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Simple Summary: Acute myeloid leukemia (AML) is a cancer of blood and bone marrow that
causes rapid production of abnormal red and white blood cells. Once established, the cancer cells
communicate through a complex set of molecular interactions with neighboring cells in order to
survive, spread rapidly, and evade detection and destruction by the body’s immune system. In
this study, a systematic review produced a comprehensive set of critical molecular interactions that
was then organized into molecular “systems architecture” to map the communications between
cancer cells and neighboring cells. This systems architecture may aid in identifying effective targets
that disrupt communication between the cancer cells and the neighboring environment, leading to
effective treatment strategies.

Abstract: A molecular systems architecture is presented for acute myeloid leukemia (AML) to provide
a framework for organizing the complexity of biomolecular interactions. AML is a multifactorial
disease resulting from impaired differentiation and increased proliferation of hematopoietic precursor
cells involving genetic mutations, signaling pathways related to the cancer cell genetics, and molec-
ular interactions between the cancer cell and the tumor microenvironment, including endothelial
cells, fibroblasts, myeloid-derived suppressor cells, bone marrow stromal cells, and immune cells
(e.g., T-regs, T-helper 1 cells, T-helper 17 cells, T-effector cells, natural killer cells, and dendritic cells).
This molecular systems architecture provides a layered understanding of intra- and inter-cellular
interactions in the AML cancer cell and the cells in the stromal microenvironment. The molecular sys-
tems architecture may be utilized for target identification and the discovery of single and combination
therapeutics and strategies to treat AML.

Keywords: acute myeloid leukemia (AML); leukemia stem cells (LSC); CytoSolve; systems biology;
tumor microenvironment (TME); molecular systems architecture; immune cells

1. Introduction

Acute Myeloid Leukemia (AML) is characterized by uncontrolled proliferation, in-
creased survival, and impaired differentiation of hematopoietic progenitor cells [1]. In-
creased proliferation and apoptosis resistance, as well as the inhibition of differentiation
and/or aberrant activation of growth factor receptor signaling pathways, are central to AML
pathogenesis [2,3]. Aberrant and constitutive activation of signal transduction molecules
are found in about 50% of primary AML bone marrow samples, enhancing the survival
and proliferation of hematopoietic progenitor cells via the RAF/MEK/ERK cascade and
the PI3K/AKT pathways that are dysregulated by mutations in receptor tyrosine kinases
(RTK), Fms related receptor tyrosine kinase 3 (FLT3), N-Ras and K-Ras, and Kit [1,4].
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Specific surface biomarkers characterize the subpopulations of AML cells. For example,
leukemic stem cells are characterized by CD34+/CD38− surface markers, megakaryocyte-
erythroid progenitors (MEPs) are characterized by CD34+/CD38+/CD45RA− surface mark-
ers, and granulocytic-monocytic progenitors (GMPs) are characterized by CD34+/CD38+/
CD45RA+ surface markers [5–7]. Aberrant multipotent progenitor cells give rise to myeloid
lineage-committed cells showing further phenotypical as well as functional changes. AML
patients present with a significantly expanded population of granulocytic-monocytic pro-
genitor cells (GMP), while the megakaryocytic-erythroid progenitor (MEP) population is
severely reduced [8]. In addition, there is a significant depletion of HSC numbers in AML
as a result of a differentiation block at the HSC–progenitor transition [9]. The increased
constitutive activation of GMP clusters in AML has been attributed to insufficient produc-
tion of cytokines such as TGFβ 1 and CXCL4—factors that promote the quiescence of the
GMP clusters [10].

Gene mutations precipitate key events in AML pathogenesis [11,12]. The gene mu-
tations common in AML are well documented elsewhere [7] and some of the key genetic
factors are summarized in Table 1. Class I mutations lead to uncontrolled cellular prolif-
eration and evasion of apoptosis and include mutation conferring constitutive activity to
tyrosine kinases or dysregulation of downstream signaling molecules (in genes such as
BCR-ABL, LLT3, c-KIT, and RAS) [13]. Class II mutations are associated with inhibition
of differentiation, including key transcription factors, such as CBF and retinoic acid re-
ceptor alpha (RARα), and proteins that are involved in transcriptional regulation, such
as p300, CBP, MOX, TIF2, and MLL [14]. Class III mutations are involved in epigenetic
regulation and include genes such as TET2, IDH1/2, DNMT3A, ASXK1, Cohesin, NPM1
and EZH2 [11,14]. Additionally, genes such as WT1 and TP53 are implicated in tumor
suppression activity [14]. Oncogenes common in AML include PML-RARa, FLT3-ITD,
AML-ETO, and CBFB-MYH11 (oncogene for Inversion 16 cytogenetic alteration) [14,15].

Table 1. Gene mutations in AML. Class I, Class II, and Class III genes are involved in signal transduction,
differentiation, and epigenetic regulation, respectively. In addition, tumor suppression genes and other
oncogenes are also implicated in AML pathogenesis.

