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Abstract

Hepatocellular carcinoma (HCC) is the most common liver malignancy. Early diagnosis of

HCC has always been challenging. This study aims to assess the pathogenicity and the

prevalence of IL-6 -174G/C (rs1800795) and TGFβ-1 +29C/T (rs1800470) polymorphisms

in HCV-infected HCC patients. Experimental strategies are integrated with computational

approaches to analyse the pathogenicity of the TGFβ-1 +29C/T and IL-6–174 G/C polymor-

phisms in HCV-induced HCC. AliBaba2 was used to predict the effect of IL-6–174 G/C on

transcription factor binding site in IL-6 gene. Structural changes in the mutant TGFβ-1 struc-

ture were determined through project HOPE. To assess the polymorphic prevalence of IL-6

-174G/C and TGFβ-1 +29C/T genotypes in HCC and control subjects, amplification refrac-

tory mutation system PCR (ARMS-PCR) was performed on 213 HCC and 216 control sam-

ples. GraphPad Prism version 8.0 was used for the statistical analysis of the results. In-silico

analysis revealed the regulatory nature of both IL-6 -174G/C and TGFβ-1 +29C/T polymor-

phisms. ARMS-PCR results revealed that the individuals carrying TT genotype for TGFβ-1

gene have an increased risk of developing HCC (p<0.0001, OR = 5.403, RR = 2.062) as

compared to individuals with CT and CC genotype. Similarly, GC genotype carriers for IL-6

gene exhibit an increased risk of HCC susceptibility (p<0.0001, OR = 2.276, RR = 1.512) as

compared to the people carrying the GG genotype. Genotype TT of TGFβ-1 gene and geno-

type GC of IL-6 gene are found to be associated with HCV-induced HCC. IL-6 polymorphism

may alter its transcription that leads to its pathogenicity. TGFβ-1 polymorphism may alter

protein structure stability.

Introduction

Hepatocellular Carcinoma (HCC) is a form of primary liver cancer originating from hepato-

cytes. It is the sixth most common cancer in the world, reporting 800,000 cases annually with

an average mortality rate of 700,000 people per year [1]. HCC is attributed to several causative
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factors including Hepatitis B and C viral infections, alcoholic liver disease, aflatoxin, autoim-

mune disorders, Wilson’s disease, type 2-diabetes, hemochromatosis, obesity, and previously

occurring liver cirrhosis [2–5]. Hepatitis C virus (HCV) and aflatoxin are the prevalent risk

factors in Asia and Africa with 70% reported cases [6, 7].

HCV is accredited to 25% of annually reported HCC cases [8]. 71 million people get

infected with HCV annually, out of which 20–30% develop cirrhosis and 1–7% population

ends up developing HCC [9]. Prior to its development into HCC, the HCV infection passes

through a number of stages such as chronic inflammation, fibrosis, genomic alterations, and

formation of tumor microenvironment [10]. The non-structural proteins of HCV upregulate

tumor growth factor ß-1 (TGF-β1) signalling by activating reactive oxygen species (ROS), p38,

and MAPK, JNK, ERK, & NF-κB pathways [11–13]. HCV also suppresses anti-tumor genes

such as TP53, TP73, Retinoblastoma1, p53, and CDKN1A (a down-regulator of cell cycle) to

develop carcinogenesis [11, 14, 15]. Although, TGFβ-1 acts as a negative growth regulator in

normal cellular mechanisms [16]. It also acts as tumor-suppressor in pre-malignant cells; but

it promotes cancer metastasis in advanced stage tumors. 14-3-3z protein has been demon-

strated to inhibit the tumor suppression ability of TGFβ-1 by destabilizing the expression of

p53 [17]. Polymorphisms in the TGFβ-1 gene have been studied for their association with the

aetiology of multiple diseases. Studies have identified the possible role of TGFβ-1+29C/T poly-

morphism in the pathogenesis of osteoarthritis [18], breast cancer [19], urinary bladder cancer

[20], development of cervical lesions [21], sarcopenia [22], and chronic periodontitis [23].

However, the association of the TGFβ-1+29C/T polymorphism with the development of

HCV-induced HCC has not been studied before.

