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Abstract

Reactivation of Kaposi’s sarcoma-associated herpesvirus (KSHV) is important for persistent

infection in the host as well as viral oncogenesis. The replication and transcription activator

(RTA) encoded by KSHV ORF50 plays a central role in the switch from viral latency to lytic

replication. Given that RTA is a transcriptional activator and RTA expression is sufficient to

activate complete lytic replication, RTA must possess an elaborate mechanism for regulat-

ing its protein abundance. Previous studies have demonstrated that RTA could be degraded

through the ubiquitin-proteasome pathway. A protein abundance regulatory signal (PARS),

which consists of PARS I and PARS II, at the C-terminal region of RTA modulates its protein

abundance. In the present study, we identified a host protein named Nuclear receptor coac-

tivator 2 (NCOA2), which can interact with RTA in vitro and in vivo. We further showed that

NCOA2 binds to the PARS II domain of RTA. We demonstrated that NCOA2 enhances RTA

stability and prevents the proteasome-mediated degradation of RTA by competing with

MDM2, an E3 ubiquitin ligase of RTA that interacts with the PARS II domain. Moreover,

overexpression of NCOA2 in KSHV-infected cells significantly enhanced the expression

level of RTA, which promotes the expression of RTA downstream viral lytic genes and lytic

replication. In contrast, silencing of endogenous NCOA2 downregulated the expression of

viral lytic genes and impaired viral lytic replication. Interestingly, we also found that RTA

upregulates the expression of NCOA2 during lytic reactivation. Taken together, our data

support the conclusion that NCOA2 is a novel RTA-binding protein that promotes RTA-

driven lytic reactivation by increasing the stability of RTA, and the RTA-NCOA2 positive

feedback regulatory loop plays an important role in KSHV reactivation.
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Author summary

Reactivation of KSHV from latency to lytic replication plays an important role in viral

spread, establishment of lifelong latent infection and disease progression. RTA, the lytic

switch protein, is essential and sufficient for triggering the full viral lytic program. Here,

we report a host protein named NCOA2 as a novel RTA-binding protein. Direct interac-

tion of NCOA2 with RTA increased the expression level of RTA. Further study revealed

that NCOA2 competes with the E3 ubiquitin ligase of RTA, MDM2, to interact with the

PARS II domain of RTA, which inhibits RTA degradation and enhances the stability of

RTA. In the context of KSHV-infected cells, we showed that NCOA2 plays an important

role in promoting RTA-driven lytic reactivation.

Introduction

Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8, is an

oncogenic γ herpesvirus closely associated with an endothelial neoplasm, Kaposi’s sarcoma

(KS), and two other lymphoproliferative diseases, primary effusion lymphoma (PEL) and mul-

ticentric Castleman’s disease (MCD) [1–3]. Similar to other herpesviruses, KSHV has two

types of life cycles: latency and lytic replication [4]. KSHV evades host immunity by establish-

ing a lifelong latent infection. In this phase, KSHV exhibits highly restricted gene expression

patterns, and few viral particles are produced [5, 6]. Although latent infection is the default life

cycle of KSHV, the virus can be reactivated from latency by physiological stimuli, leading to

the production of mature viruses [7–10]. Lytic replication promotes the recruitment of new

cells to latency to replace those that have segregated the viral episome, suggesting an important

role for lytic replication in persistent viral infection [11–14]. HIV/AIDS patients receiving

antiherpetic drugs to block lytic replication showed a reduced incidence of KS, confirming the

role of lytic DNA replication and gene products in KSHV-mediated tumorigenesis [15–17].

Thus, identifying the molecular events during the lytic replication cycle is critical to under-

standing KSHV pathogenesis and developing promising strategies to disrupt persistent KSHV

infection and prevent the occurrence of KSHV-related diseases.

The switch of KSHV from latency to the lytic cycle is mainly regulated by replication and

transcription activator (RTA), which is encoded by KSHV ORF50 [18–22]. RTA is a multi-

functional protein that is involved in the assembly of KSHV ori-Lyt replication complexes by

recruiting specific proteins required for lytic DNA synthesis [23] and also functions as a tran-

scriptional activator. RTA activates a number of downstream viral and cellular target genes by

at least three mechanisms, which have been well studied, including directly binding to specific

motifs in some viral promoters, such as PAN and K12 [24]; indirectly accessing certain pro-

moters of target genes through cooperating with various host transcription factors, such as

RBP-Jκ, Oct-1, C/EBPα, and Sp1 [22, 25–29]; or serving as an intrinsic E3 ubiquitin ligase to

promote the degradation of host transcription repressors, such as K-RBP and IRF-7 [30–33].

Ectopic expression of RTA is sufficient to disrupt KSHV latency and drive a complete lytic rep-

lication cycle [20]. Thus, the abundance of RTA protein must be tightly regulated to facilitate

life-long persistent infection of KSHV.

Previous studies showed that RTA is polyubiquitinated, and its abundance is controlled by

the proteasomal degradation pathway. MDM2, a human oncoprotein [34], has been identified

as an E3 ligase of RTA that interacts with RTA to promote the degradation of RTA in host cells

[35]. An abundance regulatory signal [protein abundant regulatory signal (PARS)] domain

within the C-terminal region of RTA plays a critical role in regulating the abundance of RTA.
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PARS is composed of two subcomponents, PARS I and PARS II. PARS I is located between

amino acids (aa) 490 and 535, whereas PARS II is located between aa 590 and 650. Mutation

or deletion of either component enhanced RTA expression [36]. The PARS I domain, as a

nuclear localization signal (NLS), mediates the translocation of RTA from the cytoplasm to the

nucleus. Meanwhile, PARS II serves as a docking site for ubiquitin enzymes to control the deg-

radation of RTA in the nucleus. The MDM2 protein binds to the PARS domain to promote

RTA degradation through the proteasomal-dependent degradation pathway [35]. A previous

study showed that viral small peptide 1 (vSP1), an immediate-early gene product encoded by

the T3.0 transcript of KSHV, increases the stability of RTA by binding to the PARS II domain

and blocks the ubiquitination and degradation of RTA [37]. Thus, the abundance of RTA is

tightly controlled by cellular and viral molecules. However, how the stability of RTA is finely

regulated in cells and whether there are other host proteins involved in this process have not

been fully elucidated.

Despite extensive studies on how RTA activates its promoter [21] and its downstream viral

promoters [38], analyses of the regulatory mechanisms of RTA protein level are lacking. In

this study, NCOA2 was identified as a novel RTA-binding protein. We found that NCOA2

strongly binds to the PARS II domain of RTA and upregulates RTA expression. We further

showed that NCOA2 blocks the E3 ubiquitin enzyme MDM2 from binding to the PARS

domain of RTA, which protects RTA from ubiquitin-proteasome-mediated degradation dur-

ing the viral lytic reactivation process. We demonstrated that ectopic expression of NCOA2

substantially enhanced viral lytic replication, whereas knockdown or knockout of NCOA2

largely impaired the ability of RTA to drive lytic replication. Interestingly, we also found that

NCOA2 expression was upregulated upon RTA activation during the viral lytic cycle, suggest-

ing a positive feedback regulatory loop between NCOA2 and RTA, which is important to fur-

ther enhance RTA expression. These results demonstrated that NCOA2 plays an important

role in regulating RTA stability and therefore facilitates KSHV lytic replication mediated by

RTA.

Results

NCOA2 interacts with KSHV RTA

To further understand the mechanism by which RTA functions are regulated, we used the

Flag-tag-based affinity purification method to identify novel host factors interacting with

RTA. RTA was overexpressed in HEK293T cell lines and HEK293T.219 cell lines to seek the

RTA-interacting proteins. We immunoprecipitated the proteins interacted with RTA and ana-

lyzed the proteins by mass spectrometry coupled with bioinformatics methods (S1A Fig).

Based on the mass spectrometry data, we constructed the Venn diagram identifying 77 RTA

interacting-proteins enriched both in HEK293T cell lines and HEK293T.219 cells (S1B Fig).

The results are summarized in S1 Table. A host protein named NCOA2 was one of the candi-

date proteins that can potentially interact with RTA. The interaction between RTA and

NCOA2 was confirmed by coimmunoprecipitation (Co-IP) assays. As shown in Fig 1A, 293T

cells were transfected with Flag-tagged NCOA2 and HA-tagged RTA individually or together.

RTA was coimmunoprecipitated with NCOA2 (Fig 1A). The reverse Co-IP experiment

showed that the NCOA2 protein was specifically coimmunoprecipitated with RTA (Fig 1B).

To determine whether this interaction was direct, we investigated the interaction by an in vitro
binding assay. In vitro-purified His-fused RTA was incubated with purified GST or GST-fused

NCOA2 beads. The results showed that NCOA2 directly interacts with RTA (Fig 1C).

To corroborate the above results from the immunoprecipitation and in vitro binding assays,

we further performed immunofluorescence assays to determine whether NCOA2 and RTA
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could be colocalized in the same cellular compartment. HeLa cells were cotransfected tran-

siently with Flag-tagged RTA and HA-tagged NCOA2. RTA and NCOA2 were colocalized to

the same nuclear compartment in HeLa cells (Fig 1D). This result suggested that exogenously

transfected NCOA2 and RTA proteins colocalized in the nucleus.