Class I Genes Class II Genes Class III Genes Other Genes

Signal
Transduction Differentiation Epigenetic

Regulation
Tumor

Suppression Oncogenes

FLT3 RUNX1 (AML1) TET2 WT1 PML-RARa
KIT CBFα IDH1/IDH2 TP53 FLT3-ITD

NRAS, KRAS CEBPα DNMT3A AML-ETO
JAK2 NPM1 ASXL1 CBFB-MYH11

PTPN11 PU1 EZH2
MLL Cohesin

RARα NPM1

Recent reviews have discussed in detail the cytogenetic targets for potential treatments
of AML [14,16,17]. In addition to cytogenetic factors, the interactions in the tumor microen-
vironment that promote suppression of immune response, cancer cell proliferation, and
inhibition of apoptosis also contribute significantly to the pathogenesis of AML [2]. This
research employs a systems biology approach to provide not only a systematic review of
the current understanding of AML tumor microenvironment (TME) but also a molecular
systems representation, i.e., the interactome of the molecular interactions within cancer
cells and across the cells in the stromal microenvironment. The insights from this review
aim to provide the AML research community an integrative molecular systems approach
to understanding the complexity of the biomolecular interactions involved in AML patho-
genesis. The results of this investigation may be used to support identification of potential
targets for therapeutic interventions.
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2. Literature Review

The scientific literature was searched to identify journal papers that contain research
on AML, molecular pathways of AML, cells in the AML microenvironment, interactions
between AML cells and the cells of AML microenvironment, and the molecular pathways
involved in the cellular crosstalk in the AML microenvironment. CytoSolve® is an estab-
lished systems biology tool that enables a systematic bioinformatics literature review pro-
cess, as well as providing scalable computational modeling of molecular pathways [18–24].
In this study, CytoSolve has been employed to perform a systematic review as well as
to support the curation and development of the molecular systems architecture of AML
pathogenesis.

The systematic review process for this study involved the following four steps:

1. creating a list of Medical Subject Headings (MeSH) keywords to optimize the recall
and precision of peer-reviewed articles (listed in Table 2);

2. searching and retrieving the relevant peer-reviewed articles published between
January 1980 to June 2021 from PubMed, Medline, and Google Scholar, which were
stored as an “Initial Set” repository;

3. screening the titles and abstracts of the articles in the Initial Set repository to identify
the most relevant articles based on our inclusion criteria, which were stored as the
“Final Set” repository; and

4. performing a full-length review of the Final Set repository using the domain experts.

Table 2. MeSH keywords used for computer-based screening.

MeSH Keywords

Human acute myeloid leukemia CXCR4 CXCL12 Signaling NOT review
Human acute myeloid leukemia TGF-β Signaling NOT review

Human acute myeloid leukemia VLA-4 VCAM-1 Signaling NOT review
Human acute myeloid leukemia Arginase NOT review

Human acute myeloid leukemia IDO NOT review
Human acute myeloid leukemia PD-1 PD-L1 Signaling NOT review

Human acute myeloid leukemia NK cells NOT review
Human acute myeloid leukemia BMSC NOT review
Human acute myeloid leukemia MDSC NOT review

Human acute myeloid leukemia Endothelial Cell NOT review
Human acute myeloid leukemia Treg cells NOT review
Human acute myeloid leukemia MSC cells NOT review

Human acute myeloid leukemia Fibroblast cells NOT review
Human acute myeloid leukemia Th1 cells NOT review
Human acute myeloid leukemia Th17 cells NOT review
Human acute myeloid leukemia Teff cells NOT review

Human acute myeloid leukemia Osteoblasts/Osteoclast cells NOT review
Human acute myeloid leukemia Adipocytes NOT review

The Inclusion Criteria

The full text of the articles, not only the abstracts, were reviewed completely by the
authors. An article was deemed relevant only if the body of the article contained the
keywords set out in Table 2 (e.g., CXCR4, TGF-β, MDSC, etc.), with specific relation to
AML pathogenesis. In the screening process, abstracts and unpublished literature were
not sought, as they had not been peer-reviewed adequately to authenticate their results.
The List of Medical Subject Headings (MeSH) keywords to optimize recall and precision of
peer-reviewed articles is provided in Table 2 below.

The CytoSolve systematic bioinformatics literature review process and categorization
are represented in Figure 1 as per the PRISMA guidelines [25]. We registered the systematic
review with Research Registry. The unique identifying number assigned to our systematic
review is: reviewregistry1290. Here is the link to the registry file: https://www.researchregi

https://www.researchregistry.com/browse-the-registry#registryofsystematicreviewsmeta-analyses/registryofsystematicreviewsmeta-analysesdetails/61f5ba59a8ef6574c8e0f142/
https://www.researchregistry.com/browse-the-registry#registryofsystematicreviewsmeta-analyses/registryofsystematicreviewsmeta-analysesdetails/61f5ba59a8ef6574c8e0f142/
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stry.com/browse-the-registry#registryofsystematicreviewsmeta-analyses/registryofsystem
aticreviewsmeta-analysesdetails/61f5ba59a8ef6574c8e0f142/ (accessed on 18 April 2021).

Figure 1. PRISMA flow diagram. In the process above, 602 articles are identified; 73 duplicates were
removed; 529 articles were eligible for review from which 276 were removed as they were deemed
not relevant; and 253 articles were included in the analysis.

3. Molecular Systems Architecture of AML

From the systems biology perspective, living organisms can be viewed as being
comprised of dynamic networks of biochemical reactions [20]. The origin of disease is
characterized by the disruption of one or more signaling cascades, which may arise due to
defects at the molecular level and may ultimately result in the symptomatic manifestation
of disease, due to gain or loss in the usual functions of the cascades involved [26]. The
integration of molecular pathways acts as a backbone for the development of a molecular
systems architecture for a disease [21]. In complex diseases, there are numerous cells involv-
ing different signaling cascades. In such cases, an integration of molecular pathway systems
affecting these cell types results in a systems view of the disease or biological process.

