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Adipose-derived mesenchymal stromal cells
modulate tendon fibroblast responses to
macrophage-induced inflammation in vitro
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Abstract

Introduction: Macrophage-driven inflammation is a key feature of the early period following tendon repair, but
excessive inflammation has been associated with poor clinical outcomes. Modulation of the inflammatory
environment using molecular or cellular treatments may provide a means to enhance tendon healing.

Methods: To examine the effect of pro-inflammatory cytokines secreted by macrophages on tendon fibroblasts
(TF), we established in vitro models of cytokine and macrophage-induced inflammation. Gene expression, protein
expression, and cell viability assays were used to examine TF responses. In an effort to reduce the negative effects
of inflammatory cytokines on TFs, adipose-derived mesenchymal stromal cells (ASCs) were incorporated into the
model and their ability to modulate inflammation was investigated.

Results: The inflammatory cytokine interleukin 1 beta (IL-1β) and macrophages of varying phenotypes induced
up-regulation of pro-inflammatory factors and matrix degradation factors and down-regulation of factors related to
extracellular matrix formation by TFs in culture. ASCs did not suppress these presumably negative effects induced
by IL-1β. However, ASC co-culture with M1 (pro-inflammatory) macrophages successfully suppressed the effects of
M1 macrophages on TFs by inducing a phenotypic switch from a pro-inflammatory macrophage phenotype to an
anti-inflammatory macrophage phenotype, thus resulting in exposure of TFs to lower levels of pro-inflammatory
cytokines (e.g., IL-1β, tumor necrosis factor alpha (TNFα)).
Conclusions: These findings suggest that IL-1β and M1 macrophages are detrimental to tendon healing and that
ASC-mediated modulation of the post-operative inflammatory response may be beneficial for tendon healing.
Introduction
Despite advances in operative techniques and rehabilita-
tion methods, the outcomes of treatment of tendon and
tendon-to-bone repair are highly variable, resulting in a
substantial clinical burden [1,2]. An extraordinarily high
rate of recurrent tear (as high as 94% for some patient
populations) has been noted following rotator cuff tendon-
to-bone repair [1,2]. Similarly, intrasynovial flexor tendon
repair has been shown to be susceptible to gapping and
rupture during the first three post-operative weeks, and to
the formation of adhesions between the tendon and its
sheath [3-8].
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Following tendon repair, healing progresses through
three overlapping phases: inflammation (days 1 to 7),
proliferation (days 3 to 14), and remodeling (day 10 on-
ward). Prior attempts to improve the repair process have
largely targeted the later stages of healing and have had
limited success [8-10]. Recent evidence suggests that fine
modulation of inflammation in the earliest stages following
surgical repair may be required for improved outcomes
[11-14]. Although low levels of inflammatory cytokines are
likely necessary to attract fibroblasts to the repair site
[15,16], excessive inflammation after tendon repair has
been identified as a key factor leading to poor clinical out-
comes [11,13,14,17]. Macrophages are broadly classified
into the classically activated M1 phenotype or the alterna-
tively activated M2 phenotype. As pro-inflammatory M1
macrophages have been implicated in the poor healing
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response of tendons, depletion of these cells or blockade
of pro-inflammatory factors using pharmaceutical and
rehabilitation methods may improve healing [11,12,18].
In vitro studies of tendon fibroblasts (TFs) have shown
significant up-regulation of matrix degradation and
inflammation-related factors and down-regulation of
extracellular matrix when treated with inflammatory
factors such as IL-1β [19-22]. Taken together, these
studies suggest that macrophages and, specifically, the
M1 (pro-inflammatory) phenotype, may impede tendon
healing due to their production of high levels of pro-
inflammatory cytokines [11,12,18].
Prior in vivo and in vitro studies have suggested that

the application of mesenchymal stromal cells (MSCs), by
virtue of their ability to modulate the inflammatory en-
vironment, may improve the healing response [23-31].
The mechanisms by which MSCs regulate inflammation
for improved wound healing remain unclear. MSCs may
produce factors that directly protect fibroblasts from
harmful cytokines, such as IL-1β. Alternatively, MSCs
may modulate the innate immune response by promoting
the differentiation of monocytes into anti-inflammatory
macrophages (that is, M2 macrophages) as opposed to
classically activated, pro-inflammatory macrophages (that
is, M1 macrophages) [29-31]. These studies suggest that
M1 macrophages and cytokines, such as IL-1β, are detri-
mental to tendon healing and controlling inflammation
during healing using MSCs may lead to improved out-
comes. The purpose of this study was to investigate the
effects of macrophages on TFs and to examine the abil-
ity of adipose-derived mesenchymal stromal cells
(ASCs) to modulate those effects in vitro. We hypothe-
sized that IL-1β and M1 macrophages would negatively
affect TFs (as evidenced by increased production of in-
flammatory factors and matrix metalloproteinases and
decreased production of extracellular matrix) and that
ASCs would attenuate this effect by modulating macro-
phage phenotype.

Methods
Overview
In vitro studies were performed to examine TF responses
to inflammatory environments and the subsequent effect
of ASCs. Specifically, TFs were cultured: (1) with and
without IL-1β and (in transwell plates); and co-cultured
(2) with ASCs with and without IL-1β; (3) with macro-
phages; or (4) with macrophages and ASCs (TFs were in
one well, macrophages and ASCs were directly cultured
in the transwell) (Additional file 1: Figure S1).

Cell isolations and culture
TFs, ASCs, and macrophages were isolated from six-
week-old male C57BL/6 J mice (Jackson Laboratories, Bar
Harbor, Maine, USA). Tissues were dissected post mortem
from normal animals allocated to other studies. TFs were
isolated from tail tendon and ASCs were isolated from ab-
dominal adipose tissue. The tissues were minced and
digested in 0.2% collagenase Type IA. The digested tissue
was collected by centrifugation and incubated in alpha-
modified Eagle’s medium (Alpha-MEM) with 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin (P/S).
ASCs were selected by adherence and verified by flow cy-
tometry (see below for flow cytometry methods). TFs and
ASCs were used on passage 2 to 4. Macrophages were de-
rived from total bone marrow using L929 cell-conditioned
medium as a source of macrophage colony stimulating
factor. Total bone marrow was obtained by flushing the
femurs and tibiae of the mice with Roswell Park Memorial
Institute (RPMI) medium-1640. The red blood cells were
lysed and the resultant cell population was cultured in
L929-conditioned medium (30% L929 supernatant + 10%
FBS + 1% P/S in RPMI medium) for seven days. The mac-
rophages were then primed to become either M1 or M2
macrophages or left untreated (M0). M1 priming consisted
of 50 ng/ml IFNγ (R&D Systems, Minneapolis, MN, USA)
and 100 ng/ml Escherichia coli lipopolysaccharide (LPS)
(Invivogen, San Diego, CA, USA) in RPMI complete
medium (RPMI + 10% FBS + 1% P/S) for 24 hours. M2
priming consisted of 10 ng/ml IL-4 (R&D Systems) in
RPMI complete medium for 24 hours. Untreated macro-
phages (M0) were given fresh RPMI complete medium for
24 hours. All experiments were performed in duplicate.