Evidences indicate that TGFβ-1 signalling is regulated by interleukin-6 (IL-6) activity that

promotes transmembrane localization of TGFβ receptors [24]. IL-6 role has been reported in

acute phase response, inflammatory cascades, haematopoiesis, hepatic regeneration, metabo-

lism, bone formation, cardiovascular functions, neural development, and innate and adaptive

immunity [25]. In HCC, HCV employs IL-6/STAT 3 pathway to cause liver damage [26].

Studies have predicted the association of three IL-6 promoter polymorphisms (rs1800795,

rs1800796, rs1800797) with increased risk of cervical cancer, colorectal cancer, breast cancer,

prostate cancer, lung cancer, glioma, non-Hodgkin’s lymphoma, and Hodgkin’s lymphoma

[27–29]. Studies have demonstrated the association of IL-6 -174G/C with HCC [30]. However,

no investigation has been done to study its association with HCV-induced HCC till date.

This study employed an in-silico approach to determine pathogenicity of TGFβ-1 and IL-6

gene variants (rs1800470 and rs1800795, respectively) in HCV-induced HCC followed by their

validation through allele-specific ARMS-PCR. This approach will aid the earlier diagnosis of

HCC by screening the patients against the pathogenic SNPs.

Materials and methods

In silico method

SNP analysis. IL-6–174 G/C (rs1800795) polymorphism is present in the promoter

region, whereas the TGFβ-1 +29C/T polymorphism resides in the coding region. RegulomeDB

[31] was used to predict the functional and regulatory role of the variants understudy [32]. The

transcription factor binding sites in the promotor region of mutant and wildtype IL-6 genes

were found using the AliBaba2 online server [33]. Five algorithms including SIFT, CADD,

REVEL, PolyPhen 2.0 and MetaLR were used to assess the potential pathogenicity of the

TGFβ-1 human missense variants. The structural differences in the TGFβ-1 variant due to the

T29! C mutation were analysed through Project HOPE [34]. Further, TGFβ-1 structure with

ID: AF-P01137-F1 was retrieved from Alphafold database [35] and mutation was introduced
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through wizard tool of PyMol [36]. Interactome analysis was performed through Dynamut

software [37].

In vitro method

Study design and patient selection. A retrospective case-control study was conducted in

which patients were recruited from the Combined Military Hospital Rawalpindi, Pakistan.

The sample size (N) was 429, out of which 213 were HCC patients and 216 were control

patients (S1 Data). Patients who developed HCC due to HCV infection were included and all

other HCC patients were excluded. Healthy subjects were used as control. Sample size was esti-

mated through the procedure explained by Suresh and Chandra Hekara (2015) and validated

using the G�Power Software version 3.1.9.2 for Windows. Sample collection was performed

after a written consent of the patient. The study was approved by the Institutional Review

Board committee, National University of Sciences and Technology, Islamabad, Pakistan.

Design of primers

Primer1 was used for designing the allele-specific primer sets for IL-6–174 G/C and TGFβ-1

+29 C/T genes [38]. For IL-6 SNP analysis, the sequence of common primer was 5’-GAGCT
TCTCTTTCGTTCC-3’. The sequences for G and C allele primers were 5’-CCCTAGTTGTG
TCTTGCG-3’ and 5’-CCCTAGTTGTGTCTTGCC-3’ respectively. For SNP analysis of

TGFβ-1, the sequence for common primer was 5’-GTTGTGGGTTTCCACCATTAG-3’ and

that for C and T alleles were 5’-CTCCGGGCTGCGGCTGCTGCC-3’ and 5’-CTCCGGGCT
GCGGCTGCTGCT-3’, respectively. The sense and antisense internal control primer

sequences were 5’-ACACAACTGTGTTCACTAGC-3’ and 5’-CAACTTCATCCACGTT-
CACC-3’, respectively.

Genetic analysis

Total DNA was isolated from blood using standardized phenol-chloroform protocol [39]. For

the genotyping of IL-6–174 G/C and TGFβ-1 +29C/T polymorphisms, ARMS-PCR was per-

formed using the DreamTaq Green PCR Master Mix (2X). DNA quantity used for genotyping

reaction was 10ng/μl. The ARMS-PCR product was analysed through horizontal gel electro-

phoresis using 2% agarose gel.