In Figure 2, we schematically illustrate a multilayered architecture of the AML microen-
vironment, with (i) an interconnected system of pathways in immune cells, endothelial
cells, bone marrow stromal cells (BMSC), and myeloid-derived suppressor cells (MDSCs);
(ii) converging points of key signaling pathways in the microenvironment, among AML
cells, endothelial cells, BMSCs, MDSCs, and immune cells (interactive signaling layer);

https://www.researchregistry.com/browse-the-registry#registryofsystematicreviewsmeta-analyses/registryofsystematicreviewsmeta-analysesdetails/61f5ba59a8ef6574c8e0f142/
https://www.researchregistry.com/browse-the-registry#registryofsystematicreviewsmeta-analyses/registryofsystematicreviewsmeta-analysesdetails/61f5ba59a8ef6574c8e0f142/
https://www.researchregistry.com/browse-the-registry#registryofsystematicreviewsmeta-analyses/registryofsystematicreviewsmeta-analysesdetails/61f5ba59a8ef6574c8e0f142/
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and (iii) the potential impact of such convergent pathways on the progression of AML
(disease layer).

Figure 2. Stromal microenvironment in AML. The AML cell interacts with cells from the vascular
niche, promoting cell proliferation and inhibiting the apoptosis of AML cells. MDSCs assist AML
cells in evading the antitumor response from immune cells. AML cells, along with Tregs, suppress
the immune response from the T cells and NK cells.

In AML, mutated leukemia stem cells (LSC) exploit the normal microenvironment
and alter it to maintain their survival [27]. Alterations in the AML microenvironment can
lead to AML relapse due to anti-apoptotic, anti-differentiation, and proliferative effects [28].
Stromal cells have a primary role in initiating AML, resulting in AML cells altering the
normal localization and differentiation of HSCs as well as rapid leukemia growth expanding
the intrinsically hypoxic microenvironment [29]. The microenvironment in AML consists
of immune cells, stromal cells, and stem cells. Growth factors and cytokines released in
the bone marrow (BM), thymus, and other immune tissue microenvironments provide
paracrine and autocrine signals for long-term hematopoietic regulation of stem cells [30]
and protect the AML cells from chemotherapeutic agents to promote drug resistance [31–33].
AML cells evade the immune cells by arresting the cell cycle of cytotoxic T cells, inducing
cytotoxicity in NK cells and Th1 cells via tryptophan starvation [34,35].

4. Interactive Signaling in the AML Microenvironment

The AML cells interact with the stromal cells to effect immunosuppression, immuno-
evasion, and survival/proliferation through promotion of inflammatory phenotypes in T
cells, suppression of anti-inflammatory T cell phenotypes, and enhanced angiogenesis via
a myriad of signaling transduction mechanisms. The signaling molecules that affect these
processes can originate either from the leukemic cell or from the proinflammatory immune
cells and other stromal cells; hence, they are important in developing a molecular systems
architecture. CytoSolve’s bioinformatics process yields the schematic of the interactive
signaling in the tumor microenvironment, as shown in Figure 3. Table 3 provides the legend
describing the various graphical components of the systems architecture.
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Figure 3. Schematics of interactive signaling between AML myeloblast and the cells of stromal
microenvironment, such as bone marrow stromal cells (BMSC), myeloid-derived suppressor cells
(MDSCs), immune cells, and endothelial cells derived from the CytoSolve bioinformatics process. A
detailed exposition of the critical interactive signaling mechanisms is provided below. This exposition
provides the critical elements of the AML molecular systems architecture.

Table 3. Legend of symbols used in Figures 3–11.

Name of Symbol Symbol Description

Double-sided Orange Rectangle Molecular pathway

Black Arrow Receptor/Ligand Binding, Signal
propagation

Red Flat Arrow Inhibition of signal propagation

Green Cylinder Cell surface receptor

Purple Lozenge mRNA

Blue Pentagram Protein/small molecule
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Figure 4. CXCR4/CXCL12 signaling interactions between myeloblast, endothelial cell, MSC, and
BMSC promote angiogenesis in vascular niche, AML cell survival, and tumor proliferation.

Figure 5. TGF-β signaling interactions between myeloblast, endothelial cell, and BMSC promote
angiogenesis, AML cell survival, and tumor proliferation.
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Figure 6. Interactions between osteoblasts/osteoclasts and AML cells lead to AML cell survival,
proliferation as well as immune suppression.

Figure 7. Interactions between adipocytes and AML cells lead to AML cell survival.
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Figure 8. Signaling between endothelial cells and AML cells (myeloblast) promotes adhesion of AML
cells in the vascular niche, survival, proliferation, and attempted angiogenesis.

Figure 9. AML cells’ interactions with MDSC cells lead to suppression of immune cell proliferation.
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Figure 10. IFN-α signaling in the tumor microenvironment leads to activation of immune response
and inhibition of AML cell survival and proliferation.

Figure 11. Tregs signaling in the tumor microenvironment promotes immuno-evasion by AML blasts
via suppression of immune cell proliferation and promotion of immune cell apoptosis.

4.1. Interactive Crosstalk between AML Cells, Bone Marrow Stromal Cells, Endothelial Cells,
Osteoblasts, and Adipocytes
4.1.1. CXCR4/CXCL12 Signaling

The CXCR4/CXCL12 axis regulates retention of HSC quiescence, survival, and the
size of the HSC pool in the marrow. It is also implicated in cellular migration, mobilization,
and homing of LSCs during the initiation and progression of AML [36]. CXCR4 is a G
protein-coupled chemokine receptor expressed on the surface of HSC and AML cells [29].
CXCR4 is essential for metastatic spread to organs and thereby allows tumor cells to
access cellular niches, such as the bone marrow, that favor tumor-cell survival and growth.
CXCL12 produced by the BMSCs, endothelial cells, osteoblasts, osteoclasts, and MSCs
is a homeostatic chemokine that signals through CXCR4 and plays an important role in
hematopoiesis and the development and organization of the immune system [37].
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High levels of CXCL12 in hypoxic condition in the bone marrow niche indicate a
regulator for the transcription factor, hypoxia inducibleg factor-1 (HIF-1) [38]. HIF-1α,
in particular, is responsible for creating a concentration gradient of CXCL12 that guides
malignant cell to the bone marrow niche and has been shown to upregulate the expression
of CXCR4 on malignant cells [39]. Under normoxic conditions, HIF-1α is hydrolyzed by
the prolyl hydroxylase domain protein (PHD), which leads to its ubiquitination [40]. The
function of PHD is catalyzed by IDH and mutations in IHD have been shown to increase
the accumulation of HIF-1α [40,41]. These results indicate that mutation in IHD may cause
diminishing activity of IHD, leading to downregulation of PHD activity and higher levels
of HIF-α. Another mutated gene in AML, FLT3-ITD, also has been shown to upregulate the
translation of HIF-1α [41]. Mutation in FLT3-ITD leads to activation of FLT3 signaling [40],
which upregulates the PI3K/AKT/mTOR pathway responsible for translation of HIF-
1α [41,42]. These observations indicate a link between AML oncogenes IDH and FLT3-IDT
and upregulation of the HIF-1α-induced CXCR4/CXCL12 axis signaling.