Fig 1. NCOA2 interacts with KSHV RTA. (A) First, 293T cells were transfected with Flag-NCOA2 alone or HA-RTA alone or cotransfected with Flag-NCOA2 along

with HA-RTA. Cell lysates were immunoprecipitated with anti-Flag antibody and then analyzed by western blotting with the indicated antibodies. (B) The 293T cells were

transfected with Flag-RTA alone or HA-NCOA alone or cotransfected with Flag-RTA along with HA-NCOA2. Cell lysates were immunoprecipitated with anti-Flag

antibody and then analyzed by western blotting with the indicated antibodies. (C) In vitro GST affinity binding assay. Bacterially expressed GST alone and GST-NCOA2

attached to GST-Sepharose beads were incubated with the purified His-tagged RTA, and the pull-down lysates were immunoblotted with anti-His or anti-GST antibodies.

(D) Colocalization of NCOA2 and RTA in HeLa cells. Following transfection with Flag-RTA and HA-NCOA2, HeLa cells were fixed with 4% paraformaldehyde and then

stained with anti-HA and anti-Flag antibodies. Secondary antibodies conjugated to FITC or Cy3 were used to visualize the stained RTA and NCOA proteins, respectively.

Diamidino-2-phenylindole shows the nuclei of cells.

https://doi.org/10.1371/journal.ppat.1008160.g001
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To confirm the interaction between endogenous NCOA2 and RTA, we first examined the

expression levels of NCOA2 in different cell lines. Western blotting analysis showed that

NCOA2 is expressed in 293T cells and several KSHV latently infected cell lines (Fig 2A). We

then carried out Co-IP with KSHV-infected cells (iSLK.RGB, BCBL1, JSC1, BC3) that har-

bored latent KSHV episomes. After these KSHV-infected cells were induced by doxycycline

(dox) (iSLK.RGB) or treated with valproic acid (VPA) (BCBL1, JSC1 and BC3), which is an

inducer of KSHV lytic replication [39], for 24 hours (h) to activate the expression of endoge-

nous RTA, cell lysates were immunoprecipitated with anti-NCOA2 antibody or rabbit IgG

control. As expected, RTA was associated with the endogenous NCOA2 protein in KSHV-

infected cells (Fig 2B). We also performed immunofluorescence assays to explore whether

endogenous NCOA2 and RTA could be colocalized in similar nuclear compartments in natu-

rally KSHV-infected BCBL1, BC3 and JSC1 cells. Twelve hours after VPA induction, cells were

fixed for immunofluorescence and probed with RTA as well as NCOA2 antibodies, followed

by incubation with appropriate secondary antibodies. The results demonstrated that endoge-

nous NCOA2 and RTA were colocalized in the same nuclear compartments of BCBL1, BC3

and JSC1 cells (Fig 2C). Taken together, these results indicated that the host NCOA2 protein is

a novel KSHV RTA-interacting protein.

Mapping the interaction domains in RTA and NCOA2

NCOA2 is a modular protein with well-defined protein-protein interaction domains, includ-

ing the N-terminal bHLH-PAS domain, the centrally located nuclear receptor (NR) boxes

responsible for NR binding, the C-terminal activation domain (AD) and a repression domain

(RD) (Fig 3A) [40]. To evaluate the importance of individual NCOA2 regions responsible for

the interaction with RTA, we generated a series of Flag-tagged NCOA2 deletion mutants (Fig

3A). Then, 293T cells were cotransfected with RTA and wild-type NCOA2 or NCOA2

mutants. The Co-IP assay showed that the N624 mutant (from 1 aa to 624 aa), which contains

the bHLH-PAS domain of NCOA2, had the crucial region responsible for the association of

NCOA2 with RTA (Fig 3B).

A similar approach was used to define the RTA region required for interaction with

NCOA2. A series of truncated versions of Flag-tagged RTA were generated and examined for

their ability to interact with NCOA2 (Fig 3C). We first determined the cellular localization of

these RTA mutants and found all mutants were located in the nucleus (S2 Fig), with C544-691

(from 544 aa to 691 aa) and N273 (from 1 aa to 273 aa) primarily localized in the nucleus but

also present in the cytoplasm. C544-691 currently has no known NLS, and we speculate that it

might have other nuclear import pathways instead of the classical NLS signaling. As shown in

Fig 3D, NCOA2 was coimmunoprecipitated by the RTA truncation that contains the tran-

scriptional activation domain (TAD, from 544 aa to 691 aa). The GST pulldown assay showed

that the interaction between the TAD of RTA and NCOA2 was direct (Fig 3E). The TAD con-

tained a portion of the regulatory domain PARS, which consists of two components, namely,

PARS I (490 aa–535 aa) and PARS II (590 aa–650 aa). Mutation or deletion of either compo-

nent resulted in high RTA protein expression [36]. We further showed that RTA-4PARS-II,

an RTA mutant in which the PARS II domain was deleted, lost the ability to interact with

NCOA2 (Fig 3F and 3G). Thus, the PARS II domain of RTA is the minimum region responsi-

ble for the interaction with NCOA2.

NCOA2 stabilizes RTA protein expression

Previous studies reported that the degradation of RTA by ubiquitination involves both the

PARS I and II domains. There are several lysines in PARS I that may function as ubiquitin
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acceptor sites, and PARS II serves as a dock site for ubiquitin E3 ligase [35]. Hence, we specu-

lated that the binding of NCOA2 to the RTA PARS II motif may increase the stability of RTA

by preventing its ubiquitination. To test this hypothesis, we coexpressed increasing amounts of

NCOA2 with a constant amount of RTA in 293T cells, and the effect of NCOA2 on RTA

expression was examined by western blotting analysis. The results showed that RTA expression

was increased in the presence of NCOA2; moreover, RTA expression was enhanced by

NCOA2 in a dose-dependent manner (Fig 4A). No significant changes were observed in RTA

mRNA levels between the cells with or without expression of NCOA2 (Fig 4B). In contrast,

knockdown of NCOA2 in 293T cells decreased the expression level of RTA in a transient

transfection experiment (Fig 4C). However, knockdown of NCOA2 did not affect the expres-

sion level of RTA-4PARS-II, in which the PARS II domain was deleted from RTA and lost the

binding activity with NCOA2 (Fig 4D). We also found that the truncation mutant N624 of

NCOA2 maintained its ability to increase RTA expression, similar to the full-length NCOA2

(Fig 4E, lanes 2 and 3). However, the truncation mutant 624C of NCOA2 that cannot bind to

RTA completely abolished the ability to enhance RTA expression (Fig 4E, lane 4). Addition-

ally, the expression level of RTA-4PARS-II was no longer affected by NCOA2, and the

mRNA levels of RTA-4PARS-II had no significant changes (Fig 4F and 4G). Based on these

Fig 2. The interaction between endogenous NCOA2 and RTA. (A) NCOA2 expression in HEK293T cells and KSHV-positive human cells (iSLK.RGB, BCBL1, JSC1 and

BC3) was detected by western blotting. (B) Co-IP of endogenous RTA and NCOA2 in KSHV-positive cells. Lytic replication of KSHV in these cells was induced by dox or

VPA, and cell lysates were subjected to immunoprecipitation with anti-NCOA2 antibody or rabbit IgG controls. Purified proteins, along with input samples, were detected

by western blotting with the indicated antibodies. (C) Endogenous NCOA2 colocalizes with endogenous RTA in the nucleus. KSHV-positive B cells that were uninduced

(Un) or induced with VPA (In) were fixed and stained with anti-NCOA2 antibody and anti-RTA antibody, followed by incubation with secondary antibodies conjugated

to FITC or Cy3. The right sides show a high magnified view.

https://doi.org/10.1371/journal.ppat.1008160.g002
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Fig 3. Mapping the interaction domains in RTA and NCOA2. (A) Truncated versions of NCOA2 are shown schematically, including N765 (1 aa-765 aa), 765C (765 aa-

1464 aa), N1007 (1 aa-1007 aa), N624 (1 aa-624 aa), 624C (624 aa-1464 aa). The N-terminal bHLH-PAS domain, the centrally located nuclear receptor (NR) boxes

responsible for NR binding, the C-terminal activation domain (AD1 and AD2) and a repression domain (RD) are marked. (B) Defining the RTA-interacting domain of

NCOA2. Co-IP and western blotting of 293T cells transfected with HA-tagged RTA along with a vector expressing the indicated Flag-tagged NCOA2 truncations or the

full-length NCOA2. (C) Schematic diagram of the RTA protein and its deletion mutants, including N273 (1 aa-273 aa), N544 (1 aa-544 aa), RTA273-544 (273 aa-544 aa),

C544-691 (544 aa-691 aa), C273-691 (273 aa-691 aa). The nuclear localization (NLS), DNA binding and dimerization and transcriptional activation domain (TAD) are

marked. (D) Defining the NCOA2-interacting domain of RTA. Co-IP and western blotting of 293T cells transfected with HA-tagged NCOA2 along with Flag-tagged RTA

truncations or full-length RTA. An empty vector was used as a negative control. (E) In vitro GST affinity binding assay. Bacterially expressed GST alone and GST-NCOA2

attached to GST-Sepharose beads were incubated with the purified His-tagged RTA mutation (His-C544-691). The pull-down lysates were immunoblotted with anti-His

or anti-GST antibody. (F) Schematic diagram of a PARS II region deletion mutant of RTA. (G) Co-IP and western blotting of 293T cells transfected with HA-NCOA2

along with Flag-tagged PARS II region deletion mutants.

https://doi.org/10.1371/journal.ppat.1008160.g003
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results, we conclude that the interaction between NCOA2 and the PARS II domain of RTA

enhances the expression of RTA.