Liver function test

Samples obtained were first screened for infection through ELISA and the samples that were

positive for the test were then subjected to ALT, ALP, and AST. The levels of ALT, ALP, and

AST in blood serum of patients and healthy individuals were measured through Microlab 300

apparatus (Merck). Comparison of ALT level (IU/L) of patient and control was made to deter-

mine the healthy functioning of the liver.

Statistical analysis

Microsoft office 2016 Excel (Rehmond, WA, USA) was employed to organize the data

obtained through experiments. Statistical analysis was performed through the Graph Pad

Prism 7 software (GraphPad Software Inc., San Diego, CA, USA). Genotype distribution of

studied IL-6 and TGFβ-1 polymorphism and their association strength (odds ratio and relative

risk) in HCV-induced HCC patients and healthy control was calculated through two-way Fish-

er’s exact test. Odds ratio and relative risk was computed through Koopman asymptotic score

and Baptista-Pike method, respectively. Odds ratio represents the odds of the disease to occur
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in an individual with the particular genotype. Relative risk, in contrast, is the probability of the

disease occurrence if the individual has the particular genotype. A probability of less than 0.05

was taken as significant.

Results

Demographics of the study population

Demographics of study population can be seen in Table 1. Very fewer cases were reported in

the 1–20 age group. Greater number of experimental samples fall in the 21–40 & 41–60 age

groups. The disease burden progressively decreases in the elderly population with the least

number of cases being reported in 61–80 years of age.

Annotation of TGFβ-1 +29 C/T and IL-6–174 G/C variants

RegulomeDB gave annotation score and rank of the TGFβ-1 +29 C/T and IL-6–174 G/C vari-

ants, which provided information about the functional impact of these polymorphisms

(Table 2). RegulomeDB rank assigned to both mutants was 4, suggesting the presence of tran-

scription factor binding sites and DNase peak [31]. The probability score for both TGFβ-1 +29

C/T and IL-6–174 G/C variants was predicted to be 0.61. If the score is closer to 1, it suggests a

regulatory function of the mutant [31]. Therefore, these IL-6 and TGF-β1 variants are pre-

dicted to have a regulatory role.

In silico pathogenicity prediction of TGFβ-1 +29C/T polymorphisms

The pathogenicity scores and deleteriousness of TGFβ-1 +29C/T (rs1800470) polymorphism

as predicted by SIFT, CADD, REVEL, PolyPhen 2.0, and MetaLR algorithms can be viewed in

Table 3. All five tools have predicted the clinical significance of this mutant as benign.

The C/T polymorphism of the TGFβ-1 protein leads to an amino acid substitution of a pro-

line to a leucine at position 10 (Fig 1a). According to project HOPE, the wildtype and mutant

amino acids differ in sizes. The mutant residue is larger in size, which may introduce bumps in

the protein structure. As proline is known to have a rigid structure which is essential for main-

taining the protein backbone, its mutation may have caused changes in the structural confir-

mation of the TGFβ-1 protein. Interactome interaction analysis revealed that mutation caused

the loss of ionic bonds and gain of hydrophobic interactions and hydrogen bonds in the pro-

tein (Fig 1b). Furthermore, P10L variation decreases molecular flexibility and is destabilizing

in nature (Fig 1c).

Table 1. Demographic characteristics of the study groups.

Patient Control

Gender Male Female Male Female

Distribution 91 (42.72%) 122 (57.28%) 103 (47.69%) 113 (52.31%)

Age in years (Mean ± SD) 36.91 ± 12.88 34.56 ± 11.70 41.06 ± 13.99 39.11 ± 11.98

SD: Standard Deviation, HCC: Hepatocellular Carcinoma

https://doi.org/10.1371/journal.pone.0275834.t001

Table 2. RegulomeDB analysis of IL-6 (rs1800796) and TGF-β1 (rs1800470) variants.