Characterization of macrophage phenotype
To verify the phenotype of the primed macrophages, the
macrophage populations were analyzed by flow cytome-
try for cell surface markers and medium was analyzed
for secreted cytokines. Surface markers for all macro-
phages (CD11b: eBiosciences clone M1/70, San Diego,
CA, USA; and F480 antibody: eBiosciences clone BM8)
and specifically for M2 macrophages (CD206: APC, AbD
Serotec, Oxford, UK; and CD301: Alexa Fluor® 488, AbD
Serotec) were assessed. Data were acquired on a BD
FACS Canto Flow Cytometer (BD Biosciences, San Jose,
CA, USA) and analyzed with FlowJo software (Treestar,
Ashland, OR, USA). The gating strategy was devised to
exclude cell debris and doublet cells by forward and side
scatter (FSC and SSC, respectively). The cells of interest
stained positive for both F480 and CD11b (general
macrophage markers). The expression of M2 macrophage-
specific markers (CD206 and CD301) in the selected
macrophage population was then assessed. To further
examine the macrophage phenotypes, the expression of
pro-inflammatory cytokines in the cell supernatants was
examined. After 24 hours of macrophage priming, the
priming medium was replaced with fresh RPMI complete
medium and the cells were cultured for an additional 24
hours prior to supernatant collection. Supernatant



Manning et al. Stem Cell Research & Therapy  (2015) 6:74 Page 3 of 14
samples were stored at −80°C until analysis. The levels
of IL-1β, TNFα, nitric oxide (NO), and prostaglandin E2
(PGE2) were assessed using commercially available kits
(1: IL-1β ELISA, R&D Systems; 2: TNFα ELISA, R&D
Systems,; 3: Nitric Oxide Colorimetric Assay, EMD
Millipore Chemicals, Darmstadt, Germany; and 4: Prosta-
glandin E2 Parameter Assay Kit, R&D Systems). Statistical
significance for flow cytometry and protein expression ana-
lyses was assessed using an analysis of variance (ANOVA)
(for the effects of macrophage type) followed by a Fisher’s
post-hoc test.

Characterization of ASCs
ASCs were characterized via quantification of surface
marker expression. The cells were dislodged by trypsin-
ethylenediaminetetraacetic acid (EDTA) and stained with
antibodies known to be expressed by MSCs (CD44:
eBioscience clone IM7, San Diego, CA, USA; CD29:
eBioscience clone HMb1-1) and hematopoietic cells
(CD34: eBioscience clone RAM34; CD14: eBioscience
clone Sa2-8) for 30 minutes at 4°C. Unstained cells
served as a negative control. Data were acquired on a
BD FACS Canto Flow Cytometer (BD Biosciences) and
analyzed with FlowJo software (Treestar). The cells were
gated based on their forward and side scatter properties
to exclude debris and doublets. A fuller characterization
of these cells as well as a colony-forming unit fibrolasts
(CFU-F) assay was performed and reported in a separate
publication to verify ASC characteristics [32]. Cells of
interest stained positive for both F480 and CD11b (gen-
eral macrophage markers).

IL-1β-induced inflammation
To determine the effects of IL-1β on TFs, TFs were
plated at 5.2 x 104 cells/cm2 in six-well plates and
treated with varying amounts of IL-1β (0 ng/ml, 0.01 ng/
ml, 0.1 ng/ml, 1 ng/ml, 10 ng/ml, and 100 ng/ml; rat-
derived, R&D Systems). The cells were cultured for one,
two, and three days before the cell supernatant was col-
lected and RNA was isolated.

Macrophage-induced inflammation
To examine the effect of pro-inflammatory cytokines se-
creted by macrophages on TFs, an in vitro model was
established of inflammation induced by macrophages.
Macrophages of varying phenotypes (M0, non-polarized;
M1, classically activated/pro-inflammatory; or M2, alterna-
tively activated/anti-inflammatory) were co-cultured with
TFs for one day using a transwell co-culture system that al-
lows for the exchange of soluble factors between the two
cell types without direct cell-cell contact (Additional file 1:
Figure S1B). After 24 hours of macrophage priming, the
priming medium was replaced with fresh RPMI complete
medium and TFs were seeded in the inserts of the transwell
plates (2.6 × 104 cells/cm2). Control groups consisted of
TFs alone, M0 macrophages alone, M1 macrophages alone,
and M2 macrophages alone (Additional file 1: Figure S1B).

The effect of ASCs on IL1-β-induced inflammation
To determine whether ASCs could modulate the effects
of IL-1β on TFs, ASCs were co-cultured with TFs using
transwell plates. Some studies indicate that MSCs may
not constitutively express immunomodulatory factors;
these studies suggest that IFNγ (typically produced by T
lymphocytes) may act as an initiating stimulus for MSC
immunosuppressive activity [23,33,34]. Thus, ASCs were
pre-treated for 48 hours with 50 ng/ml IFNγ (R&D Sys-
tems) (activated) or left untreated (naïve). ASCs and TFs
were co-cultured at a 1:1 cell density ratio (2.6 × 104

cells/cm2) using six-well transwell plates (Costar, 0.4 μm
pore size, Fisher Scientific, Pittsburgh, PA, USA). TFs
were plated in the wells and ASCs were plated in the in-
serts. The cells were allowed 24 hours to attach before
treatment with 10 ng/ml IL-1β (R&D Systems) on day 0.
ASCs and TFs were co-cultured for one day. Experi-
ments were run using 1% FBS as described previously.
The experimental and control groups examined were:
(1) TFs cultured alone (TT), (2) TFs treated with IL-1β
(TT+), (3) TFs co-cultured with naïve ASCs (TA), (4)
TFs co-cultured with naïve ASCs and treated with IL-1β
(TA+), (5) TFs co-cultured with activated ASCs (TAa),
and (6) TFs co-cultured with activated ASCs and treated
with IL-1β (TAa+) (Additional file 1: Figure S1A). TFs were
added to the inserts of groups 1 and 2 to maintain equal
cell numbers in all groups (Additional file 1: Figure S1A).