To further test if RTA stability was regulated by interacting with NCOA2, we determined

the effect of NCOA2 on the half-life of RTA. RTA was transfected into 293T cells with or with-

out the NCOA2 expression plasmid, and the cells were treated with cycloheximide (CHX) to

block protein synthesis 24 h after transfection. We found that both the steady-state level and

half-life of RTA were significantly increased in cells overexpressing NCOA2 compared to cells

overexpressing the vector control (Fig 4H and 4I). However, NCOA2 expression had no effect

on the half-life of the mutant RTA-4PARS-II that does not bind to NCOA2 (Fig 4J and 4K).

Moreover, the expression level and the half-life of RTA were significantly reduced in NCOA2

knockdown cells (Fig 4L and 4M). These results suggested that NCOA2 enhances the stability

of RTA through interacting with the PARS II domain and may abrogate the PARS-related

regulation.

Previous study identified vSP1, a 48 aa peptide encoded in the T3.0 transcript antisense to

RTA, also increased the stability of RTA by binding to the PARS II domain [37]. To better

evaluate the role of NCOA2 and vSP1 in regulating RTA stability, we cotransfected 293T cells

with NCOA2 and/or vSP1 with a constant amount of RTA expression plasmid. Indeed, both

vSP1 and NCOA2 can increase the expression level of RTA respectively. Interestingly, there is

no competitive binding of NCOA2 and vSP1 to RTA PARS-II domain, however, a slightly

increased RTA expression was observed when NCOA2 and vSP1 were co-transfected com-

pared with NCOA2 alone or vSP1 alone (S3A Fig). We also found that both vSP1 and NCOA2

can enhance the ability of each other to increase RTA expression in a dose-dependent manner

(S3B and S3C Fig). The association between vSP1 and NCOA2 in controlling RTA levels

remains further study.

NCOA2 inhibits proteasome-mediated degradation of RTA

The PARS II domain serves as the binding site for E3 ligase to modulate the ubiquitination

and degradation of RTA. Therefore, we hypothesize that the interaction between NCOA2 and

Fig 4. NCOA2 stabilizes RTA protein expression. (A) Effect of NCOA2 on RTA expression. First, 293T cells were cotransfected

with 1 μg of RTA expression plasmid and increasing amounts of NCOA2 expression vector (0, 0.5, 1, 2 μg). The expression of RTA

proteins was examined by immunoblotting with the indicated antibodies. (B) The 293T cells were treated as in (A). RTA mRNA was

detected using RT-qPCR with the indicated primers. (C) shRNA-NCOA2 and shRNA-GFP plasmids were transfected into 293T cells

for 12 h. Then, cells were transfected with the Flag-tagged RTA expression plasmid. The expression of NCOA2 and RTA was

determined by immunoblotting with the indicated antibodies. (D) shRNA-NCOA2 and shRNA-GFP plasmids were transfected into

293T cells for 12 h. Then cells were transfected with the Flag-tagged RTA-4PARS-II expression plasmid. The expression of NCOA2

and RTA-4PARS-II was determined by immunoblotting with the indicated antibodies. (E) The N-terminal truncation of NCOA2

regulates the stability of RTA. First, 293T cells were cotransfected with HA-tagged RTA expression vector with or without NCOA2

and its truncations. Then, RTA expression levels were examined by western blotting using anti-HA antibodies. (F) Effect of NCOA2

on the expression of the RTA mutant with deletion of the PARS II region. First, 293T cells were cotransfected with 1 μg of Flag-

tagged RTA-4PARS-II expression plasmid and increasing amounts of NCOA2 expression vector (0, 0.5, 1, 2 μg). Then, the

expression of RTA-4PARS-II proteins was examined by immunoblotting with the indicated antibodies. (G) The 293T cells were

treated as in (F), and the mRNA level of RTA-4PARS-II was detected using RT-qPCR with the indicated primers. (H) Measurement

of RTA stability in the absence and presence of NCOA2. First, 293T cells were transfected with Flag-tagged RTA with or without the

NCOA2 expression plasmid for 36 h. Then, cells were treated with 100 μg/ml of CHX and analyzed at different time points as

indicated by immunoblotting for RTA. Tubulin was used as a control for equivalent sample loading. (I) The relative levels of RTA

from immunoblots (H) were quantified by densitometry and normalized to the Tubulin level. The band intensities on the exposed

film were plotted graphically. (J) Measurement of RTA-4PARS-II stability in the absence and presence of NCOA2. First, 293T cells

were transfected with Flag-tagged RTA-4PARS-II with or without the NCOA2 expression plasmid for 36 h. Then, cells were treated

with 100 μg/ml of CHX and analyzed at different time points as indicated by immunoblotting for RTA-4PARS-II. Tubulin was used

as a control for equivalent sample loading. The band intensities on the exposed film are plotted graphically (K). (L) First, 293T cells

were transfected with RTA expression plasmid with sh-NCOA2 or sh-GFP. Then, the cells were treated with 100 μg/ml of CHX and

analyzed at different time points as indicated by immunoblotting for RTA. Tubulin was used as a control for equivalent sample

loading. The band intensities on the exposed film were plotted graphically (M).

https://doi.org/10.1371/journal.ppat.1008160.g004
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the PARS II domain of RTA may block the binding of ubiquitin enzymes with the PARS II

domain, which may consequently inhibit the proteasome-associated degradation of RTA and

contribute to the stability of RTA. To test this hypothesis, we cotransfected 293T cells with

plasmids that express NCOA2 and RTA, and 24 h post-transfection, the cells were treated with

MG132. In the absence of NCOA2, the steady-state level of RTA was significantly increased in

the cells exposed to MG132 (Fig 5A, lanes 3 and 4). However, in the presence of NCOA2, the

abundance of RTA was dramatically enhanced regardless of the presence of MG132 (Fig 5A,

lanes 1 and 2). To further study the effect of NCOA2 on RTA ubiquitination, we immunopre-

cipitated the cell lysates with an anti-Flag antibody that pulled down Flag-tagged RTA and per-

formed western blotting with an anti-ubiquitin antibody. In the cells without ectopic

expression of NCOA2 that were treated with MG132, we observed a high molecular weight

poly-ubiquitin-RTA smear (Fig 5B, lane 2), which was significantly decreased in cells that

expressed NCOA2 (Fig 5B, lane 4). Additionally, knockdown of NCOA2 significantly

decreased expression level of RTA (Fig 5C, lane 3), which is rescued by treatment with MG132

(Fig 5C, lane 4). Poly-ubiquitination of RTA was elevated with the knockdown of NCOA2

expression when compared with the control (Fig 5D, lanes 2 and 4). These findings indicated

that NCOA2 had a role in inhibiting ubiquitination of RTA. To test if the interaction between

NCOA2 and RTA is necessary for NCOA2 inhibition of proteasome-mediated degradation of

RTA, we also transfected 293T cells with plasmids that express NCOA2 and the mutant RTA-

4PARS-II. We found that the RTA-4PARS-II protein was highly abundant in the cells, and

MG132 treatment did not increase its expression level (Fig 5E, lanes 1 and 3), which suggested

that the PARS II domain is involved in the proteasome-mediated degradation of RTA, similar

to the results of previous studies [35]. Additionally, the abundance of the RTA-4PARS-II pro-

tein did not change in cells overexpressing NCOA2 (Fig 5E, lanes 2 and 4). Knockdown of

NCOA2 had no effect on the expression level of RTA-4PARS-II (Fig 5G). Similar to a previ-

ous study, RTA was not ubiquitinated after the PARS II domain was deleted (Fig 5F and 5H).

These results suggested that the PARS II domain regulates the proteasome-mediated degrada-

tion of RTA and that NCOA2 reduces ubiquitination of RTA by interacting with the PARS II

domain of RTA. Notably, treatment of cells with MG132 also increased the abundance of

NCOA2 (Fig 5A, 5C, 5E and 5G), suggesting that the stability of NCOA2 is also regulated by

ubiquitin-proteasome pathway.

NCOA2 inhibits the ubiquitination of RTA by blocking the interaction of

RTA with MDM2

As the C-terminal PARS II domain of RTA serves as the binding site for E3 ubiquitin enzymes

to modulate the degradation of RTA [35], the interaction between the PARS II domain of RTA

and NCOA2 is likely to impair the interaction between RTA and host E3 ubiquitin ligases. Pre-

viously, the host protein MDM2 was reported to be the E3 ubiquitin ligase of RTA, which can

mediate the degradation of RTA [35]. Interestingly, MDM2 was also shown to bind the PARS

domain of RTA. We therefore hypothesized that NCOA2 may block MDM2 binding to the

PARS domain of RTA by interacting with the PARS II domain of RTA and consequently pre-

venting RTA ubiquitination and enhancing the stability of RTA. To test this hypothesis, 293T

cells were cotransfected with RTA, MDM2 and NCOA2, and the binding of RTA to MDM2 or

NCOA2 was examined by Co-IP. As previously reported, MDM2 reduced the steady-state

level of RTA [35] (Fig 6A, lane 2). Moreover, we found that MDM2-mediated reduction in

RTA expression was inhibited by NCOA2 in a dose-dependent manner (Fig 6A, lanes 3–5). As

NCOA2 increased, the formation of the RTA-MDM2 complex was largely impaired; however,

the RTA-NCOA2 complex was increased (Fig 6A). The mutant N624, which interacts with
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RTA, has same effect (Fig 6B), while 624C that cannot bind to RTA abolished the ability to

compete with MDM2 for binding to RTA (Fig 6C). Thus, NCOA2 affected RTA expression

level by blocking the interaction between RTA and MDM2.