Variant ID Functional Rank Probability Score Gene Coordinates

IL-6 (rs1800795) 4 0.60906 chr7:22766644–22766645

TGFβ-1 (rs1800470) 4 0.60906 chr19:41858920–41858921

https://doi.org/10.1371/journal.pone.0275834.t002
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In silico pathogenicity prediction of IL-6–174 G/C polymorphisms

Alibaba2 predicted five transcription factor binding sites for the wildtype IL-6 gene. These

included CREB, CRE-BP1, CPE_bind, c-FOS, and C/EBPbeta sites. However, an additional

binding site of nuclear factor-1 (NF-1) was predicted in the mutant IL-6 sequence along with

the wildtype transcription factor binding sites. Table 4 encloses the binding sites and their

nucleotide ranges for both mutant and wild type IL-6 gene.

TGFβ-1 +29 C/T and IL-6–174 G/C polymorphic distribution amongst

study groups

Out of all three genotypes of TGFβ-1+29 C/T, TT is the most prevalent (24.94%) and presents

a positive association with the development of HCV-induced HCC (p<0.0001, OR = 5.403,

RR = 2.062). The CT and CC genotypes have a relatively greater distribution in the control

group (26.81% and 15.62%, respectively) as compared to the HCC group (15.85% and 8.86%,

respectively). A negative correlation existed between cancer development and CT (p<0.0001,

Table 3. TGF-β1 +29C/T variant as predicted by SIFT, CADD, REVEL, PolyPhen and MetaLR tools.

Tool Reference Value Qualitative prediction Obtained Score Inference

SIFT < 0.05 Deleterious 0.51 Tolerated

� 0.05 Tolerated

CADD > 30 Likely deleterious 18 Likely benign

< 30 Likely benign

REVEL > 0.5 Likely disease causing 0.03 Likely benign

< 0.5 Likely benign

Meta-LR Score between 0 & 1 Either are tolerated or damaging 0.034 Tolerated

PolyPhen > 0.908 Probably damaging 0 Benign

https://doi.org/10.1371/journal.pone.0275834.t003

Fig 1. Proline to leucine amino acid substitution in TGFβ-1. a) The structure of proline (left) and leucine (right). The backbone structure, coloured

red, remains the same for both. Whereas the side chain (coloured black) is unique for each amino acid. b) Missense mutation impact on the inter-

molecular interactions of TGFβ-1. Green coloured amino acid represent wildtype and altered amino acids. c) Molecular flexibility analysis of TGFβ-1.

https://doi.org/10.1371/journal.pone.0275834.g001
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OR = 0.4119, RR = 0.6304) and CC (p = 0.001, OR = 0.4829, RR = 0.67) genotypes, respectively

(Table 5).

Amongst the IL-6–174 G/C genotypes, GC has the maximum frequency distribution in the

HCC group (29.6%). Moreover, GC genotype carriers have a positive correlation with HCC

development (p<0.0001, OR = 2.276, RR = 1.512). Subjects with GG genotype present a lower

distribution in the HCC group (8.39%) and a negative association with cancer development

(p<0.0001, OR = 0.2456, RR = 0.4685). No statistically significant difference was observed in

the susceptibility of the disease amongst CC genotype carriers (p = 0.39). The genotypic distri-

bution of TGFβ-1 and IL-6genotypes is enclosed in Table 5.

Association of TGFβ-1 +29 C/T and IL-6–174 G/C genotypes with gender

in HCV-induced HCC and controls

In the gender dependent distribution of TGFβ-1 +29 C/T genotypes, TT is the predominant

genotype in males (29.77%) and females (20.09%). The results suggest a strong association of

the TT genotype with the development of HCC in both males (p<0.0001, OR = 6.531,

RR = 2.161) and females (p<0.0001, OR = 4.304, RR = 1.936). The CT genotype was found to

be poorly distributed and negatively associated with the risk of developing cancer in patients

(male: p = 0.0004, 13.02%; female: p = 0.0141, 18.69%). Similarly, only 9.77% men with HCC

had CC genotype (p = 0.01) and presented a negative association with HCC susceptibility.

However, no statistically significant difference has been observed in the association of liver

cancer development with the CC genotype in the female gender (p = 0.07) (Table 6).