The effect of ASCs on macrophage-induced inflammation
To determine whether ASCs could modulate the effects
of M0 or M1 macrophages on TFs, ASCs were incorpo-
rated into the system. After 24 hours of macrophage
priming, the priming medium was replaced with fresh
RPMI complete medium. ASCs were seeded directly on
top of the pre-existing macrophages (1.2 × 104 cells/
cm2) and TFs were seeded in the inserts of the transwell
plates (2.6 × 104 cells/cm2) (Additional file 1: Figure
S1B). Macrophages, ASCs, and TFs were tri-cultured for
24 hours (one day timepoint). To examine longer term
effects of ASCs on the macrophages, a separate group
was analyzed in which ASCs and macrophages were co-
cultured for an additional four days before TFs were added
to the culture for the final day (five day timepoint).

Outcome measures
To determine the effects of inflammation on TFs and to
examine the potential anti-inflammatory effects of ASCs,
cell viability and changes in gene expression, protein ex-
pression, and surface marker expression were assessed.
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Cell viability
To assess the viability of the TFs after IL-1β exposure,
TFs were treated with 10 ng/ml of IL-1β or left un-
treated. One and three days after IL-1β treatment, the
supernatant was removed and the cells were stained with
a Live/Dead Viability/Cytotoxicity kit according to the
manufacturer’s protocol (Invitrogen, Carlsbad, CA,
USA). Cells were imaged using a fluorescent microscope
and the percentage of live cells was calculated using
ImageJ. Three regions of interest (4x objective) were im-
aged and their averages were calculated. The sampling
method was validated prior to performing the analysis
(there was less than 10% difference when comparing re-
sults from the entire well to results from three randomly
selected regions of interest).

Gene expression of TFs and macrophages
To assess changes in gene expression of TFs under the
various culture conditions, total RNA was isolated from
the TFs (RNEasy Minikit, Qiagen, Valencia, CA, USA)
on days 1 and 5. A total of 500 ng RNA was reverse
transcribed to cDNA, using the Superscript VILO cDNA
synthesis kit (Invitrogen Corporation). qRT-PCR was
performed using SYBR Green chemistry on a StepOne-
Plus Real-Time PCR System (Applied Biosystems, Waltham,
MA, USA) to measure the gene expression levels of factors
related to inflammation (IL-1β, TNFα, COX2), matrix
degradation (matrix metaloproteinases MMP1a, 3, 13),
matrix production (collagens COL1 and COL3, collagen
fibrillogenesis regulators BGN and DCN), and TF differ-
entiation (transcription factor SCX, TF marker TNMD).
All primers were purchased from Qiagen (Additional file
1: Table S1). The data were analyzed using the delta delta
Ct method, in which the data were normalized to the
housekeeping gene (GAPDH) and then to the control
group (that is, untreated TFs). To determine the effect of
the different macrophage phenotypes on TF gene expres-
sion, delta Ct values were compared using an ANOVA,
followed by a Fisher’s post-hoc test. To determine whether
ASC co-culture had a significant effect on macrophage-
induced gene expression by TFs, delta CT values were
compared using a paired Student’s t-test.
To assess changes in gene expression of macrophages

under the various culture conditions, total RNA was iso-
lated from the TFs (RNEasy Minikit, Qiagen) on day 1.
A total of 500 ng RNA was reverse transcribed to cDNA,
using the Superscript VILO cDNA synthesis kit (Invitro-
gen). qRT-PCR was performed using TaqMan chemistry
on a Fluidigm Biomark HD to measure the gene expres-
sion levels of macrophage-related factors (IL-1β, IL-10,
IL-12, IL-23, IL-1ra, TNF-α, Cxcl9, Ccl22, Arg1, MMP9,
and TGFβ-1; primers are detailed in Additional file 1:
Table S2). The data were analyzed as described above
for TFs.
Protein expression
To further examine the effects of inflammation and
ASCs on TFs, the medium was collected on days 1 and
5 and the samples were stored at −80°C until analysis.
The levels of IL-1β, TNFα, NO and PGE2 were assessed
using commercially available kits, as described in the
‘Characterization of macrophage phenotype’ section
above. Statistical differences were assessed using a two-
way ANOVA (for macrophage type and presence of
ASCs) followed by a Fisher’s post-hoc test.

Flow cytometry
The macrophage populations were further analyzed
using flow cytometry to determine whether co-culture
with ASCs led to a phenotypic switch in the macrophage
population. Surface markers for all bone marrow-derived
macrophages (CD11b+, F480+) and specifically for M2
macrophages (CD206+, CD301+) were assessed as de-
scribed above. Statistical differences were assessed using
a two-way ANOVA (for macrophage type and presence
of ASCs) followed by a Fisher’s post-hoc test.

Statistics
Flow cytometry data are expressed as geometric mean
fluorescent intensity ± standard deviation. All other data
are expressed as mean ± standard deviation, unless
otherwise stated. Statistical differences were assessed
using various ANOVAs (as described in the sections
above), followed by a Fisher’s post-hoc test. Significance
for all statistical analyses was set to P <0.05.

Results
Characterization of ASCs and induction of macrophage
phenotypes
Flow cytometry results demonstrated that ASCs were
positive for the MSC markers CD44 and CD29, and
were negative for the hematopoietic markers CD14 and
CD34 (Additional file 1: Figure S2). Recent data also
verified the pluripotent capacity of these cells and their
ability to regenerate and form colonies [32].
Flow cytometry revealed that all macrophages expressed

