advances have been made also in 
the understanding of the variability in rubisco kinetics and  
photosynthetic limitations at steady state along the plant’s 
phylogeny, of the genetics and mechanistic aspects of  
carbon-concentrating mechanisms, and of the major anatomical 
determinants of g

m
 and the metabolic determinants of stomatal 

conductance and kinetics. Important links between mesophyll  
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and stomatal cells have been revealed, although the signaling 
between mesophyll cells and guard cells that regulates g

s
 

requires further research, as does understanding the chemical  
and biochemical determinants of g

m
.

Nevertheless, owing to the new knowledge acquired, engi-
neering efforts for improving photosynthesis and photo-
synthetic WUE have been attempted, some of them with 
significant success, which open up the opportunity for  
photosynthesis-mediated improvement of crop productivity in 

the forthcoming years. To achieve this goal, a close collabora-
tion among plant physiologists, molecular biologists, geneticists, 
and agronomists might be essential for generating multiple new 
photosynthetic genotypes and evaluating them under realistic 
conditions, both under steady- and non-steady-state conditions,  
from a photosynthetic limitations perspective to a yield and 
WUE perspective122. Technical advances in analytical tools, 
like the recently implemented rapid CO

2
 response curves of gas 

exchange155–159, would be crucial to allow in-depth phenotyping  
of photosynthesis in record times.
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