Fig 5. NCOA2 inhibits proteasome-mediated degradation of RTA. (A) NCOA2 inhibits the degradation of RTA. First, 293T cells were cotransfected with the indicated

expression constructs for 36 h and then treated with 0.5 μM MG132 or 0.1% DMSO for another 6 h. The cells were lysed and used for western blotting with the indicated

antibodies. The band intensities of RTA were plotted graphically. Data are from a minimum of three experimental replicates with a standard deviation. (B) NCOA2

inhibits the ubiquitination of RTA. The same lysates as in (A) were subjected to immunoprecipitation using anti-Flag antibody. Purified proteins, along with input

samples, were analyzed by western blotting with anti-ubiquitin antibodies. (C) shRNA-NCOA2 and shRNA-GFP plasmids were transfected into 293T cells for 12 h. Then

cells were transfected with the Flag-tagged RTA expression plasmid for 24 h and then treated as in (A). Cells were lysed and used for western blotting with the indicated

antibodies. The band intensities of RTA were plotted graphically. Data were from a minimum of three experimental replicates with a standard deviation. (D) Same lysates

as in (C) were subjected to immunoprecipitation using anti-Flag antibody, followed by western blotting with anti-ubiquitin antibodies. (E) First, 293T cells were

cotransfected with NCOA2 and the RTA-4PARS-II mutant, and then, they were treated as in (A). The expression of the RTA-4PARS-II mutant was analyzed by western

blotting. The band intensities of RTA were plotted graphically. (F) The same lysates as in (E) were subjected to immunoprecipitation using anti-Flag antibody, followed by

western blotting with anti-ubiquitin antibodies. (G) 293T cells were transfected with shRNA-NCOA2 or shRNA-GFP plasmids, and then cells were transfected with RTA-

4PARS-II mutant and treated as in (A). The expression of RTA-4PARS-II mutant was analyzed by western blotting. The band intensities of RTA were plotted

graphically. (H) The same lysates as in (G) were subjected to immunoprecipitation using anti-Flag antibody, followed by western blotting with anti-ubiquitin antibodies.

Statistical significance was analyzed with a two-tailed Student’s t-test (�P< 0.05 or ��P< 0.01).

https://doi.org/10.1371/journal.ppat.1008160.g005
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MDM2 functions as a ubiquitin E3 ligase of RTA that mediates the degradation of RTA

through the ubiquitin-proteasome pathway. As shown above, NCOA2 expression impaired

MDM2-mediated degradation of RTA (Fig 6A). We then tested whether NCOA2 inhibits the

proteasome-associated degradation of RTA caused by MDM2. The 293T cells were cotrans-

fected with RTA, MDM2 and NCOA2 and then treated with MG132. In the absence of

MG132, NCOA2 inhibited the ability of MDM2 to degrade RTA protein (Fig 6D, lanes 1–6);

however, in the presence of the proteasome inhibitor MG132, the abundance of RTA was dra-

matically enhanced and did not change as NCOA2 increased (Fig 6D, lanes 7–12). For further

analysis of the effect of NCOA2 on the ubiquitination of RTA modulated by MDM2, the cell

extracts were immunoprecipitated with anti-Flag antibody that pulled down Flag-tagged RTA,

followed by western blotting with an anti-ubiquitin antibody. In cells that expressed MDM2

and were treated MG132, we observed an increase in the ubiquitin level of RTA compared

with that in cells lacking MDM2 expression (Fig 6E, lanes 8 and 9). As expected, NCOA2

inhibited the ability of MDM2 to increase the ubiquitination of RTA (Fig 6E, lanes 10–12).

Fig 6. NCOA2 inhibits the ubiquitination of RTA by blocking the interaction of RTA with MDM2. (A-C) NCOA2 disrupts the interaction between RTA and MDM2.

293T cells were transiently transfected with Flag-RTA and HA-MDM2 together with an increasing amount of Myc-NCOA2 (A), Myc-N624 (B) or Myc-624C (C) (0, 0.5, 1,

2 μg). Forty-eight hours after transfection, the cell lysates were collected and subjected to immunoprecipitation using an anti-Flag antibody. Purified proteins, along with

input samples, were detected by western blotting with the indicated antibodies. (D) NCOA2 inhibits the proteasome-mediated degradation of RTA induced by MDM2.

293T cells were transiently transfected with Flag-RTA and HA-MDM2 together with an increasing amount of Myc-NCOA2 (0, 0.5, 1, 2 μg) for 36 h, and then, they were

treated with 0.5 μM MG132 or 0.1% DMSO for another 6 h. The cells were lysed and used for western blots with the indicated antibodies. (E) NCOA2 inhibits the ability

of MDM2 to increase the ubiquitination of RTA. The same lysates as in (D) were subjected to immunoprecipitation using anti-Flag antibody, followed by western blotting

with anti-ubiquitin antibodies. (F-G) 293T cells were transiently transfected with Flag-RTA and HA-MDM2 together with an increasing amount of Myc-N624 (F) or Myc-

624C (G) (0, 0.5, 1, 2 μg) for 36 h, then cells were treated with 0.5 μM MG132 for another 6 h. Cells were lysed and subjected to immunoprecipitation using anti-Flag

antibody, followed by western blotting with anti-ubiquitin antibodies.

https://doi.org/10.1371/journal.ppat.1008160.g006
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Additionally, overexpression of N624 also inhibited the ability of MDM2 to increase the ubi-

quitination of RTA in a dose-dependent manner (Fig 6F). However, 624C had no effect on the

ubiquitination level of RTA that is regulated by MDM2 (Fig 6G).

Taken together, these results suggested that NCOA2 targets RTA and competes with

MDM2 for RTA binding. Therefore, the association of the MDM2-RTA complex can be dis-

rupted by NCOA2, resulting in a reduction in ubiquitination of RTA by MDM2 and an

increase in the stability of RTA protein.

Ectopic expression of NCOA2 enhances KSHV lytic reactivation

NCOA2 enhanced the stability of RTA, suggesting that NCOA2 functions as a positive mod-

ulator of RTA. As a result, this protein may promote viral lytic replication. To explore the

effect of NCOA2 on RTA expression in the context of KSHV-infected cells, we used the

KSHV-positive iSLK.RGB cell line that was stably infected with a reporter KSHV virus called

red-green-blue-BAC16, which harbored three fluorescent protein expression cassettes: EF1α-

monomeric red fluorescent protein 1, polyadenylated nuclear RNA promoter (pPAN)-

enhanced green fluorescent protein (EGFP), and pK8.1-monomeric blue fluorescent protein,

marking latent, immediate early and late viral gene expression, respectively. Therefore, KSHV-

infected cells were indicated by red fluorescence, and cells with lytic KSHV infection were

indicated by green fluorescence [41]. iSLK cells stably express dox-inducible RTA [42]. The

expression of RTA was essential and sufficient for triggering KSHV lytic replication. iSLK.

RGB cells were used to construct two stable transfected cell lines by transduction with lentivi-

rus vector expressing a Flag-tagged NCOA2 and an empty vector as a control, yielding iSLK.

RGB-NCOA2 and iSLK.RGB-Vector, respectively (Fig 7A). Lytic replication of KSHV in these

two cell lines was induced by dox-induced RTA expression. We examined the ratio of cells

with lytic KSHV infection by fluorescence microscopy, as the lytic KSHV-infected cells

expressed EGFP. The expression of EGFP was increased in NCOA2-overexpressing cells com-

pared with control cells (Fig 7B). Similar results were also observed when the cells were quanti-

fied by flow cytometry, and the number of EGFP-positive cells was increased in the iSLK.

RGB-NCOA2 stable cell lines (Fig 7C and 7D). After dox-induced RTA expression for 48 h,

we examined the transcript levels of various viral genes by real-time qPCR. As shown in Fig

7E, the transcription levels of both the lytic and latent genes of KSHV were increased in the

NCOA2 stable expression cell lines. The expression levels of KSHV lytic genes were further

confirmed by western blotting. As expected, NCOA2 overexpression increased the expression

levels of RTA and the late lytic gene ORF64 (Fig 7F). Furthermore, the KSHV virions released

into the supernatant of these two cell cultures were detected. We found that NCOA2 overex-

pression resulted in a significant increase in the production of KSHV virions compared to that

in the iSLK.RGB-Vector cell line (Fig 7G). The progeny viruses prepared from cell culture of

iSLK.RGB-NCOA2 and iSLK. RGB-Vector cells were also used to infect 293T cells in the same

volume of cell culture, and increased red fluorescence was observed in the NCOA2-overex-

pressing group (S4A Fig). To strengthen these results, we used another KSHV-positive cell

line, BCBL1, to establish the BCBL1-NCOA2 cell line and BCBL1-Vector cell line (Fig 7H) and

then treated the cells with VPA. Similar results were obtained from BCBL1 cells. The transcrip-

tion of viral genes, the expression of viral genes and virion production were substantially

increased in the NCOA2-overexpressing BCBL1 cell lines (Figs 7I and S4B and S4C). Taken

together, these results suggested that NCOA2 can promote KSHV lytic replication by enhanc-

ing the expression of RTA.
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Downregulation of endogenous NCOA2 impairs viral lytic replication

To further confirm the effect of NCOA2 on KSHV lytic replication, we transfected iSLK.RGB

cells with two NCOA2-specific siRNAs or equal amounts of control siRNA 24 h before induc-

tion with dox. The siRNAs reduced the NCOA2 protein levels by 68% and 78% (Fig 8A).