high levels of CD11b and F480 (data not shown), and that
macrophages treated with M2-priming medium also
expressed high levels of CD206 and CD301 compared to
M0 and M1 macrophages (Figure 1A). Geometric mean
fluorescent intensities (MFI) of CD206 and CD301 were
2.6- and 1.5-fold greater, respectively, in the M2 macro-
phages compared to the M0 macrophages. Similarly, the
MFIs of CD206 and CD301 were 5.1- and 1.5-fold greater,
respectively, in the M2 macrophages compared to the M1
macrophages. To further evaluate macrophage pheno-
types, protein expression was examined. M1 macrophages
consistently secreted significantly greater amounts of
inflammation-related proteins compared to M0 and M2
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Figure 1 M0, M1, and M2 macrophage phenotypes were induced for the in vitro inflammation culture model. (A) Macrophage phenotypes were
verified by examining expression of surface markers and expression of proteins one day after M1-priming, M2-priming, or no treatment (M0).
Geometric mean fluorescent intensities of the M2 markers CD206 and CD301 were significantly increased in the M2 group compared to the M0
and M1 groups. (B) M1 macrophages expressed significantly higher levels of pro-inflammatory factors, IL-1β, TNFα, PGE2, and NO. There was a
significant effect of macrophage type for all proteins. (C) Protein expression was determined by measuring the levels in the medium (that is,
representing the cumulative expression from all cell types in a particular culture). M1 macrophages induced the secretion of inflammatory factors
by TFs. Protein expression of IL-1β, TNFα, PGE2, and NO after one day of co-culture with M0, M1, or M2 macrophages in the presence and absence of
TFs. There was a significant effect of TF for IL-1β, TNFα, and PGE2. Bars indicate significant differences (* P <0.05, N = 4 for flow cytometry, N = 5 for
protein expression). Note that some data are repeated in (B) and (C) to highlight effects of macrophage type and TF, respectively. PGE2, prostaglandin
E2; TF, tendon fibroblasts.
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macrophages (Figure 1B). For example, M1 macrophages
secreted approximately 4.0-, 29-, 29-, and 8.8- fold more
IL-1β, TNFα, PGE2, and NO, respectively, than did M0
macrophages. Similarly, 2.0-, 2.4-, 26-, and 44- fold in-
creases for these proteins, respectively, were seen relative
to M2 macrophages (Figure 1B). When examining gene
expression, M0 macrophages showed high expression of
TGFβ1 compared to M1 and M2 cells; M1 macrophages
showed high expression of IL23, Cxcl9, and Ccl22 com-
pared to M0 and M1 cells; and M2 macrophages showed
high expression of IL1-ra, TNF-α, Arg1, and MMP9 com-
pared to M0 and M1 cells (Additional file 1: Figure S3).
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Macrophages induced up-regulation of pro-inflammatory
and matrix degradation factors by TFs
The effect of macrophages on TFs was determined by
co-culturing TFs with the various macrophage phe-
notypes (Additional file 1: Figure S1). Gene expression
analysis of TFs revealed that all three macrophage phe-
notypes induced up-regulation of pro-inflammatory
factors (TNFα, IL-1β, and COX2) by TFs relative to un-
treated TFs (Table 1). Of the three phenotypes, however,
the M1 macrophages had the largest effect on TFs com-
pared to M0 and M2 macrophages. Co-culture with M1
macrophages led to a 2,800-fold increase in IL-1β by
TFs, whereas co-culture with M0 and M2 macrophages
led to only 21- and 86-fold increases, respectively.
Exposure of TFs to macrophages also led to significant

up-regulation of factors related to matrix degradation
(that is, matrix-metalloproteinases (MMP)). TFs exposed
to M1 macrophages expressed 150-, 110-, and 46-fold
increases in MMP-1a, 3, and 13, respectively, compared
to untreated TFs (Table 1). Similarly, M0 and M2 mac-
rophages also induced significant up-regulation of MMP
expression by the TFs; however, as with IL-1β, the up-
regulation caused by M0 and M2 macrophages com-
pared to control was significantly less than that caused
by M1 macrophages (Table 1).
M1 macrophages also led to down-regulation of fac-

tors related to matrix production and TF differentiation
by TFs. M1 macrophages induced down-regulation of
collagens (COL1, COL3) and biglycan (BGN) and up-
regulation of decorin (DCN) (Table 1). M1 macrophages
caused a 3.4- and 2.8-fold decrease in COL1 and COL3,
respectively, by TFs and a 4.3-fold up-regulation of DCN
Table 1 Macrophages induced up-regulation of pro-inflamma
of matrix production- and tendon differentiation-related fact

Day 1 M0 M1

Mean P Value Mean

TNF 20 ± 7.8 0.000 102 ± 86.

IL-1β 21 ± 12.3 0.001 2791 ± 17

COX2 1.3 ± 0.8 0.942 4.9 ± 4.0

MMP1a 3.0 ± 1.3 0.008 150 ± 90.

MMP3 6.3 ± 6.0 0.179 111 ± 58.

MMP13 1.8 ± 1.1 0.044 46 ± 12.0

DCN −1.3 ± 0.1 0.019 4.3 ± 2.7

BGN −1.4 ± 0.1 0.002 −1.7 ± 0.1

COL1 −1.7 ± 0.1 0.001 −3.4 ± 0.0

COL3 −1.3 ± 0.2 0.082 −2.8 ± 0.1

SCX 1.2 ± 0.5 0.660 −1.3 ± 0.3

TNMD 1.0 ± 0.5 0.796 −2.9 ± 0.2

mRNA expression of TFs after one day of co-culture with macrophages (M0, M1, M2
the three macrophage phenotypes, M1 macrophages had a significantly greater eff
macrophage type for all factors (indicated by bold font; N = 5). BGN, biglycan; COL,
metalloproteinase; SCX, scleraxis; TFs, tendon fibroblasts; TNF, tumor necrosis factor
(indicative of decreased collagen fibrillogenesis). M1
macrophages also had a significant effect on the tendon-
specific gene, TNMD (2.9-fold decrease) (Table 1). M0
and M2 macrophages had little effect on the expression
of matrix production- and TF differentiation-related
genes by the TFs, except in the case of COL1. M0 and
M2 macrophages caused 1.7- and 1.9-fold decreases in
COL1 expression by co-cultured TFs (Table 1).
When examining gene expression of macrophages,

TFs caused an upregulation of: IL-1β in M0 and M2
cells, IL-10 in M0 cells, IL-12 in M0 cells, IL-23 in M0
cells, Ccl22 in M0 and M1 cells, and Arg1 in M0 cells
(Additional file 1: Figure S3). TFs caused a downregula-
tion of: IL-1ra in M0 and M2 cells, TNF-α in M0 and
M2 cells, Cxcl in M2 cells, MMP9 in M0 cells, and
TGFβ-1 in M0 cells (Additional file 1: Figure S3).
At the protein level, co-cultures of M1 macrophages

with TFs led to higher levels of IL-1β and PGE2 protein
secretion compared to M1 macrophages alone (2.9- and
1.8-fold, respectively) (Figure 1C). Since TFs do not se-
crete IL-1β and PGE2 under normal culture conditions,
this result indicates that the presence of M1 macrophages
induced TFs to secrete some pro-inflammatory factors or
that TFs secreted factors that increased cytokine produc-
tion by macrophages. In contrast, co-cultures of M1 mac-
rophages with TFs led to lower levels of the cytokine
TNFα and had no effect on NO production (Figure 1C).