Secretion of functional CXCL12 from human BMSCs is a contact-dependent event
mediated by connexin-43 and connexin-45 gap junctions [43]. The binding of CXCL12 to
CXCR4 leads to activation of the PI3K/Akt and MAPK pathways that mediate the survival
and proliferation of AML cells. CXCL12 also activates the NF-κB pathway, which induces
the production of soluble factors, such as matrix metalloproteinases (MMPs), IL-8, and
VEGF, leading to the angiogenesis promoted by MMPs and VEGF, and drug resistance
initiated by IL-8 [32]. These soluble factors help degrade the extracellular matrix and induce
blood vessel formation [37].

CXCL12 derived from MSCs has been shown to induce production of autophagy
proteins such as ATG1, ATG5, and LC3 in the AML cells, which allows the AML cell
to survive under stress [34]. MSCs-derived CXCL12 also upregulated the expression of
the drug resistance protein P-glycoprotein (P-gp) via the PI3K/Akt/p38-MAPK pathway
in the AML cells [44]. The ubiquitous nature of the CXCL12/CXCR4 axis in the AML
microenvironment makes it a prime target for anticancer therapies [45]. Several therapeutics
are under development, including those that inhibit or downregulate the expression of
CXCR4 [46], inhibit the binding of CXCL12 to CXCR4 [47], and prevent the binding of
CXCL12 to CXCR4 [48].

In the bone marrow niche, osteoblasts and osteoclasts lining the endosteum regulate
bone formation and resorption [49]. During leukemogenesis, AML cells migrate to the bone
marrow niche, due to the CXCL12 gradient created by osteoblasts and osteoclasts, [50] and
evade detection [49].

The CXCR4/CXCL12 signaling pathway’s interactions across the AML cell, endothelial
cell, osteoblasts/osteoclast, MSC, and the BMSC are shown in Figure 4.

4.1.2. TGF-β Signaling

The multifunctional TGF-β regulates cell proliferation, survival, and apoptosis [51].
The three major mammalian TGF-β isoforms are TGF-β1, TGF-β2, and TGF-β3. TGF-β1 is
the most abundant, universally expressed isoform. Once activated, the TGF-β ligands regu-
late cellular processes by binding to two ubiquitously expressed, high-affinity cell-surface
receptors—type I receptor (TβRI) and type II receptor (TβRII)—both of which contain
a serine/threonine protein kinase in their intracellular domains. Once bound to TGF-β,
TβRII recruits, binds, and phosphorylates TβRI, thereby stimulating its protein kinase
activity [52]. The activated TβRI then recruits and phosphorylates the receptor-activated
transcription factors, Smad2/3, which then bind to the common Smad4, translocate into
the nucleus, and interact in a cell-specific manner with transcription factors, coactiva-
tors, and corepressors to regulate the transcription of TGF-β-responsive genes [53]. The
TGF-β signaling interactions across the AML cell, endothelial cell, and the BMSC, are
shown in Figure 5.

TGF-β1 stimulates the secretion of IL-6 by BMSC and VEGF by AML cells, which
in turn promotes the survival of AML cells and angiogenesis, respectively [54]. The
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TGF-β–Smad pathway is also known to induce the production of the extracellular matrix
component fibronectin and the expression of integrin receptors in tumor cells, which facili-
tate cell adhesion and the cell-to-cell interaction of tumor cells with the extracellular matrix
of BMSCs [51]. TGF-β1 induces expression of the chemokine receptor CXCR4 through acti-
vation of Smad2/3 [55]. CXCR4 is highly expressed in AML, and the interactions between
CXCR4 and its ligand CXCL12, constitutively secreted by BMSCs and MSCs, promote
the proliferation, survival, migration, and homing of cancer cells [36]. TGF-β1-triggered
nuclear translocation of Smad2/3 regulates IL-6 and αSMA transcription, whereas HIF-1α
translocation regulates VEGF and TGF-β1 transcription [56,57]. BMSC-derived TGF-β1
also induces the expression of aldehyde dehydrogenase-2 (ALDH2) via the non-canonical
TGF-β-p38-ALDH2 pathway [58]. ALDH2 is implicated in conferring AML cells with drug
resistance to chemotherapy [58].

The role of AML cells and the pro-angiogenic factor VEGF secreted by AML cells
in promoting angiogenesis is dependent on the microenvironmental niche (e.g., the bone
marrow niche, the vascular niche, etc.) and the progression of the disease. In the bone
marrow niche, even though angiogenesis occurred, the resulting blood vessels were shown
to be abnormal, leading to toxic levels of nitric oxide (NO)/reaction oxygen species (ROS)
production and resulting in vascular regression [59]. In addition, as the disease pro-
gresses, the failed vasculature allows the AML cells to maintain low oxygen levels and
to evade the chemotherapeutics, both of which are carried through blood [59]. Thus, un-
like the solid tumors, the presence of VEGF in AML may not lead to angiogenesis of a
functional vasculature.