Knockdown of NCOA2 in iSLK.RGB cells decreased the expression of EGFP (Fig 8B), the

transcription of viral genes (Fig 8C), the expression levels of viral RTA and ORF64 protein

(Fig 8D), and virion production (Fig 8E) compared to those in cells transfected with the scram-

bled siRNA control. Similar results were observed in NCOA2-specific siRNA-transfected

BCBL1 cells (Fig 8F), in which KSHV lytic replication was induced by VPA (Fig 8G–8I). To

further confirm these results, we generated NCOA2-deficient iSLK.RGB cell line. The deletion

of NCOA2 was confirmed by western blotting (S5A Fig). The results showed that the expres-

sion levels of viral proteins (S5A Fig) and virions (S5B Fig) in NCOA2-deficient cells were dra-

matically reduced compared to wild-type iSLK.RGB cells. Collectively, these results indicate

that NCOA2 promotes the lytic replication of KSHV through enhancing RTA expression.

Fig 7. Ectopic expression of NCOA2 enhances KSHV lytic reactivation. (A) iSLK.RGB cells were stably transfected with lentiviruses containing a Flag-tagged NCOA2

expression plasmid or an empty vector plasmid, named iSLK.RGB-NCOA2 and iSLK.RGB-Vector, respectively. The overexpression of NCOA2 was detected by western

blotting. (B) iSLK.RGB-Vector and iSLK.RGB-NCOA2 cells were treated with dox at different time points as indicated. Fluorescence microscopy images of EGFP-positive

cells among iSLK.RGB-Vector and iSLK.RGB-NCOA2 cells. (C) Flow cytometry analysis of EGFP-positive cells among iSLK.RGB-Vector and iSLK.RGB-NCOA2 cells.

(D) Quantitation of the percent of EGFP-positive cells from (C). (E) NCOA2 overexpression increases the transcription of viral genes. RNA was extracted from dox-

induced cells at 48 hours post-induction (hpi) to investigate the transcriptional level of NCOA2 and several KSHV genes: RTA, PAN, ORF57, ORF65 and LANA. (F)

NCOA2 overexpression increases the expression of viral genes. The expression levels of RTA protein and ORF64 protein were determined by immunoblotting with the

indicated antibodies. (G) NCOA2 overexpression increases virus production. Culture supernatants from dox-induced iSLK.RGB-Vector and iSLK.RGB-NCOA2 cells at

48 hpi were quantified by qPCR for KSHV copy numbers. (H) BCBL1 cells were stably transfected with lentiviruses containing a NCOA2 expression plasmid or an empty

vector plasmid, named BCBL1-NCOA2 and BCBL1-Vector, respectively. The overexpression of NCOA2 was detected by western blotting. (I) NCOA2 overexpression

increases virus production in BCBL1 cells. BCBL1-NCOA2 and BCBL1-Vector cells were treated with VPA for 24 h, and the KSHV copy numbers from culture

supernatants were quantified by qPCR. Data in D, E, G, and I represent the mean +/- SD of 3 replicates pooled from three independent experiments. Data were analyzed

with a two-tailed Student’s t-test (�P< 0.05; ��P< 0.01; ���P< 0.001; ����P< 0.0001).

https://doi.org/10.1371/journal.ppat.1008160.g007
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Expression of NCOA2 is upregulated during viral lytic replication by RTA

The above results demonstrated that NCOA2 functions as a positive modulator of RTA, which

facilitates viral lytic replication. We examined the kinetics of NCOA2 expression in iSLK.RGB

cells during the induction of viral lytic reactivation. Interestingly, upon treatment with dox,

RTA protein expression was induced, and the NCOA2 level was also increased along with the

increasing expression of RTA (Fig 9A). These results suggest that a positive feedback loop

between RTA and NCOA2 may exist during viral lytic reactivation. However, no significant

Fig 8. Knockdown of endogenous NCOA2 impairs KSHV lytic replication. (A) iSLK.RGB cells were transfected with control siRNA and two

NCOA2-specific siRNAs. The knockdown efficiency was determined by western blotting. At 24 h after transfection, cells were induced by dox for another

24 h. (B) EGFP-positive cells were analyzed by fluorescence microscopy. (C) The KSHV gene transcription level was analyzed by qPCR. (D) The

expression levels of RTA and ORF64 were examined by western blotting. (E) The progeny viruses from culture supernatants were analyzed by qPCR. (F)

BCBL1 cells were also transfected with control siRNA and two NCOA2-specific siRNAs. The knockdown efficiency was determined by western blotting.

At 24 h after transfection, cells were induced by VPA for another 24 h. The KSHV gene transcription level (G), the expression levels of RTA and ORF64

(H) and the progeny viruses (I) were analyzed by the same approaches that were used in iSLK.RGB stable cell lines. Data in C, E, G, and I represent the

mean +/- SD of 3 replicates pooled from three independent experiments. Data were analyzed with a two-tailed Student’s t-test (�P< 0.05; ��P< 0.01;
���P< 0.001).

https://doi.org/10.1371/journal.ppat.1008160.g008
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Fig 9. Expression of NCOA2 is upregulated during viral lytic replication by RTA. (A and C) The expression kinetics of NCOA2 and RTA were analyzed in iSLK.RGB

cells (A) or iSLK cells (C) at indicated time points after dox treatment. (B and D) NCOA2 mRNA expression level in cells from (A) or (C). (E) Effect of RTA on NCOA2

expression. 293T cells were cotransfected with 1 μg of NCOA2 expression plasmid and increasing amounts of RTA expression vector (0, 0.5, 1, 2 μg). The protein level of

NCOA2 was examined by immunoblotting. (F) NCOA2 mRNA expression level in cells from (E). (G) RTA inhibits the degradation of NCOA2. 293T cells were

cotransfected with the indicated expression constructs for 36 h and then treated with 0.5 μM MG132 or 0.1% DMSO for another 6 h. Cells were lysed and used for western

blots with the indicated antibodies. The band intensities of NCOA2 were plotted graphically (H). Data were from a minimum of three experimental replicates with a

standard deviation. Data were analyzed by unpaired t-test. �, P< 0.05; ��, P< 0.01. (I) Measurement of NCOA2 stability in the absence and presence of RTA. 293T cells

were transfected with HA-tagged NCOA2 with or without Flag-tagged RTA expression plasmid for 36 h. Cells were treated with 100 μg/ml of CHX and analyzed at

indicated time points by immunoblotting for NCOA2. Tubulin was used as a control for equivalent sample loading. (J) The relative levels of NCOA2 from (I) were

quantified by densitometry and normalized to the Tubulin level.

https://doi.org/10.1371/journal.ppat.1008160.g009
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changes were observed in NCOA2 mRNA levels during the induction of viral lytic reactivation

(Fig 9B). To further determine whether NCOA2 expression is responsive to RTA, we exam-

ined the kinetics of NCOA2 expression in iSLK cells that stably express dox-inducible RTA.

Upon the induction of RTA protein by dox, we observed an increase in NCOA2 expression

and a subsequent decrease following the reduced expression of RTA at 72 h post-induction

(Fig 9C). The mRNA level of NCOA2 was also unchanged (Fig 9D). An increasing amount of

RTA was coexpressed with a constant amount of NCOA2 in 293T cells, and the effect of RTA

on NCOA2 expression was examined. We observed that NCOA2 expression was enhanced by

RTA in a dose-dependent manner (Fig 9E), whereas there were no significant changes in the

mRNA levels of NCOA2 between cells with or without RTA expression (Fig 9F). As shown

above, NCOA2 was subjected to ubiquitin-proteasome mediated degradation (Fig 5). To

address the mechanism by which NCOA2 is regulated by RTA, 293T cells that cotransfected

with NCOA2 and RTA were treated with MG132. In the absence of RTA, the steady-state of

NCOA2 was increased moderately in cells exposed to MG132 (Fig 9G and 9H, lanes 1 and 2).

However, in the presence of RTA, the abundance of NCOA2 was enhanced significantly

regardless of the presence or absence of MG132 (Fig 9G and 9H, lanes 3 and 4), indicating that

there may exist other mechanisms to govern RTA-mediated NCOA2 turnover beyond the pro-

teasome. We also examined the half-life of NCOA2 by treating cells with CHX in 293T cells.

We found that both the steady-state level and half-life of NCOA2 were increased in cells over-

expressing RTA as compared with the control group (Fig 9I and 9J). These results indicated

that RTA also inhibits the degradation of NCOA2 and demonstrated a positive regulatory loop

between RTA and NCOA2.

Discussion

In this study, we found that NCOA2 interacts with the PARS II domain of RTA, which pre-

vents the degradation of RTA by MDM2, an E3 ligase, also bound to the same domain of RTA,

promoting RTA-triggered KSHV lytic reactivation. During lytic reactivation, NCOA2 stabi-

lizes RTA to increase the RTA level in the cells, ensuring that KSHV can be switched from

latency to the lytic phase. In addition, NCOA2 was elevated in response to RTA expression

during KSHV lytic reactivation. This finding suggests that there is a positive feedback regula-

tion loop between NCOA2 and RTA, which facilitates a complete lytic reactivation program

driven by RTA. In summary, our data establish a working model illustrating the role of

NCOA2 in the regulation of RTA and KSHV lytic reactivation (Fig 10).

In all KSHV-related malignancies, the resulting tumor cells predominantly display latent

viral infection. Latency alone, however, is not sufficient to sustain tumorigenesis in vivo. Clini-

cal trials and many studies indicate an important role for lytic infection in tumor development

[43–47]. The lytic cycle is essential for producing progeny virus to disseminate and infect new

cells to replace those that have segregated the viral episome [11, 13]. Therefore, both latency

and lytic replication are important for viral oncogenesis. RTA functions as a lytic switch pro-

tein that is essential and sufficient for the lytic reactivation of KSHV from latency. Overexpres-

sion of RTA disrupted viral latency and induced the virus to undergo the complete lytic

replication process [20, 48]. This result is due to its ability to transcriptionally activate numer-

ous viral genes and assemble replication complexes that are required for lytic DNA synthesis.