IL-1β induced expression of inflammation and matrix
degradation genes by TFs
In order to examine the isolated effect of a single inflam-
matory cytokine, known to play a role in tendon-related
tory and matrix degradation factors and down-regulation
ors by TFs

M2

P Value Mean P Value

3 0.001 49 ± 31.3 0.000

65.2 0.000 86 ± 117.9 0.002

0.032 1.1 ± 0.6 0.915

5 0.000 5.5 ± 5.3 0.011

8 0.000 5.1 ± 3.8 0.054

0.000 2.0 ± 0.8 0.027

0.006 −1.0 ± 0.3 0.689

0.001 −1.4 ± 0.1 0.004

0.000 −1.9 ± 0.1 0.001

0.000 −1.6 ± 0.1 0.002

0.122 −1.2 ± 0.3 0.201

0.003 −1.4 ± 0.3 0.124

) are represented as fold changes compared to untreated TFs (mean ± SD). Of
ect on TF gene expression than M0 or M2. There was a significant effect of
collagen; COX, cyclooxygenase; DCN, decorin; IL-1β, interleukin-1β; MMP, matrix
; TNMD, tenomodulin.



Manning et al. Stem Cell Research & Therapy  (2015) 6:74 Page 7 of 14
inflammation, TFs were exposed to IL-1β in vitro. TFs
responded to IL-1β by up-regulating inflammatory (IL-1β,
TNFα, and COX2) and matrix degradation (MMP1,
MMP3, and MMP13) genes in a dose dependent manner
(Figure 2A) at one and three days of culture. IL-1β also
led to a decrease in the expression of extracellular matrix
genes by TFs (Additional file 1: Figure S4). At the protein
level, TFs cultured in the absence of IL-1β did not secrete
detectable levels of IL-1β or MMP3 (Figure 2B). However,
10 ng/ml of IL-1β induced the production of MMP-3 by
TFs in a time-dependent manner (Figure 2B). Similar
trends were observed for IL-1β. There were no time-
dependent increases in IL-1β levels, however, suggesting
that increased IL-1β on the first day was due to the ex-
ogenous addition of IL-1β rather than production of the
cytokine by TFs. TNFα remained undetectable in cultures
with and without IL-1β (data not shown). Cell viability
Figure 2 IL-1β induced the production of inflammation-related factors by
TFs occurs in a dose- and time-dependent manner. Gene expression for ea
ANOVA, N = 4, except for IL-1β on day 1, N = 3). (B) IL-1β (10 ng/ml) induce
* P <0.05, ANOVA, significant effect of IL-1β treatment and time, N = 4). (C) IL-
significant effect of IL-1β treatment, N = 3). ANOVA, analysis of variance; MMP
was significantly reduced due to IL-1β (Figure 1C). On
days one and three, respectively, 96% and 99% percent of
TFs remained viable in the control cultures whereas only
14% and 22%, respectively, were viable in the IL-1β-
treated cultures.

ASCs suppressed the negative effects of macrophages on TFs
but did not directly modulate the response of TFs to IL-1β
There was a dramatic upregulation of inflammation-
related genes by TFs when they were exposed to IL-1β.
TFs co-cultured with naïve ASCs did not change their
gene expression or protein production levels (Figure 3,
Additional file 1: Figure S5). Co-culture with activated
ASCs led to a 3.1-, 1.8-, and 1.4-fold down-regulation of
TNFα, IL-1β, and MMP1 mRNA, respectively, on day 1;
however, these reductions were not statistically significant.
Thus, neither naïve ASCs nor activated ASCs modulated
TFs. (A) IL-1β-induced up-regulation of inflammation-related genes by
ch dosage is normalized to control (0 ng/ml) (* P <0.05, multi-factor
d MMP3 and IL-1β protein expression by TF (und = undetected,
1β (10 ng/ml) led to decreased TF viability (* P <0.05, two-way ANOVA,
3, matrix metalloproteinase 3; TF, tendon fibroblasts.



Figure 3 ASCs did not suppress the negative effects of IL-1β on TFs. (A) ASCs failed to suppress the IL-1β-induced effects on TF gene expression.
TFs were cultured alone (TT), co-cultured with naïve ASCs (TA), or co-cultured with activated ASCs (TAa; activated with IFNγ), with or without
IL-1β for one day (inclusion of IL-1β indicated with ‘+’). Data were normalized to the housekeeping gene GAPDH (* P <0.05, † P <0.10, based on
a multi-factor ANOVA with Fisher’s post-hoc tests there was a significant effect of IL-1β but no effect of ASCs, N = 4). (B) ASCs failed to reduce
IL-1β protein levels in the medium after one, two, and three days of co-culture (based on a multi-factor ANOVA and Fisher’s post hoc tests there
was a significant effect of time but no effect of ASCs, N = 4). (TT: TFs cultured alone, TT+: TFs treated with IL-1β, TA: TFs co-cultured with naïve
ASCs, TA+: TFs co-cultured with naïve ASCs and treated with IL-1β, TAa: TFs co-cultured with activated ASCs, TAa+: TFs co-cultured with activated
ASCs and treated with IL-1β). ANOVA, analysis of variance; ASCs, adipose-derived mesenchymal stromal cells; TFs, tendon fibroblasts.
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TF responses to IL-1β (Figure 3). Furthermore, there
were no apparent effects of ASCs on TF gene expression
under standard culture conditions without IL-1β (Figure 3,
Additional file 1: Figure S5).
The response of TFs to M1 macrophage, however, was
modulated by ASCs. The addition of ASCs to the M1
macrophage-TF co-culture significantly altered TF gene
expression compared to M1 macrophage-TF co-culture
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(Table 2, Additional file 1: Figure S6). TNFα gene expres-
sion by TFs was down-regulated 1.7- and 1.9-fold after
one and five days of ASC co-culture, respectively. While
changes failed to reach statistical significance at the gene
expression level for the five day timepoint, significant
reductions were observed at the protein level (Figure 4).
IL-1β gene and protein expression were not affected
after a single day of co-culture (Table 2, Additional file
1: Figure S6). Five days of ASC co-culture with M1 mac-
rophages, however, led to a 1.8-fold down-regulation of
Table 2 ASCs suppressed the effects of M1 and M0
macrophages on TF secretion of pro-inflammatory factors