4.1.3. RANK/RANKL and Osteopontin Signaling in Osteoblasts/Osteoclasts

The RANK/RANKL pathway governs bone remodeling. The receptor RANK is on the
surface of osteoclasts, and its ligand RANKL is expressed on the membranes of osteoblasts,
and also secreted by activated lymphocytes and AML cells [60]. The binding of RANKL
to RANK initiates osteoclastogenesis and increases the survival of osteoclasts [61]. RANK
is also expressed on natural killer (NK) cells. RANKL expressed in AML cells binds with
RANK on NK cells to compromise their anti-leukemic activity [60].

Osteopontin (OPN), an extracellular matrix protein expressed on osteoblasts and
osteoclasts, was found to be increased in the serum of patients’ AML [62]. OPN promotes
the survival and proliferation of AML blasts through its binding to CD44 on the AML cell
surface, which subsequently initiates the AKT/mTOR/NF-κB signaling pathways [62,63].
The RANK/RANKL and OPN/CD44 pathways are shown in Figure 6.

Adipose tissue, which accounts for up to 70% of the bone marrow, acts as a reservoir
for HSCs and progenitor cells [64]. Bone marrow adipocytes have been shown to support
the survival and proliferation of AML cells in vivo and in vitro [65]. AML blasts induce
the activation of lipolysis in the adipocytes by promoting phosphorylation of the lipase,
leading to free fatty acid release [65]. Lipolysis is initiated by activation of the β-adrenergic
receptor [65], leading to stimulation of hormone-sensitive lipase (HSL) in the presence of
AML blasts [65,66].

The free fatty acids released by adipocytes are internalized by the CD36 receptor
on the AML cells and subsequently transferred to the nucleus and mitochondria by the
intracellular lipid chaperone fatty acid binding protein 4 (FABP4). In the nucleus, the free
fatty acid activates the transcription factor PPARγ, which induces the transcription of fat
transport-associated genes, such as CD36 and FABP4, and the anti-apoptotic gene BCL2 [67].
In the mitochondria, fatty acids are used as a source of energy via the metabolic activation
of fatty acid oxidation (FAO) and oxidative phosphorylation [67]. The interactions between
adipocytes and AML cell are illustrated in Figure 7.

4.2. Interactive Crosstalk Signaling between AML Cells and Endothelial Cells via Adhesion Molecules

Interactions between adhesion molecules, such as VCAM-1 and E-selectin, on endothe-
lial cells and their ligands, expressed on HSCs/AML cells and the marrow niche, mediate
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the retention of HSCs and AML cells within the bone marrow niche [68]. Very late antigen-
4 (VLA-4), also known as integrin α4β1, is a heterodimer expressed on leukocytes and
variably on AML blasts [69]. In addition, In addition, VCAM-1, which is a ligand for VLA-4
on AML cells, is also expressed by osteoblasts and endothelial cells [70]. Under normal
circumstances, CXCL12 stimulation results in the activation of VLA-4 on HSCs, leading to
activation of the VLA-4/VCAM-1 signaling pathway, and enhancement of HSC adhesion
to the endothelial cells followed by their trans-endothelial migration [71]. Interactions of
AML cells with endothelial cells and their subsequent integration and proliferation in the
vascular niche are facilitated by the VLA-4/VCAM-1 axis [29].

The VCAM1-VLA-4 signaling, as illustrated in Figure 8, promotes cell survival and
proliferation by interfering with the activation of receptor tyrosine kinase (RTK) [72]. A
main structural and signaling protein, integrin-linked kinase (ILK), binds with VLA-4.
ILK forms multiprotein complexes with several key components involved in intracellular
signaling cascades [73]. ILK kinase activity is dependent on PI3K and requires binding
of phosphatidylinositol (3,4,5)-trisphosphate (PIP3). Next, glycogen synthase kinase-3β
(GSK3β) is phosphorylated by ILK at serine 9 residue, leading to the activation of the
activator protein 1 (AP-1), which then upregulates cyclin D1 and Myc-1 [74]. Thus, the
VCAM1-VLA-4 signaling pathway plays a critical role in the survival and proliferation of
leukemic cells.

CXCL12/CXCR4 signaling in AML cells activates the NF-κB pathway, which induces
the production of MMPs and VEGF, leading to angiogenesis [32]. These soluble factors help
degrade the extracellular matrix and induce blood vessel formation [37]. In the endothelial
cells, VEGF signaling leads to glycolysis-mediated vascular remodeling [58]. Targeting
VEGF receptor-2 with a tyrosine kinase inhibitor resulted in AML cytotoxicity, due to
inhibition of VEGF-induced survival signaling and vascular remodeling in the tumor
microenvironment [34].

E-selectin, a cell adhesion molecule, regulates the rolling of leukocytes over en-
dothelial cells [75]. Its ligand, E-selectin ligand-1 (ESL-1), is found on HSCs as well as
AML blasts [76]. E-selectin directly regulates disease progression and chemoresistance in
AML [77]. AML blasts’ survival is enhanced by their adhesion to the vascular niche via
ESL-1, which activates Wnt signaling [78]. Inhibition of E-selectin binding to AML blasts
augmented chemotherapeutic effect and lowered the vascular niche-mediated survival
of AML blasts [76]. Recently, CD162 has emerged as another E-selectin ligand that is
implicated in the chemoresistance of AML [77].