RTA realizes its multiple functions through interactions with many different viral or host pro-

teins, such as Oct-1, RBP-Jκ, and C/EBPα as transcription cofactors to enhance the transcrip-

tional activity of RTA, and in turn increases viral gene expression [22, 26, 49]. In contrast,

PARP-1/hKFC, K-RBP and TLE2, which were identified as transcriptional repressors, interact

with RTA to impair RTA-mediated viral gene expression [30, 50, 51]. As a multifunctional
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protein, RTA abundance must be subjected to exquisite control for optimal KSHV lytic-cycle

gene expression and viral DNA synthesis. Therefore, understanding the molecular mecha-

nisms involved in regulating the expression of RTA not only contributes to understanding the

regulation of the viral reactivation process but also elucidates the pathogenesis mediated by the

virus, which may contribute to the development of potential effective therapeutics. In the pres-

ent study, we found that KSHV utilizes NCOA2 to enhance the stability of RTA to increase the

abundance of RTA, thereby promoting viral lytic replication. The results suggest that targeting

NCOA2 might be a strategy for lytic phase-based therapeutic approaches for controlling

KSHV infection and related diseases.

Ubiquitin-mediated proteolysis plays an important role in controlling viral infection

through degradation of key viral proteins. Pey-Jium Chang et al. demonstrated that the abun-

dance of RTA is regulated by the ubiquitin-proteasome degradation system and is controlled

through a PARS domain that contains PARS I and PARS II within its C-terminal region [36].

A previous study demonstrated that the regulation of the RTA degradation process is divided

into two successive steps: i) the nuclear translocation of RTA, which is controlled by the PARS

I domain, and ii) the PARS II domain binding the host E3 ubiquitin ligase to cause the degra-

dation of RTA in the nucleus [35]. MDM2 is a host E3 ubiquitin ligase that interacts with RTA

and causes the ubiquitin degradation of RTA in the nucleus. A predicted MDM2-binding

motif is present within the PARS II domain (592 aa–610 aa); in fact, the whole PARS domain

is necessary for binding to MDM2 [35]. Interestingly, another group found that the transcript

from the opposite strand of the RTA DNA template encodes a small peptide, namely, vSP1,

which has been proven to interact with RTA in the nucleus. Further studies showed that vSP1

increases RTA stability by binding to the PARS II domain of RTA and inhibits the protea-

some-mediated degradation of RTA [37]. As both vSP1 and MDM2 bind to the PARS domain,

the expression of vSP1 may facilitate the dissociation of RTA from MDM2. In our study, we

identified the first host factor, NCOA2, which disrupts the association between MDM2 and

RTA through completely binding to the PARS II domain of RTA. Like vSP1, which was uti-

lized by KSHV, NCOA2 also stabilizes the RTA protein in viral lytic reactivation. Although we

only observed a slight increase in RTA expression when co-transfected with NCOA2 and vSP1

Fig 10. Working model for the role of NCOA2 in regulating the stability of RTA. After interacting with RTA,

MDM2 promotes the ubiquitination and degradation of RTA, which inhibits KSHV lytic replication. NCOA2

competes with MDM2 to interact with RTA, which blocks the interaction between RTA and MDM2 and then inhibits

the degradation of RTA. The abundance of RTA is increased by NCOA2. In turn, RTA promotes the expression of

NCOA2, which forms a positive feedback loop between NCOA2 and RTA and promotes KSHV lytic replication.

https://doi.org/10.1371/journal.ppat.1008160.g010
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compared to NCOA2 alone or vSP1 alone, the relationship between vSP1 and NCOA2 in con-

trolling RTA levels remains to be further studied. This finding suggests that KSHV uses either

the small peptide encoded by itself or the host factor to prevent the degradation of RTA during

the viral reactivation process so that the virus can ensure a sufficient level to drive the complete

lytic program. However, unlike vSP1, which is a transcription product of the KSHV lytic phase

and is detected at 24 h and 48 h post-induction, we found that NCOA2 is expressed in different

cell types even before lytic reactivation of KSHV. To ensure that the threshold level of RTA

expression and the completion of the lytic cascade are achieved, KSHV has developed an effi-

cient strategy to hijack the host protein NCOA2 against RTA degradation.

NCOA2, also known as glucocorticoid receptor-interacting protein 1 (GRIP1), steroid

receptor coactivator-2 (SRC-2) or transcriptional mediators/intermediary factor 2 (TIF2), is a

member of the p160 family of transcriptional coactivators [52]. NCOA2 cooperates with NRs

controlling multiple physiological processes, including glucose homeostasis, energy metabo-

lism and reproduction [53, 54]. Interestingly, NCOA2 is widely known for its oncogenic role,

and NCOA2 gene fusion, mutations, deletions, insertions and overexpression have been

observed in multiple cancers, including endometrial cancer, pleural cancer and breast cancer

[55–57]. However, the biological roles of NCOA2 in virus infection remain elusive. In this

study, we discovered a novel mode of action of NCOA2 that interacts with RTA to increase its

stability and protein abundance, ultimately promoting the lytic replication of KSHV. NCOA2

also serves as a binding platform for additional cofactors, such as CBP/p300, CARM1 and

PRMTs, to regulate transcription factor activation [58]. Therefore, RTA may utilize NCOA2 as

an adaptor molecule to recruit other host factors to enhance the function of RTA, which

requires further study.

Deng et al. previously reported that RTA promotes transcription by activating its promoter

[21]. The autoactivation of RTA is an important strategy for enhancing the transcription level

of RTA and then activating virus lytic replication. NCOA2 functions as a positive regulator

that increases the protein level of RTA and then promotes virus lytic replication. Our findings

extend the understanding of the molecular mechanism by which RTA abundance is modu-

lated. Interestingly, we also found that the protein level of NCOA2 elevated during viral lytic

reactivation process, and the kinetics of NCOA2 were highly correlated with RTA expression.

These results support the existence of a positive feedback loop between NCOA2 and RTA dur-

ing viral reactivation process. Although our preliminary data suggest that RTA inhibits the

proteasome-mediated degradation of NCOA2, which may be realized through blocking the

host E3 ubiquitin ligase from binding to NCOA2, we cannot exclude the possibility that other

mechanisms to govern RTA-mediated NCOA2 turnover beyond the proteasome. The detailed

mechanism by which NCOA2 is upregulated requires further investigation.

In summary, our work identified for the first time that NCOA2 is a novel RTA-binding

protein and that NCOA2 functions as a positive modulator of RTA-driven lytic reactivation.

Due to the important function of NCOA2 in the KSHV lytic reactivation process, inhibition of

NCOA2 expression in KSHV-infected cells would be a potentially effective therapeutic

approach for KSHV infection and related diseases.

Materials and methods

Cells and reagents

The iSLK.RGB cells, which harbor wild-type BAC16.RGB, were kind gifts from Jae Jung (Uni-

versity of South California, Los Angeles, USA) and were cultured in Dulbecco’s modified

Eagle’s medium (DMEM, HyClone) supplemented with 10% FBS (Biological Industries) and

1% antibiotics (penicillin and streptomycin, Gibco). KSHV-positive B lymphoma cell lines
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(BCBL1, JSC1, and BC3) were cultured in RPMI 1640 (HyClone) supplemented with 10% FBS

and 1% antibiotics. Human embryonic kidney (HEK) 293T and HeLa cell lines were cultured

in DMEM supplemented with 10% FBS and 1% antibiotics. The stable cell lines iSLK.

RGB-NCOA2, iSLK.RGB-Vector, BCBL1-NCOA2 and BCBL1-Vector were established by

infection with the indicated lentiviruses according to the manufacturer’s instructions (System

Bioscience, Palo Alto, USA). All cell lines were grown at 37˚C in a humidified environment

supplemented with 5% CO2.

Dox, VPA, CHX, MG132 and DNase I were purchased from Sigma-Aldrich (St. Louis,

MO), as was an anti-Flag M2 affinity gel (Sigma, A2220).

Plasmids and antibodies

The NCOA2 construct was amplified from a BCBL1 cell cDNA library, inserted into

pCMV-HA at EcoRI and KpnI sites, and subcloned into the pCDH-Flag (pCDH) vector at

XhoI and BamHI sites and pGEX-4T at BamHI and XhoI sites. pCDH-Flag-RTA, which

encodes the full-length RTA, has been described previously [59]. RTA was further subcloned

into the expression vectors pCMV-HA and pET-30a. pCDH expression plasmids encoding

truncated NCOA2 fragments, including N765, 765C, N1007, N624, and 624C, which are sche-

matically shown in Fig 3A, were obtained by PCR amplification of pCDH-Flag-NCOA2. Trun-

cated forms of RTA with Flag tags, including N273, N544, RTA273-544, C544-691, C273-691,

and RTA-4PARS-II, which are schematically shown in Fig 3C and 3F, were amplified from

the full-length template and cloned into the pCDH vectors. All constructs were verified by

DNA sequencing (Sangon Biotech Co., Ltd., Shanghai, China). The MDM2 gene was amplified

from a 293T cell cDNA library and inserted into pCMV-HA at the EcoRI and KpnI sites. Flag-

vSP1 was a gift from Dr. Yan Yuan’s lab (University of Pennsylvania, Philadelphia, Pennsylva-

nia USA). sh-NCOA2 was cloned into pLKO.1, and the target sequence of NCOA2 shRNA is

5’- ATCCGTTCTCAGACTACTAAT-3’. A control shRNA (sh-GFP) was also cloned into

pLKO.1 (target sequence: 5’-GCTACCTGTTCCATGGCCAA-3’). The PCR primers used in

this study are summarized in Table 1.