Day 1 M0 versus M0 + ASCs M1 versus M1 + ASCs

Mean P Value Mean P Value

TNF 1.8 ± 1.6 0.620 −1.7 ± 0.3 0.060

IL-1b 3.4 ± 3.4 0.340 1.0 ± 0.6 0.510

COX2 −1.2 ± 0.2 0.230 −1.1 ± 0.3 0.440

MMP1a −1.9 ± 0.2 0.020 −1.9 ± 0.3 0.060

MMP3 −1.9 ± 0.2 0.010 −1.1 ± 0.2 0.350

MMP13 −1.3 ± 0.6 0.220 −1.5 ± 0.3 0.150

COL1 1.3 ± 0.3 0.030 1.1 ± 0.3 0.660

COL3 1.3 ± 0.5 0.280 −1.1 ± 0.2 0.440

BGN 1.1 ± 0.1 0.250 −1.1 ± 0.3 0.520

DCN 1.2 ± 0.4 0.440 −1.2 ± 0.3 0.240

SCX −1.8 ± 0.1 <0.001 −1.1 ± 0.1 0.100

TNMD −1.5 ± 0.2 0.030 1.0 ± 0.1 0.580

Day 5 M0 versus M0 + ASCs M1 versus M1 + ASCs

Mean P Value Mean P Value

TNF 2.7 ± 1.9 0.160 −1.9 ± 0.3 0.140

IL-1b 3.7 ± 3.3 0.180 −1.8 ± 0.6 0.280

COX2 −1.0 ± 0.1 0.760 −10 ± 0.0 <0.001

MMP1a −1.5 ± 0.3 0.240 −7.7 ± 0.1 0.060

MMP3 1.5 ± 0.2 0.050 −4.6 ± 0.2 0.050

MMP13 1.9 ± 0.4 0.040 5.0 ± 6.6 0.490

COL1 1.0 ± 0.1 0.940 1.8 ± 0.1 <0.001

COL3 1.4 ± 0.3 0.290 2.0 ± 0.8 0.140

BGN 1.3 ± 0.3 0.390 −1.2 ± 0.2 0.300

DCN 1.2 ± 0.1 0.280 1.0 ± 1.1 0.770

SCX 1.2 ± 0.1 0.150 −1.8 ± 0.1 0.030

TNMD 1.4 ± 0.1 0.100 1.2 ± 0.3 0.430

ASCs had the greatest effect on M1 macrophages on day 5. Gene expression
of inflammation-, degradation-, matrix production-, and tendon differentiation-
related factors after one day (top) and five days (bottom) of co-culture with
macrophages (M0, M1) or tri-culture with macrophages and ASCs (M0 + ASC,
M1 + ASC). Data from each group were normalized first to untreated TFs and
then to their paired control (that is, (M0 + ASC)/M0, (M1 + ASC)/M1). Data are
presented as mean ± SD; N = 5 for day 1, N = 2 to 3 for day 5. This data is
presented graphically in the supplemental document, Additional file 1:
Figure S6. ASCs, adipose-derived mesenchymal stromal cells; biglycan; COL,
collagen; COX, cyclooxygenase; DCN, decorin; IL-1β, interleukin-1β; MMP,
matrix metalloproteinase; SCX, scleraxis; TFs, tendon fibroblasts; TNF, tumor
necrosis factor; TNMD, tenomodulin.
the IL-1β gene by TFs, although this change was not sta-
tistically significant. A corresponding significant two-
fold reduction in IL-1β was seen at the protein level
(Figure 4). COX2 was unaffected after one day of co-
culture, but a significant 10-fold down-regulation was
observed after five days of co-culture (Table 2, Additional
file 1: Figures S6). No significant effect was seen at the
protein level, however (data not shown).
MMP gene expression by TFs in the presence of M1

macrophages was also suppressed by addition of ASCs.
MMP1a expression by TFs was down-regulated 1.9- and
7.7-fold after one and five days of culture with ASC, re-
spectively (Table 2, Additional file 1: Figure S6). MMP3
expression was unaffected after a single day of culture
with ASCs; however, five days of culture with ASCs led
to a significant 4.6-fold down-regulation. No effects on
MMP13 expression were observed at either timepoint
with the addition of ASCs (Table 2, Additional file 1:
Figure S6).
Extracellular matrix (ECM)-related gene expression for

COL1 and COL3 by TFs in the presence of M1 macro-
phages was unaffected after one day of culture with
ASCs, but was up-regulated 1.8- and 2.0-fold, respec-
tively, towards baseline after five days of culture with
ASCs (Table 2, Additional file 1: Figure S6). However,
this change failed to reach statistical significance for
COL3. No effects on TF differentiation genes (that is,
SCX, TNMD) was seen at the one day timepoint, but
SCX was down-regulated 1.8-fold on day 5 with the
addition of ASCs (Table 2, Additional file 1: Figure S6).
ASCs blunted some of the effects of macrophages on

TF gene expression. Addition of ASCs to the TF/macro-
phage co-culture led to decreased expression of matrix
degradation genes (MMP1a, MMP3) and increased ex-
pression of matrix- and tendon differentiation-related
genes (that is, COL1, SCX, TNMD) on day 1, but failed
to suppress the inflammation-related genes (that is,
TNFα, IL-1β) (Table 2, Additional file 1: Figure S6). Lon-
ger duration of ASC co-culture (that is, five days) was
unsuccessful in further suppressing these effects (Table 2,
Additional file 1: Figure S6). Similarly, no differences
were observed at the protein level (Figure 4).