4.3. Interactive Signaling with Myeloid-derived Suppressor Cells (MDSCs) in AML

MDSCs are critical to the immunosuppressive characteristic of the tumor microen-
vironment and are involved in promoting immune tolerance and disease growth. AML
patients show significant increase in MDSCs in the circulation, and leukemic blasts directly
induce the expansion of MDSCs [79]. MDSCs are the nonmalignant immature myeloid
cells, whereas AML blasts are a malignant expansion of immature myeloid cells; both have
the ability to suppress immune cells [80]. A key factor that characterizes the interactions
between an AML cell and MDSC is the oncogene MUC1. The expression of MUC1 on the
leukemic blasts and leukemia-initiating cells induces MDSC expansion in the microenvi-
ronment. The silencing of MUC1 has been shown to reduce the capacity of AML blasts to
induce MDSC expansion in the tumor microenvironment [79]. Interactions of MDSC with
the AML blasts and immune cells are illustrated in Figure 9.

Immunosuppression by MDSCs and AML blasts is regulated through several mecha-
nisms. One of the key mechanisms includes immunosuppression by the enzyme arginase
present in both MDSCs and AML blasts [81]. MDSCs express arginase I and AML blasts
express arginase II. The two isoforms of arginase are likely to have resulted from a gene
duplication event during evolution, with arginase I located in the cytosol and arginase II in
the mitochondria [82]. Both arginase isoforms convert arginine into urea. The two enzymes
catalyze the same reaction, converting arginine into ornithine, with urea as a byproduct.
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In healthy individuals, arginase I is expressed predominantly by hepatocytes, whereas
arginase II is expressed in a more diverse range of organs [82].

AML blasts express and release arginase II to suppress T-cell proliferation via depletion
of L-arginine in the microenvironment [83]. The combination of increased intracellular
arginase activity and plasma arginase activity halts T-cell proliferation and contributes to
the lymphopenia. In addition, arginase II levels and activity serve as important biomarkers
in patients with AML. The measurement of arginase II levels acts as a biomarker for minimal
residual disease. AML blasts polarize neighboring monocytes to an immunosuppressive
M2-like phenotype [81].

MDSCs also synthesize indoleamine-pyrrole 2,3-dioxygenase (IDO), a tryptophan-
degrading enzyme, and contribute to immune tolerance by mediating T cell suppression.
IDO locally depletes tryptophan and generates tryptophan metabolites, including kynure-
nine, resulting in reduced proliferation of CD4+ T cells, CD8+ T cells, and natural killer (NK)
cells [84]. ROS secretion also contributes to the immunosuppressive action of MDSC and is
caused by the increase in NADPH oxidase activity in granulocytic MDSC [85]. A subset of
MDSCs deplete cysteine as an alternate mechanism of immune suppression. MDSCs also
modulate the surrounding macrophages and dendritic cells [86].

The post-translational addition of a palmitate to a protein creates greater affinity for
non-polar structures, such as lipid bilayers, and are critical to the functioning of normal as
well as cancer cells [87]. In AML cell-derived extracellular vesicles, carrying palmitoylated
proteins leads to monocytes differentiating into MDSCs. This process is regulated by TLR-2
signaling, leading to upregulation of cEBPβ and IL-10 expression [34].

4.4. Interactive Signaling AML Cells and Immune Cells

In the AML microenvironment, the AML cells directly interact with several immune
cells, including Treg cells, NK cells, Th-1 cells, dendritic cells (DC), and T effector (Teff)
cells [88]. The interactions between AML cells and the immune cells are described below.

4.4.1. Interferon α Signaling

Interferon-α (IFN-α), a type I IFN, has been previously used as an antitumor agent [89].
Type I IFNs exert direct antitumor effects on AML cells by multiple mechanisms modulated
via the expression of interferon-inducible genes. IFN-α inhibits the production of pro-
proliferative cytokines such, as IL-1 and IL-6, and pro-angiogenic cytokine IL-8 [89]. IFN-α
also promotes the expression of FasL in AML cells, which initiates apoptotic signaling via
caspase-8 [90]. IFN-α is also implicated in the activation of DCs, NK cells, and T cells,
which in turn play major roles in antitumor immune responses [91].

Mutation in cohesin complex proteins, seen in AML cells, downregulates Type I IFNs
in macrophages [92]. Type I IFNs are critical to the initiation of antitumor immunity
through direct actions on DCs. IFNα induces DCs to exert direct cytotoxic activity against
AML cells [93]. IFN-α has an important role in modulating NK cell function [91]. IFN-α
upregulates the expression of immunomodulatory cytokines, such as IFN-γ in the NK
cells, promoting their “helper” function. The helper NK cells induce the DCs with Th-
1-polarizing capacity, which is necessary for antitumor immunity [89]. Activation of the
immune system by interferons has been shown to undermine AML cell growth [11,89,93]
The IFN-α signaling interactions are illustrated in Figure 10.

4.4.2. Immunosuppressive Interactions of Tregs in AML Tumor Microenvironment

Tregs play a pivotal role in maintaining peripheral immunological tolerance by prevent-
ing autoimmunity and chronic inflammation. There are two subtypes of Tregs: naturally
occurring Tregs (nTregs) and induced Tregs (iTregs) [94]. iTregs start out as CD4+ cells and
acquire CD25 and FoxP3 expression following adequate antigenic stimulation in a specific
tolerogenic microenvironment [95]. AML patients with a higher expression of IDO critically
induce a de novo population of Foxp3+ Tregs [96]. AML cells have also been shown to
actively recruit and program Treg to suppress antitumor immune responses [97].
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AML cells promote the expansion of Tregs via the inducible T-cell costimulator ligand
(ICOSL). TNF-α signaling induces ICOSL expression in AML cells [98]. The accumulation of
Tregs in the AML microenvironment is driven by the chemotactic effect of CCL2 [88]. Once
established in the microenvironment, Tregs actively prevent or downregulate antitumor
responses from the immune cells in the tumor microenvironment. Tregs suppress the
immune response from Teffs through two mechanisms: a contact-dependent manner,
and a contact-independent manner. While nTregs use both mechanisms, iTregs induce
immunosuppression in a contact-independent manner that involves cytokines, such as
IL-4, IL-10, or TGF-β [97,98]. In addition to suppressing APCs, IL-10 also promotes AML
cell proliferation via the ERK/p38/STAT3 pathway [98]. Treatment with an FLT3 inhibitor,
midostaurin, showed a significant decrease in the Treg population, reduction in the FOX3p
mRNA expression in AML cells, and reduction in IL-10 levels, indicating a role for IL-10 as
a potential biomarker for AML cancer treatment [99].