The distribution of IL-6–174 G/C genotypes represents that GC is the most prevalent geno-

type amongst male and female HCV-induced hepatic cancer patients (male = 27.46%,

Table 4. AliBaba2 results tabulated to represent segments for the transcription factor binding sites and their

nucleotide ranges in mutant IL-6 gene.

Segments Nucleotide Range Binding Sites

9. 9. 539 9–18 NF-1

1. 1. 2. 0 24–33 CREB

1. 1. 1. 6 25–34 CRE-BP1

2. 3. 3. 0 25–34 CPE_bind

1. 1. 1. 2 29–38 c-Fos

1. 1. 3. 0 33–44 C/EBP beta

NF-1: Nuclear Factor-1, CREB: cAMP response element-binding protein

https://doi.org/10.1371/journal.pone.0275834.t004

Table 5. Individual representation of TGF-β1 +29C/T and IL-6 -174G/C genotypes amongst HCC and control groups.

Genotypes Distribution Odds Ratio 95% CI-Odds Ratio Relative Risk 95% CI-Relative Risk p-value

Patient Control

TGF-β1
TT 24.94% 7.93% 5.40 3.42 to 8.56 2.06 1.72 to 2.46 <0.0001

CT 15.85% 26.81% 0.41 0.27 to 0.61 0.63 0.50 to 0.77 <0.0001

CC 8.86% 15.62% 0.48 0.30 to 0.75 0.67 0.50 to 0.86 0.001

IL-6
GG 9.09% 21.68% 0.29 0.19 to 0.45 0.51 0.37 to 0.65 <0.0001

GC 29.93% 19.72% 2.31 1.57 to 3.36 1.52 1.25 to 1.85 <0.0001

CC 10.47% 8.84% 1.24 0.77 to 2.04 1.11 0.87 to 1.37 0.39

https://doi.org/10.1371/journal.pone.0275834.t005
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female = 32.20%). The data suggests that there is a high risk of developing HCC in male

(p = 0.0003, OR = 2.917, RR = 1.772) and female (p = 0.01, OR = 1.902, RR = 1.370) carriers of

GC genotype. Contrary to GC, the distribution of the GG genotype was lower in HCC patients

as compared to their healthy counterparts in both male (8.29% vs 27.46%) and female (9.75%

vs 16.95%) genders, respectively. The analysis of GG genotype indicates its protective role

against liver carcinogenesis in both men (p<0.0001, OR = 0.1972, RR = 0.3834) and women

(p = 0.005, OR = 0.4298, RR = 0.6380). The gender distribution of the IL-6 genotypes can be

seen in Table 6.

Co-occurrence of TGFβ-1 +29 C/T and IL-6–174 G/C polymorphic

distribution amongst HCV-induced HCC and control

In current study, influence of the co-existence of IL-6 and TGFβ-1 genotypes in HCV-medi-

ated HCC patients is also investigated. Co-occurrence of genotypes GC (IL-6) and TT (TGFβ-

1) was found in 26.85% of patients and has significant association with HCV-mediated HCC

(p<0.0001). Further, OR and RR indicated that their co-existence enhances the probability of

HCC development in HCV patients. Likewise, co-existence of genotypes GG (IL-6) and CC

(TGFβ-1) and genotypes GG (IL-6) and TC (TGFβ-1) was in 3.24% and 3.70% patients,

respectively and has been identified as protective (Table 7).

Comparison of ALT, ALP, and AST of HCV-induced HCC with control

ALT, AST, and ALP of HCV-mediated HCC patients and healthy control was compared

through independent t-test. Analysis revealed that ALT, AST, and ALP level in HCV-induced

HCC patients was elevated relative to control with P value <0.0001. Mean ALT level found in

patients was 107 with standard deviation of 52, ALP mean ± SD 241 ± 16, and AST mean ± SD

99 ± 40. Similarly, the value of ALT in control was mean ± SD 37 ± 10, ALP mean ± SD

77 ± 16, and AST mean ± SD 37 ± 13. Fig 2 illustrates the mean ALT, AST, and ALP level in

HCV-induced HCC patients and healthy individuals.