ASCs promoted an M2 macrophage phenotype
To examine a potential mechanism by which ASCs co-
culture suppressed the negative effects of M1 and M0
macrophages on TFs, the phenotype of the co-cultured
macrophages was determined using flow cytometry.
CD11b and F480 are expressed by all bone marrow-
derived macrophages [35]. In contrast, CD206 and CD301
are cell surface markers specific to M2 macrophages [36].
The addition of ASCs to M0 macrophage-TF cultures for
a single day led to a two-fold increase in CD301 expres-
sion, surpassing the levels of M2 macrophage controls;



Figure 4 Protein expression of inflammatory factors (A) TNFα and (B) IL-1β was determined after one or five days for TFs cultured with macrophages
with and without ASCs. ASCs suppressed the effects of M1 macrophages on the secretion of pro-inflammatory factors after five days of co-culture.
There was a significant effect of macrophage type for both factors at both timepoints, and a significant effect of ASCs on day 5 for both factors
(* P <0.05; N = 5 to 6 for day 1, N = 4 for day 5). ASCs, adipose-derived mesenchymal stromal cells; TFs, tendon fibroblasts.
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however, no shift in CD206 expression was observed
(Figure 5). No apparent phenotypic changes were evident
with addition of ASCs after a single day (Figure 5). In-
creasing the ASC co-culture period to five days, however,
led to significant phenotypic changes in both M0 and M1
macrophages. The addition of ASCs to M0 macrophage-
TF cultures for five days led to significantly greater levels
of both CD206 and CD301 compared to M0 macrophage
controls (1.3- and 4.1-fold, respectively) (Figure 5). Simi-
larly, the addition of ASCs to M1 macrophage-TF cultures
for five days led to a significant 2-fold increase in the ex-
pression of CD206 compared to M1 macrophage controls
(Figure 5).

Discussion
Tendon injuries induce a local inflammatory response
characterized by infiltration of macrophages, release of
pro-inflammatory cytokines, and increased matrix deg-
radation [17,18,37]. Animal models have suggested that
M1 macrophages contribute to the poor healing re-
sponse of tendon to bone and that suppression of M1
macrophages can be advantageous for tendon healing
[11,13,14]. In vitro evidence also supported the idea that
poor healing was due in part to the harmful effects of
pro-inflammatory factors such as IL-1β and TNFα se-
creted by M1 macrophages [19-22]. In support of these
prior studies, findings from the current in vitro study
demonstrate the detrimental effects of IL-1β and M1
macrophages on TFs. Furthermore, we show that ASCs
can modulate the negative effects of M1 macrophages
on TFs, revealing a new potential therapeutic option for
the treatment of tendon injuries.
It is widely accepted that MSCs have anti-inflammatory

and immunosuppressive capabilities [23,24,29,31,33,34,38-42].
The mechanism(s) by which MSCs regulate the inflammatory
environment, however, remain unclear. Possibilities
include: (1) MSC secretion of factors that modulate
macrophage activity (for example, promoting changes in
macrophage differentiation or cytokine expression pat-
terns), (2) MSC secretion of factors that modulate TF
activity (for example, leading to reduced sensitivity to
cytokines such as IL-1β), or (3) MSC inactivation of cir-
culating pro-inflammatory factors directly (for example,
by releasing factors that degrade or sequester circulating
pro-inflammatory cytokines). The results of the current
study support the premise that MSCs can modulate
macrophage activity, specifically prompting a phenotypic
switch towards the M2 phenotype. In contrast, MSCs did
not have a demonstrable effect on IL-1β-induced inflam-
mation, implying that they neither modulate TF responses
to inflammation nor do they inactivate circulating IL-1β
(albeit, the current study examined TF-ASCs cultured in a
transwell system, and did not examine TF-ASCs cultured
in direct contact). Other reports have also suggested that
MSCs modulate activity of inflammatory cells (and their
production of inflammatory factors) via MSC-secreted
cytokines [29,31]. Bone marrow-derived MSCs have
been shown to drive monocyte differentiation toward an
anti-inflammatory M2 phenotype instead of the classical
pro-inflammatory M1 phenotype [29-31,43-45]. In vitro,



Figure 5 The addition of ASCs to macrophage-TF cultures led to a shift in macrophage phenotype toward M2. Mean fluorescent intensity of M2
macrophage-specific surface markers (A) CD206 and (B) CD301 is shown after one or five days of culture. Macrophages (M0, M1, or M2) were
either co-cultured with TFs for one day or tri-cultured with TFs and ASCs for one or five days (note that TFs were only added for the last 24 hours).
There was a significant effect of macrophage type for CD206 and CD301, a significant effect of ASCs for CD301 on day 1 and day 5, and a significant
effect of ASCs for CD206 on day 5 (* P <0.05, † P <0.10; */† by the x-axis labels signifies a significant difference compared to M2 macrophages cultured
alone; N = 5). ASCs, adipose-derived mesenchymal stromal cells; TFs, tendon fibroblasts.
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non-polarized macrophages (M0s) co-cultured with
MSCs consistently expressed high levels of CD206 (an
M2 marker) and IL-10 (an anti-inflammatory factor)
and low levels of IL-12 and TNFα (pro-inflammatory
factors), indicating an MSC-mediated shift in macrophage
phenotype from M0 to M2 [29]. This phenomenon has
also been observed in vivo in a spinal cord injury
model [30].
The ability of ASCs to prompt M0 macrophages to-

ward an M2 phenotype is particularly attractive from the
therapeutic perspective, as the vast majority of macro-
phages at the site of wound repair are recruited from the
bone-marrow as undifferentiated monocytes. Thus, early
treatment with ASCs could potentially promote differen-
tiation of the infiltrating monocytes towards the anti-
inflammatory M2 macrophage lineage as opposed to the
pro-inflammatory M1 macrophage lineage. While ASCs
appeared to have a more limited ability to alter M1
macrophage phenotype, the gene expression data in the
current study suggests that ASCs were capable of sup-
pressing the negative effects caused by M1 macrophages
on TFs. Thus, even if treatment was delayed until after
monocytes differentiated into M1 macrophages, ASCs
may still be effective in modulating the inflammatory en-
vironment and making it more conducive to regenera-
tive tendon healing.
The results of the current study are in agreement with

those of other investigators. Kim et al. revealed an in-
crease in CD206 expression by non-polarized macro-
phages (that is, M0 macrophages) after four to five days
of direct or indirect co-culture with bone marrow-
derived MSCs [29]. The authors also identified altered
intracellular cytokine staining after MSC co-culture via
flow cytometry [29]. Similarly, in the current study
CD206 expression was increased in M0 macrophages
after five days of direct ASC co-culture and a significant
decrease in TNFα secreted into the medium was ob-
served after five days of MSC co-culture with M0 mac-
rophages. We also examined a second M2-specific
surface marker, CD301, which was not investigated by
Kim et al. Expression of CD301 was increased in M0
macrophages after five days of ASC co-culture to levels
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that surpassed those of M2 macrophage controls. Fi-
nally, although ASC co-culture successfully suppressed
some of the negative effects of M1 macrophages on TF
gene expression in the current study, ASC co-culture
was not as successful in altering the phenotype of M1
macrophages. In other words, once macrophages were
fully differentiated into an M1 phenotype, they remained
in that state.
In the current study, exposure of TFs to IL-1β was