The following primary antibodies were used: anti-NCOA2 rabbit monoclonal antibody

(CST, #96687), anti-RTA (prepared in our laboratory), anti-ORF64 (a kind gift from Yan

Yuan, University of Pennsylvania, Philadelphia, Pennsylvania USA), anti-ubiquitin antibody

(ABclonal, A3207), anti-GST (ABclonal, AE001) anti-His (ABclonal, AE003), anti-Flag anti-

body (Sigma, F1804), anti-HA (Sigma-Aldrich, H6908), anti-GAPDH (Sigma-Aldrich,

G8795), and anti-α-Tubulin antibody (Sigma-T6199). The secondary antibodies used in west-

ern blotting and immunofluorescence assays were HRP-conjugated anti-mouse or anti-rabbit

IgG (Jackson ImmunoResearch Laboratories) and goat anti-mouse antibodies conjugated with

Alexa Fluor 488 (Thermo Fisher Scientific, A-11029) and 555 (Thermo Fisher Scientific, A-

21422).

Mass spectrometry

Flag-tagged RTA or the empty vector was overexpressed in HEK293T and HEK293T.219 cell

lines. After 48 h, the cells were washed two or three times with pre-cooled PBS and lysed in

ice-cold radioimmunoprecipitation assay (RIPA) buffer [50 mM Tris pH 7.6, 150 mM NaCl,

2mM EDTA, 0.5 Nonidet P-40, 1 mM protease inhibitor (PMSF) and protease inhibitor cock-

tail]. The cells were scraped off from the petri dish using a cell scraper and transferred to an

ice-cold 1.5 mL EP tube. For fully lysed, the cells were slowly rotated at 4˚C for 15–30 min and

then centrifuged at 12,000×g for 15 min at 4˚C. The cell lysates were transferred to a new

Eppendorf tube and the cell debris were discarded. Flag M2 agarose beads (Sigma) were
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Table 1. Primers used in this study.

Primer name Purpose Sequence of Oligonucleotide (50-30)

pCMV-HA

NCOA2 Full length F CGGAATTCGGATGAGTGGGATGGGAGA

Cloning R GGGGTACCTCAGCAATATTTCCGTGT

RTA Full length F CGGAATTCGGATGGCGCAAGATGACAAGGGT

Cloning R GAAGATCTTCAGTCTCGGAAGTAATTACGCC

MDM2 Full length F CGGAATTCGGGCCACCATGGTGAGGAGCAGG

Cloning R GGGGTACCGGGGAAATAAGTTAGCACAATC

pCDH-Flag

NCOA2 Full length F CCGCTCGAGATGAGTGGGATGGGAGAAAATAC

Cloning R CGGGATCCGCAATATTTCCGTGTTGTGTCT

N765 Truncated F CGCTCGAGATGAGTGGGATGGGAGAAAATAC

Cloning R CGGGATCCTTTGGGGGTTATTTCTGGT

765C Truncated F CCGCTCGAGGCCACCAAACTTGAGAGACTGG

Cloning R CGGGATCCGCAATATTTCCGTGTTGTGTCT

N1007 Truncated F CCGCTCGAGATGAGTGGGATGGGAGAAAATAC

Cloning R CGGGATCCCATGACCTGAGACTGAAGCGT

N624 Truncated F CCGCTCGAGATGAGTGGGATGGGAGAAAATAC

Cloning R CGGGATCCTTTGCTGTCATGCAGTCTG

624C Truncated F CCGCTCGAGATGAAAGGGCAGACCAAACT

Cloning R CGGGATCCGCAATATTTCCGTGTTGTGTCT

RTA Full length F CCGCTCGAGATGGCGCAAGATGACAAG

Cloning R CGGAATTCTCGTCTCGGAAGTAATTACGC

N273 Truncated F CCGCTCGAGATGGCGCAAGATGACAAG

Cloning R CGGAATTCTCCATGGAAGCCGGCAACAGT

N544 Truncated F CCGCTCGAGATGGCGCAAGATGACAAG

Cloning R CGGAATTCTCCGTGGTCGATGGCGTGGT

RTA273-544 Truncated F CCGCTCGAGATGGTAGACCTCAGCGATG

Cloning R CGGAATTCTCCGTGGTCGATGGCGTGGT

C544-691 Truncated F CCGCTCGAGATGACGACACCTGGTACCTC

Cloning R CGGAATTCTCGTCTCGGAAGTAATTACGC

C273-691 Truncated F CCGCTCGAGATGGTAGACCTCAGCGATG

Cloning R CGGAATTCTCGTCTCGGAAGTAATTACGC

RTA-4-PARS-II Deletion F CCTTCTGGTGGAGAGTATACGCAAC

Cloning R ACTCTGATCTACGTCCAGTGGCGGG

Myc-NCOA2 PCR F CGGGATCCATGAGTGGGATGGGAGAAAATACCT

Cloning R CCATCGATGCAATATTTCCGTGTTGTGTCT

GST-NCOA2 PCR F CGGGATCCATGAGTGGGATGGGAGAAAATACCT

Cloning R CCGCTCGAGGCAATATTTCCGTGTTGTGTCT

His-RTA PCR F CGGAATTCATGGCGCAAGATGACAAG

Cloning R CCGCTCGAGGTCTCGGAAGTAATTACGC

His-C544-691 PCR F CGGAATTCATGACGACACCTGGTACCTC

Cloning R CCGCTCGAGCGTGGTCGATGGCGTGGT

NCOA2 qRT-PCR F AACAAATGACCCCAACCTGC

R TAGACCCAGAACCAGGCAAG

RTA qRT-PCR F CGTGTAGAGATTCAACGGCG

R AAGAGGTACCAGGTGTCGTG

(Continued)
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washed with RIPA buffer for three times and then resuspended by the same volume. Every 1

mL of cell lysates were added with 40 μL pre-mixed solution of anti-FLAG M2 agarose beads

and then incubated with rotation for 6–8 h at 4˚C, followed by centrifugation at 3,000×g at

4˚C for 5 min to obtain the immunoprecipitates. After washed three times with 1 mL ice-cold

RIPA buffer, the immunoprecipitates were resuspended in 40 μL 2×loading buffer and then

boiled for 10min. A part of the sample was sent to company for mass spectrometric detection

and the remainder was stored at-80˚C for later use. Analysis of the Mass Spectrometry data by

bioinformatics.

Immunoblot analysis and Co-IP

For immunoblot experiments, treated cells were lysed in lysis buffer (10 mM phosphate pH

7.4, 137 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, and 0.1% SDS) supplemented with

1 mM PMSF and protease inhibitor cocktail. Total or fractioned cellular extracts were mixed

with 5x SDS gel loading buffer and resolved on SDS-PAGE. For Co-IP, treated cells were lysed

in RIPA buffer for 30 minutes on ice. A portion of the lysate was taken as the input, and the

remaining lysate was immunoprecipitated using anti-Flag antibody or anti-NCOA2 antibody.

The membranes were blocked in 5% skim milk powder in TBST buffer for 1 h at room temper-

ature and probed with the indicated primary antibodies overnight at 4˚C. After hybridization

with either goat anti-rabbit or goat anti-mouse secondary antibodies at a dilution of 1:5000 in

TBST buffer, the membranes were washed with TBST buffer four times (10 min each) before

visualization with ECL reagents (GE).

Immunofluorescence assay

HeLa cells were plated onto coverslips in 24-well plates and transfected with the indicated plas-

mids. At 24 h prior to transfection, cells were washed twice with PBS and fixed in 4% parafor-

maldehyde for 15 min. Cells were permeabilized with 0.1% Triton X-100 for 15 min and

blocked for 30 min with 1% bovine serum albumin (BSA) in PBS, followed by incubation with

the specific primary antibody overnight at 4˚C. After five washes with PBS containing 0.1%

Tween 20, cells were incubated with FITC- or Cy3-conjugated secondary antibodies and

40,6-DAPI for 1 h at room temperature. Finally, the coverslips were washed extensively and

fixed onto slides. Slides were visualized with a DM6000B fluorescence microscope (Leica, Inc.,

Solms, Germany) and photographed by using a digital camera and software (Leica, Inc.). To

Table 1. (Continued)

Primer name Purpose Sequence of Oligonucleotide (50-30)

PAN qRT-PCR F GCCGCTTCTGGTTTTCATTG

R TTGCCAAAAGCGACGCA

ORF57 qRT-PCR F GAGGTGTTTACGGACAGGGA

R CCCACGTCATTTGTTCCTCC

ORF65 qRT-PCR F ATGACTACGCTCACCATCCC

R CGCCTTTGAATTCCACCCAT

LANA qRT-PCR F GCAGACTACACCTCCACACT

R GTAGATCGGGGACTCTGTGG

K9 qRT-PCR F GTCTCTGCGCCATTCAAAAC

R CCGGACACGACAACTAAGAA

GAPDH qRT-PCR F AAATTGTCAGCAATGCCTCTTG

R GGCATGGACAGTGGTCATAA

https://doi.org/10.1371/journal.ppat.1008160.t001
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determine the localization of endogenous RTA and NCOA2, we treated BCBL1, BC3 and JSC1

cells with VPA. At 12 h after VPA treatment, cells were fixed and stained using antibodies spe-

cific to NCOA2 and RTA.