Direct cell-to-cell interactions between Tregs and Teffs result in apoptosis and/or
suppression of Teffs. The direct transfer of cAMP from Tregs to Teff through the gap
junctions leads to downregulation of IL-2 production and subsequent proliferations of
Teff [100]. On contact, the formation of gap junctions occurs between Tregs and Teffs. cAMP
transferred through the gap from Tregs to Teffs suppresses the proliferation of Teffs by
decreasing IL-2 production.

Apoptosis of CD4+CD25+ Teffs is caused by Tregs through the granzyme B-dependent
and perforin-independent mechanisms [101]. Tregs also suppress NK-cell proliferation via
depletion of IL-2 [101]. Tregs block the maturation of DCs. The immature DCs express IDO,
which depletes tryptophan needed for T-cell proliferation [102]. Metabolites resulting from
IDO depletion of tryptophan, such as kynurenines, actively promote T-cell apoptosis [97].
The immunosuppression by AML cells through Tregs is illustrated in Figure 11.

4.4.3. Immunosuppression Interactions of AML Cells with T Cells

The programmed death-1 (PD-1) receptor is expressed on various cell types, including
T cells [103]. In AML, an increased expression of PD-1 receptor is observed in cytotoxic
T lymphocytes (CTL). PD-L1, a ligand for the PD-1 receptor, is present on cancer cells,
including AML [104]. PD-1 and PD-L1 interaction suppresses CTL response to AML
blasts [97]. PD-L1 expression was found to be higher in patients undergoing chemotherapy
or those who have a relapse, suggesting a refractory role for PD-1/PD-L1 interaction [105].

AML blasts also participate in the suppression of Th cells through Tim-3 and galactin-9
(gal-9) interactions [106]. A type I membrane glycoprotein, Tim-3 is expressed on Th1 cells
and innate immune cells [107]. Gal-9 is expressed on AML cells and participates in the
Tim-3/gal-9 pathway that leads to apoptosis of Th1 cells [108]. In addition, the Tim-3/gal-9
pathway, along with the PD-1/PD-1 ligand pathway, is involved in regulating CD8+ CTL
responses [109]. The interactions between AML blasts and Th1, as well as CD8+ CTLs, are
illustrated in Figure 12.
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Figure 12. Immunosuppression of T cells by AML blast in the tumor microenvironment is mediated
through PD-L1/PD-1 signaling and Tim-3/Galectin 9 signaling.

4.4.4. Interactive Signaling with Natural Killer (NK) Cells in AML

NK cells are lymphocytes from the innate immune system. NK cells can directly
eliminate tumor cells via their cytotoxic and cytokine-secreting capacity and indirectly
contribute to tumor control by communicating with DC and other immune cells, supporting
the development of an efficient adaptive antitumor immune response [110].

NK cells mediate their antitumor activity through the expression of several chemokine
receptors, such as CCR1, CCR4, CCR6, CCR7, CXCR1, CXCR3, CXCR4, CXCR6, and
CX3CR1 [111]. Many of the ligands for these NK cell receptors are constitutively released by
AML cells, including the chemokines within the CCL2–4/CXCL1/8 cluster found in most
AML patients, indicating an expected migration of NK cells towards the AML blasts [112].
However, AML cells are able to evade NK cell immune surveillance through a number of
mechanisms. The interactions between AML cells and NK cells are illustrated in Figure 13.

A dysfunctional antitumor immune response by the NK cell could result in NK cell
abnormalities, immuno-suppressive and immuno-evasive properties of AML target cells,
and preferential interactions with other immune cells rather than AML blasts [113]. In
AML, changes in the expression of both receptors and ligands are commonly found, which
substantially impair NK cell-mediated killing. The majority of AML patients have a
downregulated NK cell surface expression of the activating natural cytotoxicity receptors;
thus, AML cells evade NK cells’ mediated killing by the lowered or absent expression of
surface ligands (e.g., CD48, NKG2DL, etc.) for various NK cell activating receptors [114].
NK cells can also be inactivated by soluble inhibitory factors, such as TGF-β, and reactive
oxygen species secreted by AML blasts [115,116]. However, patients with AML-ETO-
positive AML have a better prognosis, as AML-ETO has been shown to upregulate the NK
cell ligand CD48. This allows NK cells to perform cell-mediated killing of AML cells [117].
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Figure 13. Interactions between AML cells (myeloblast) and NK cells in the tumor microenvironment
lead to immune suppression of NK cells mediated by antitumor response through PD-L1/PD-1
signaling inhibition of NK cell activation via TGF-β signaling.

Another mechanism for AML cells to escape from NK cells is the activation of the
aryl hydrocarbon receptor (AHR) pathway in the NK cells [118]. IDO, which is highly
expressed in AML blasts compared to normal cells [91], initiates the AHR activation by
kynurenine. The active AHR binds to the AHR receptor on naïve NK cells and leads to the
expression of miR-29/b1, which blocks the NK cell differentiation [118], thereby allowing
the AML cells to escape from the NK cells. Inhibition of AHR has been shown to restore
the NK cell-mediated killing of AML cells [118], indicating a potential role for AHR as a
therapeutic target.