detrimental to TFs. IL-1β exposure resulted in a decline
in TF viability, up-regulation of genes related to inflam-
mation and matrix degradation, and down-regulation of
factors related to tendon ECM and differentiation.
These results are consistent with those of previous stud-
ies reporting harmful effects of IL-1β and TNFα on TFs
when the cytokine was added directly to the culture
media [19-22]. This approach allowed for a well-
controlled environment where the levels of inflamma-
tory cytokines could be tightly titrated and the hypoth-
esis, related to direct regulation of TFs and/or
circulating cytokines by ASCs, tested. However, it did
not reproduce the complex environment of a healing
tendon, which includes multiple cell types. As macro-
phages are the primary source of IL-1β and TNFα and
this cell type has been identified in various tendinopathy
and tendon healing models [11,13,14,18,46-48], we de-
veloped a more biologically relevant co-culture in vitro
model for the current study. The data revealed that,
among the three macrophage phenotypes examined, M1
macrophages produced the most harmful effects on
TFs. These findings are consistent with increased pro-
duction of cytokines such as IL-1β and with the results
from the IL-1β-induced inflammation cultures. Import-
antly, the use of transwell plates for the exchange of sol-
uble factors between the various cell types, allowed for
the specific evaluation of TF responses. Results are also
consistent with Al-Sadi et al., who showed in a
leukocyte/TF co-culture model that leukocytes upregu-
lated inflammatory cytokine and MMP gene expression
in TFs [22].
Gene expression was only examined in TFs and mac-

rophages. In some experiments, macrophages and ASCs
were co-cultured in contact, so their differential gene ex-
pression could not be separated. Similarly, protein ex-
pression was measured from the medium. As soluble
factors released by any of the three cell types would con-
tribute to this measure, the source of protein expression
could not be isolated. Furthermore, TFs prompted
changes in the expression patterns of various macro-
phage phenotypic markers (Additional file 1: Figure S3).
For example, co-culture with TFs led to increased ex-
pression of IL-1β by M0 and M2 macrophages. This in-
dicates that there is significant crosstalk between the
three cell types studied here, each one likely regulating
the expression of the other two. Further study is needed
to determine the separate effects of TFs on macro-
phages, of TFs on ASCs, of ASCs on macrophages, and
of macrophages on ASCs. Macrophages, for example,
have been shown to modulate the viability and growth
of MSCs, with M2 macrophages supporting growth and
M1 macrophages inhibiting growth [49].
There are limitations to our study. First, it is unclear

whether or not the increases in IL-1β and PGE2 protein
in the co-culture models were due to increased synthesis
and secretion of those factors by the TFs or the presence
of the TFs caused increased synthesis and secretion of
those factors by the M1 macrophages. Based on the ob-
servation that the expression levels for the correspond-
ing genes (IL-1β and COX2) were similarly up-regulated
by TFs, it is likely that the source of the additional IL-1β
and PGE2 protein was at least, in part, produced by TFs.
Second, we did not perform assays for MMP protein ac-
tivity (that is, zymography). Thus, it remains unclear
whether or not the up-regulation of MMP genes resulted
in increased MMP activity. Third, the data from the
ASC co-cultured groups were obtained on day 5,
whereas the data from the control groups (M0, M1, and
M2) were obtained on day 1. Thus, we are unable to say
with certainty that the enhanced effects that were noted
with the increased culture interval were due entirely to
increased time for ASCs to induce phenotypic changes
in the co-cultured macrophages, as there was likely a de-
crease in macrophage numbers at the five day timepoint
(as observed by decreased adhered cells and debris float-
ing in the medium). To better control for this possibility,
the control groups were repeated at longer timepoints.
The macrophages did not survive for five days in mono-
culture, however. While this timing issue is a limitation
of this study, a number of observations support the con-
cept that longer periods of ASC exposure can lead to
M2 phenotypes and, subsequently, to lower levels of
inflammation- and matrix remodeling-related genes and
to higher levels of tendon extracellular matrix produc-
tion. Specifically, (1) CD206 and CD301 levels increased
over time, (2) TNFα and IL1-β protein levels were mark-
edly reduced when comparing TF +M1 to TF +M1 +
ASCs, (3) mRNA expression for genes such as MMP1a
was down-regulated by M0 and M1 cells when cultured
with ASCs, including at day 1, and (4) M2 phenotype
markers were increased when M0 cells were cultured
with ASCs, including at day 1. We did not systematically
test the effect of culture in the top versus bottom cham-
ber or direct versus indirect cell contact. In pilot experi-
ments for this study, and in the TF/TF control group
(Additional file 1: Figure S1, A, top row), there were no
apparent differences between culturing TFs in the top
versus bottom chamber. Macrophages were always cul-
tured in the bottom chamber (Additional file 1: Figure S1,
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B), and ASCs were cultured in the top chambers for the
exogenous IL-1β experiments (Additional file 1: Figure S1,
A) and in the bottom chamber (in contact with macro-
phages) for macrophage experiments (Additional file 1:
Figure S1, B). Testing all possible permutations for vari-
ations in chamber location, cell-cell contact, and other
culture details would quickly result in an unwieldy study
design. We therefore chose the study design in the
current paper with these limitations in mind, and will
pursue effects of uncontrolled variables, such as cell-cell
contact, in future studies.

Conclusions
Overall, this study supports the conclusion that M1
macrophages and the pro-inflammatory cytokine IL-
1β, in particular, are detrimental to TFs, with negative
implications for tendon healing. Moreover, there is
strong evidence to support the notion that ASCs can
prompt pro-inflammatory M1 macrophages towards
anti-inflammatory M2 macrophages. Furthermore, if
ASC treatment is performed prior to monocyte differ-
entiation into M1 macrophages, ASCs may be able to
further modulate the inflammatory environment by
pushing the undifferentiated (M0) macrophages to-
wards an M2 phenotype. Our results suggest that ASCs
may be able to suppress the negative effects of M1
macrophages, even if the treatment is delayed until
after monocytes have differentiated into M1 macro-
phages. As with any in vitro study, the results pre-
sented here must be validated using in vivo models.
Future studies will determine if ASCs delivered at the
time of tendon repair can enhance tendon healing via
modulation of the early inflammatory phase of healing.
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