Table 6. Association of TGFβ-1 +29 C/T and IL-6–174 G/C genotypes with gender in HCV-induced HCC and control patients.

Genotypes HCV-induced HCC Patients (%) Control (%) Odds Ratio 95% CI-Odds Ratio Relative Risk 95% CI-Relative Risk p-value

TGF-β1
TT-M 29.77% 7.91% 6.53 3.44 to 12.53 2.16 1.69 to 2.79 <0.0001

CT-M 13.02% 23.26% 0.34 0.19 to 0.61 0.57 0.41 to 0.78 0.0004

CC-M 9.77% 16.28% 0.43 0.23 to 0.83 0.64 0.44 to 0.90 0.01

TT-F 20.09% 7.94% 4.30 2.21 to 8.38 1.93 1.48 to 2.50 <0.0001

CT-F 18.69% 30.37% 0.50 0.28 to 0.85 0.69 0.51 to 0.92 0.01

CC-F 7.94% 14.95% 0.52 0.26 to1.01 0.68 0.44 to 1.01 0.07

IL-6
GG-M 8.29% 27.46% 0.19 0.10 to 0.39 0.38 0.24 to 0.58 <0.0001

GC-M 27.46% 16.58% 2.91 1.71 to 5.36 1.77 1.31 to 2.35 0.0003

CC-M 11.4% 8.81% 1.59 0.78 to 3.15 1.25 0.87 to1.69 0.21

GG-F 9.75% 16.95% 0.42 0.24 to 0.76 0.63 0.44 to 0.88 0.005

GC-F 32.20% 22.46% 1.90 1.13 to 3.13 1.37 1.06 to 1.79 0.01

CC-F 9.75% 8.90% 1.029 0.52 to 1.93 1.014 0.71 to1.34 >0.9999

CI: Confidence Interval, HCC: Hepatocellular Carcinoma, M: Male, F: Female

https://doi.org/10.1371/journal.pone.0275834.t006
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Table 7. TGFβ-1 and IL-6 co-existing genotypes, along with their relative risk, odds ratio and p-value in HCV-induced HCC patients.

Genotype (IL6+ TGFβ-1) Number Relative Risk 95% CI Odds Ratio 95% CI P-value

Patients (%) Control (%)

GG+TT 24 (11.11) 15 (7.08) 1.24 0.91 to 1.56 1.64 0.82 to 1.56 0.1793

GG+TC 8 (3.70) 48 (22.64) 0.25 0.13 to 0.46 0.13 0.06 to 0.27 <0.0001

GG+CC 7(3.24) 29(13.68) 0.36 0.18 to 0.66 0.21 0.08 to 0.49 <0.0001

GC+TT 58(26.85) 12(5.66) 1.87 1.58 to 2.18 6.11 3.14 to 11.76 <0.0001

GC+TC 47(21.76) 44(20.75) 1.03 0.81 to 1.27 1.06 0.67 to 1.67 0.8142

GC+CC 26(12.04) 27(12.74) 0.96 0.70 to 1.25 0.93 0.52 to 1.65 0.8838

CC+TT 27(12.50) 6(2.83) 1.71 1.34 to 2.01 4.91 2.07 to 11.43 0.0002

CC+TC 13(6.02) 23(10.85) 0.69 0.43 to 1.02 0.52 0.25 to 1.04 0.0824

CC+CC 6(2.78) 8(3.77) 0.72 0.24 to 2.16 0.84 0.41 to 1.34 0.5982

https://doi.org/10.1371/journal.pone.0275834.t007

Fig 2. Comparison of ALT, ASP, and ALP levels in HCV-induced HCC patients and healthy individuals. Mean ALT, ALP, and AST levels in

patients were higher than control. Data is represented as mean ± SD. ���� represents p<0.0001. P-value below 0.05 is considered significant.

https://doi.org/10.1371/journal.pone.0275834.g002
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Discussion

HCC is marked as the most common liver malignancy, especially in HBV and HCV-infected

patients. The life expectancy of HCC depends on the progression of disease and stage of can-

cer. When diagnosed at an early stage, the treatment may be effective. However, at an

advanced stage the therapy does not produce effective results [40]. Multiple studies have

reported an association of IL-6–174 G/C polymorphism with the pathogenesis of liver diseases

including HCC derived from HCV [41, 42]. To our knowledge, no studies on the association

of TGFβ-1 +29 C/T polymorphism with HCV-induced HCC are available. This study aims to

assess the risk of developing hepatic cancer in HCV-infected patients due to the presence of

IL-6–174 G/C and TGFβ-1 +29 C/T polymorphisms.