5. Discussion

The CytoSolve systematic bioinformatics review identified critical molecular systems
components of AML pathogenesis. The organization of these components into a molecular
systems architecture is presented in Figure 14. The first layer, starting from the bottom
of Figure 14, represents cellular components of the stromal microenvironment: fibroblast,
MSCs, endothelial cells, BMSCs, MDSCs, and immune cells. The second layer, in the middle
of Figure 14, represents the key molecular interactions implicated in the pathogenesis of
AML: collagen synthesis and TGF-β signaling in fibroblasts; CXCL12 signaling and IL-8
signaling in MSCs; VLA4 signaling, VEGF signaling, and hypoxia signaling in endothelial
cells; CXCL12 signaling in BMSCs; CD36/FABP4/PPARγ signaling and the FAO energy
metabolic pathway in adipocytes; the OPN production pathway and the RANKL produc-
tion pathway in osteoblast/osteoclast; arginase signaling and CCL2 signaling in MDSCs;
and PD-L1 signaling, IDO signaling, Tim-3 signaling, and IL-17 signaling in immune cells.
The third layer, shown at the top of Figure 14, represents the biological processes implicated
in the pathogenesis of AML: angiogenesis; cell proliferation, cell survival (inhibition of
apoptosis), and immune suppression.
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Figure 14. Molecular systems architecture of interactive signaling in the AML stromal microen-
vironment. In the three-layered architecture, the bottom layer consists of stromal cellular factors
involved in the pathogenesis of AML. The middle layer consists of the stromal interactions within
and among the cellular components. The top layer represents the biological processes resulting from
the interactions in the stromal microenvironment. This molecular systems architecture provides a
visual representation of the systems biology of AML based on the current science reviewed and
curated. The architecture provides a framework for scientific collaboration and instantiation of future
knowledge, based on new science and feedback from the AML community.

The molecular systems architecture in Figure 14 provides a consolidated guide to
understanding the overall AML pathogenesis. Interactions among the nine cell types
in the bottom layer give rise to the sixteen molecular systems presented in the middle
layer. Of these sixteen molecular systems components, eight of them (collagen synthesis,
TGF-β signaling, CXCL12 signaling, IL-8 signaling, the OPN production pathway, VLA4
signaling, VEGF signaling, and hypoxia signaling) contribute to AML pathogenesis by
promoting cell proliferation and cell survival/inhibition of apoptosis. The remaining
eight molecular systems components (arginase signaling, CCL2 signaling, PD-L1 signaling,
IDO signaling, Tim-3 signaling, TLR-2 signaling, the AHR pathway, and RANK/RANKL
signaling) contribute to AML pathogenesis by promoting immune evasion and suppression.
The integrated processes of cell proliferation, cell survival, and immune suppression, driven
by the molecular subsystems and the respective cellular interactions, give rise to AML.

The architecture also may offer a vehicle for new insights and discovery. For ex-
ample, we have identified several targets across different cell types in the microenviron-
ment that can potentially be used to develop therapeutic interventions to inhibit suppres-
sion of immune response, inhibit cell proliferation, and promote cancer cell apoptosis, as
listed in Table 4.

Efforts are already underway to develop antibody conjugates for cell surface markers,
such as CD44, CLL-1, CD34, and Tim-3 [119,120], and insights from this architecture can ad-
vance such efforts by the identification of new targets and understanding the mechanisms of
action of new single and combination therapies based on their interactions with the targets.
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Table 4. Summary of potential therapeutic molecular targets. The targets are categorized according to
physiological effects. Ten molecular targets were identified in the molecular mechanisms involved in
suppression of immune response across AML cells, Th1 cells, NK cells, and MDSC cells. Three targets
were identified in BMSC and two in osteoblast/osteoclast in the molecular mechanisms involved
in cell proliferation. Three targets in AML cells and one target in adipocyte were identified in the
molecular mechanisms involved in cell apoptosis.

Physiological Effect Cell Type Potential Target

Suppression of Immune
Response

AML Cell PD-L1, IL-6, Galactin-9, CCL2,
CXCR1, IDO

Th1-Cell Tim-3, PD-1
NK Cell PD-1, AHR
MDSC Arginase, CCR2

Cell Proliferation BMSC Fibronectin, Gas-6,
CXCR4/CXCL12

Osteoblast/Osteoclast OPN, CXCR4/CXCL12

Cell Apoptosis AML Cell Axl, IL-17, IL-6

Adipocytes FAO

6. Future Directions

Mechanistic in silico modeling is emerging as a valuable pre-clinical drug discovery
tool. Molecular systems architecture, as presented in this study, provides a starting point for
such mechanistic in silico modeling efforts. The computational capabilities of CytoSolve can
be employed to create an integrative computational model for the AML stromal microenvi-
ronment. The resulting in silico AML stromal microenvironment model can then be used as
a testing and validation platform to identify new targets and novel combination therapies.

7. Conclusions

The molecular systems architecture developed in this review provides a blueprint for
understanding the complex interactions occurring in the AML microenvironment. This
understanding will enable the identification of targets in the interactive signaling pathways
that may be used to develop novel combination therapies and synthetic approaches that
may be more effective than the current therapeutic options and may potentially mitigate
undesirable side effects. The molecular systems architecture provides a versatile tool in
identifying how targeting a particular mechanism in a stromal cell can a have either a
positive or negative cascading effect on the rest of the stromal microenvironment, thereby
providing a much better drug development paradigm that can minimize side effects
and maximize efficacy of treatment. This architecture may also be converted to an open
science interactive web-based tool to enable ongoing collaborative development by the
AML research community. Such efforts have been done before in the field of human
knee osteoarthritis [121].
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