GST pull-down assay

GST-tagged NCOA2 fusion protein, His-tagged RTA protein and His-tagged RTA deletion

(His-C544-691) protein were expressed in Escherichia coli BL21(DE3). The bacterial cells

expressing recombinant proteins were harvested and sonicated, and proteins were solubilized

in PBS with PMSF and protease inhibitor cocktail. In the pull-down assay, the bacterial lysates

containing GST or GST-NCOA2 were initially incubated with 30 μl glutathione-Sepharose 4B

with rotation for 4 h at 4˚C. After the samples were washed, purified GST or GST-NCOA2

protein was mixed with protein lysates containing His-RTA or His-C544-691 for another 6 h

at 4˚C, followed by five washes in RIPA buffer. Proteins that were pulled down by glutathione

beads were extracted and subjected to immunoblot analysis.

RNA isolation and quantitative real-time PCR (RT-qPCR)

Total RNA was isolated from cells using TRIzol reagent (Invitrogen) following the manufac-

turer’s instructions. One microgram of RNA was used for reverse transcription with gDNA

Eraser reverse transcription kits (Toyobo). cDNA was used for quantification of the indicated

mRNA on a QuantStudio 6 Flex rt-PCR System (Applied Biosystems) by using SYBR Green

real-time PCR master mix kits (Toyobo) according to the manufacturer’s instructions. Dissoci-

ation curve analysis of products was conducted at the end of each PCR to detect and validate

the specific amplification of PCR products. Transcript levels of each gene were normalized to

the GAPDH level, and the 2−ΔΔCT method was used to analyze gene expression in samples.

Data represent fold changes compared to the level for untreated control cells. The primers

used in RT-qPCR are listed in Table 1.

Protein stability assay

First, 293T cells were cotransfected with the indicated plasmids. At 24 h post-transfection, cells

were treated with 100 μg/ml of CHX to inhibit de novo protein synthesis. At the indicated

time points after treatment with CHX, the cells were harvested and subjected to immunoblot

analysis. Protein levels normalized to α-Tubulin levels were quantified by densitometry.

Ubiquitination assay

First, 293T cells were transfected with relevant expression plasmids and then treated with

DMSO or MG132 (0.5 μM) (Sigma) for 12 h. The cells were harvested, lysed and immunopre-

cipitated using anti-Flag antibody. The precipitates were subjected to 6% SDS-PAGE followed

by immunoblotting using an anti-ubiquitin rabbit antibody (ABclonal).

Establishment and identification of stable cell lines

NCOA2-overexpressing lentiviruses were constructed based on the lentiviral vector

pCDH-CMV-Flag-IRES-Blast. This NCOA2-overexpressing lentiviral vector and empty vec-

tors were packaged in 293T cells by cotransfection with the Δ8.9 packaging plasmid and a plas-

mid expressing vesicular stomatitis virus G protein (pVSV-G) as described previously [60].

Two days later, the virus stock was collected and cleared by a 0.45 μm pore size filter. The

NCOA2 stably expressing iSLK.RGB or BCBL1 cell line was achieved by addition of the

NCOA2 stable expression and control lentiviral particles and centrifugation at 2500 rpm for 2
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h. The medium was replaced by fresh DMEM. At 48 h post-infection, the cells were screened

with 25 μg/ml blasticidin (Sigma), and immunoblotting was performed to determine the

expression of NCOA2.

RNA Interference

sh-NCOA2 was cloned into pLKO.1, and the target sequence of NCOA2 shRNA was 5’-

ATCCGTTCTCAGACTACTAAT-3’. A control sh-GFP (target sequence: 5’-

GCTACCTGTTCCATGGCCAA-3’) was also cloned into pLKO.1. shRNA plasmids were

transfected into 293T cells. Two siRNA oligonucleotides against NCOA2 and the correspond-

ing negative control siRNA were obtained from GenePharma. Sequences are as follows: si#1,

50-GGAACAGCCAUACCUUCAATT-30; si#2, 50-GCAGUUCUCCAGAUGACUUTT-30.

Transfection of siRNA into iSLK.RGB or BCBL1 cell line was performed by Lipofectamine

2000 according to manufacturer’s instructions.

Generation of NCOA2-deficient iSLK.RGB cells

NCOA2-deficient iSLK.RGB cells were generated by using the CRIPR/Cas9 system as

described previously [61]. The single guide RNA (sgRNA) sequence targeting human NCOA2

gene (5’-CACCGAAAATACCTCTGACCCCTCC-3’) was cloned into lentiCRISPR v2 vector

and applied for production the recombined lentivirus. iSLK.RGB cells were infected with

NCOA2 lentiCRISPR v2 lentivirus or the empty vector lentiCRISPR v2 lentivirus (negative

control). After 48 h postinfection, blasticidin (25 μg/ml) was added to select the positive clones.

Finally, the monoclonal cells acquired by using the limiting dilution method were expanded

and knockout of NCOA2 was confirmed by Western blotting.

PCR analysis of virus progeny

For analysis of whether NCOA2 can promote the production of viral progeny, 200 μl of super-

natant from induced iSLK.RGB or BCBL1 stable cell line was collected and treated with DNase

I (Sigma) for 1 h at 37˚C. The KSHV genome was purified from the supernatant by a TIA-

Namp Blood DNA Kit (TIANGEN) and quantified by qPCR using K9 primers for KSHV copy

numbers.

Infection of 293T cells with progeny virus

The supernatant (500 μl) of each group was incubated with 293T cells in a 12-well plate, and

the plate was then centrifuged at 2500 rpm for 2 h. The medium was replaced by fresh DMEM,

and the cells were cultured for an additional 24 h. The infection rate of 293T cells was exam-

ined by fluorescence microscopy based on the RFP signal.

Flow cytometry

Cells were collected and analyzed by flow cytometry to detect KSHV lytic cells based on the

EGFP signal.

Statistical analysis

The results are expressed as the mean ± SD. Statistical analyses were performed on data from

triplicate experiments by using Student’s t-test. A P value < 0.05 was considered significant,

and a P value < 0.01 was considered highly significant.
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Supporting information

S1 Table. Proteins interacted with RTA.

(DOCX)

S1 Fig. Identification proteins interacted with RTA. (A) Schematic strategy for purification

and identification of RTA binding proteins via IP assay. Plasmid expressing Flag-tagged RTA

was transient transfection into HEK293T or HEK293T.219 cells. The same amount of empty

vector was transient transfected as a control. Cell lysates were performed to affinity purifica-

tion by immunoprecipitation with FLAG M2 beads. The purified elutes were boiled in

SDS-PAGE loading buffer, and then were analyzed by MS. (B) Venn diagram showing the

overlaps of differentially candidate RTA binding proteins in HEK293T cells and

HEK293T.219 cells.

(TIF)

S2 Fig. Confocal fluorescent images of RTA truncation mutants in Hela cells. HeLa cells

were transfected with RTA and all the mutants. Twenty-four hours after transfection, cells

were harvested, fixed, permeabilized, and probed with anti-flag antibody. Cy3 was used to

visualize the stained truncation proteins. Diamidino-2-phenylindole shows the nuclei of cells.

(TIF)

S3 Fig. Effect of NCOA2 and vSP1 on RTA expression. (A) 293T cells were transfected with

the indicated expression plasmids. The expression of RTA protein was examined by immuno-

blotting with the indicated antibodies. (B) 293T cells were cotransfected with HA-RTA and

Myc-NCOA2 together with an increasing amount of Flag-vSP1 (0, 0.5, 1, 2 μg) for 36 h. Cell

lysates were collected and subjected to western blotting with the indicated antibodies. (C)

293T cells were cotransfected with HA-RTA and Flag-vSP1 together with an increasing

amount of Myc-NCOA2 (0, 0.5, 1, 2 μg) for 36 h. Cell lysates were collected and subjected to

western blotting with the indicated antibodies.

(TIF)

S4 Fig. Overexpression of NCOA2 enhances KSHV lytic replication. (A) The supernatants

(500 μl) from dox-induced iSLK.RGB-Vector and iSLK.RGB-NCOA2 cells at 48 hpi were

incubated with 293T cells. The infection rate of 293T cells was examined by fluorescence

microscopy. (B) BCBL1-NCOA2 and BCBL1-Vector cells were treated with VPA for 24 h, and

the transcription of viral genes was analyzed by qPCR with the indicated primers. Data were

pooled from three independent experiments and were analyzed with a two-tailed Student’s t-
test (����P< 0.0001). (C) NCOA2 overexpression increases the expression of viral genes in

BCBL1 cells. BCBL1-NCOA2 and BCBL1-Vector cells were treated by VPA for 24 h, the

expression level of RTA protein and ORF64 protein was determined by immunoblotting with

the indicated antibodies.

(TIF)

S5 Fig. Knockout of endogenous NCOA2 impairs viral lytic replication. (A) Generation of

NCOA2-deficient iSLK.RGB cell line. NCOA2-deficient iSLK.RGB cells were generated by

using the CRISPR/Cas9 system. NCOA2 knockout was confirmed by western blotting with

anti-NCOA2 rabbit antibody. NCOA2-deficient iSLK.RGB cells (NCOA2-/-) or wild-type

iSLK.RGB cells (WT) were treated with dox for 48 h, the expression levels of RTA and ORF64

were examined by western blotting. (B) The progeny viruses form culture supernatants were

quantified by qPCR. Data were pooled from three independent experiments and were analyzed

with a two-tailed Student’s t-test (��P < 0.01).

(TIF)
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