Despite the reported deleterious nature of this variant, the bioinformatics analysis classified

the clinical significance of TGFβ-1 +29C/T polymorphism as benign. In silico bioinformatics

tools employed for SNP analysis usually determine genetic variant pathogenicity based on evo-

lutionary conservation and sequence homology [43]. Classification of TGFβ-1 +29C/T poly-

morphism as neutral or benign by SIFT, PolyPhen2.0, REVEL, CADD and MetaLR indicates

the need to update the algorithm of these tools, so more accurate predictions relevant to SNP

pathogenicity can be made. These tools use sequence information and employ evolutionary

conservation status, homology sequences, amino acids’ physical properties, structural informa-

tion, and human protein’s function to make prediction. These tools must include information

from experimental data to make the outcomes of the tools more accurate. Further, their algo-

rithm must be updated from time to time to give more precise results. According to Regulo-

meDB analysis, both the IL-6 -174G/C and TGFβ-1 +29C/T polymorphisms are predicted to

have regulatory roles as their probability scores (0.60906) were closer to 1.

An additional nuclear factor-1 (NF-1) binding site, based on 9 nucleotides, was identified

in the IL-6 variant as compared to the wildtype sequence. NF-1, also known as the CAAT box-

binding transcription factor (CTF), is a wide family of DNA-binding proteins that recognize

and bind to the CAAT box (GCCAAT sequence) in the promotor region. The CTF/NF-1 pro-

teins regulate the gene expression by acting as transcription factors for RNA polymerase II.

Moreover, the CTF/NF-1 proteins also function as initiation factors for recruiting DNA poly-

merase for adenovirus DNA replication [20, 44]. The binding sites for CTF/NF1 have been

reported in the promotor, enhancer, and silencer regions of a gene. The alternative splicing

generates multiple variants of NF-1 protein that function as activators or repressors of tran-

scription [45]. Nuclear factor is previously been demonstrated to have role in IL-6 expression

[46]. Some studies have formed an association of increased IL-6 serum levels with the presence

of IL-6 -174G/C polymorphism [47, 48]. IL-6 enhanced serum concentration has been

reported to have association with HBV-induced HCC [49]. Similarly, IL-6 enhanced level in

HCV also provides advantage to cancer cells by suppressing apoptosis, hence leading to

hepatic cancer development [50]. So, results from AliBaba suggests the introduction of new

transcription binding site due to IL-6 polymorphism might play part in up-regulating its

expression in HCV-induced HCC.

Evidence from literature suggests that approximately 15% of the human codons have dual

function. Such codons can simultaneously code of particular amino acids and specify transcrip-

tion factor recognition sites and may refer to as “duons” [51]. RegulomeDB estimated regula-

tory function of TGFβ-1 polymorphism that is in protein-coding region. No study is found so

far that suggest the binding of transcription factor to exonic region of TGFβ-1. However, duon

mutations have been identified in TPD53 and SF3B1 that also has correlation with cancer devel-

opment and progression [52]. These outcomes suggest the commencement of further deep

analysis to delineate the impact of SNPs on the functional as well as regulatory role of proteins.
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Structural analysis revealed that TGFβ-1 polymorphism induces wildtype proline substitu-

tion with mutant leucine at amino acid residue 10. Proline has a side chain that is covalently

bonded to the peptide backbone to form a cyclized structure [53, 54]. This cyclic structure con-

fers rigidity to the protein [55, 56]. Proline inhibits the secondary and tertiary confirmation of

protein because it does not allow the formation of alpha-helix or beta-sheet structure. Instead,

it introduces breaks and links into the alpha-helical part of the protein backbone [53, 54]. On

the other hand, leucine has a hydrophobic aliphatic side chain which favours the formation of

alpha-helical structure [54, 57]. This suggests that the Pro10Leu mutation may have caused

changes in the binding pattern and rigidity of the TGFβ-1 variant as compared to its wildtype

counterpart. Moreover, leucine is larger in size than proline. The Pro10Leu mutation may

have caused the formation of bumps in mutant TGFβ-1 protein structure, as predicted by Proj-

ect HOPE.

The Pro10Leu polymorphism lies in the signal peptide domain of the TGF-β1 protein. A

signal peptide directs a newly synthesised protein to the ER for further processing [58]. Based

on the chemical differences in proline and leucine, a study has previously hypothesized that

the Pro10Leu mutation may influence the binding of the nascent protein to the TGFB1 pro-

tein, thus impacting the peptide export efficiency of the TGF-β1 [59]. This may influence the

availability of the nascent protein. However, more studies are required to validate this.

Studies performed on breast cancer, and colorectal cancer identified a positive association

of IL-6–174 G/C polymorphism with HCC development [60, 61]. A meta-analysis study has

also confirmed a significant association of IL-6–174 G/C polymorphism with HCC susceptibil-

ity [62]. Some groups have studied the association of SNPs in IL-6 gene with the development

of HCC in Pakistani population [26, 63], however, none of these studies focused on the -174G/

C polymorphism in HCV induced HCC. Badshah et al. studied IL-6-174G/C polymorphisms

in association with the pathogenesis and prognosis of HCV infection. The study reported a

high prevalence of homozygous genotypes (GG and CC) but the heterozygous GC genotype

was identified to be protective against HCV infection [63]. On the other hand, the results of

our study suggest that the GC genotype holds a positive association, and the GG genotype

holds a negative association against the development of HCC. Comparison of both studies’

outcome suggests that IL-6 genotype GC has protective role in HCV but enhances risk of HCC

development in HCV patients. It creates room for further transcriptome and proteome level

investigations for better understanding the role of IL-6 -174G/C polymorphisms in HCV

infection in both HCC and non-HCC cases to strengthen the validity of reported results.

A study on the colon cancer patients has identified the negative association of GG genotype

of TGFβ-1 +29 C/T with cancer which is suggestive of its protective impact against the disease

[64]. The GC genotype was found to have a higher prevalence in male patients as compared to

female patients, which could be a possible explanation of the higher disease burden of HCC in

men.

A research performed on bladder cancer patients in Indian population has reported the TT

homozygous genotype to be disease-causing [19]. Another group studying TGFβ-1 +29 C/T

polymorphism in breast cancer patients in India also identified TT to be a pathogenic geno-

type [65]. This is consistent with our finding of TT genotype having a pathogenic association

with HCC development in both males and females in Pakistani population. No data has been

reported previously on the possible association of CC or CT genotypes with HCC pathogene-

sis. T allele has been reported to be a disease associated allele whereas no such association has

been established for the C allele [65]. This suggests that the CC genotype might hold a protec-

tive role against HCC development. This is in accordance with our findings of poor association

of CC genotype with cancer prevalence. Another research on investigating the role of TGFβ-1
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+29 C/T in prostate cancer also found no significant association of CC genotype with the can-

cer development [66].

It is delineated in current study that co-occurrence of TGFβ-1 TT genotype and IL-6 GC

genotype in HCV patient increases the risk of HCC development. Previously, the association

of these two polymorphisms with recurrent spontaneous abortions in Brazilian women is

investigated but no conclusive outcomes regarding their co-occurrence were drawn [67].

However, the co-existence of these two genotypes has been reported to cause hip dysplasia in

osteoarthritis patients [18].

Conclusion

TGFβ-1 +29C/T and IL-6 -174G/C polymorphisms are involved in the carcinogenesis of HCC

in HCV-infected population. TT genotype of TGFβ-1 gene and the GC genotype of IL-6 gene

are found to be deleterious due to their contribution towards the development of HCC in

patients. The co-occurrence of TGFβ-1 TT genotype and IL-6 GC genotype in HCV infected

individual poses high risk of HCC development. These findings propose that an early diagnosis

of HCC may be possible through genotyping of HCV patients.
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