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In viviparous mammals, genomic imprinting regulates parent-of-origin-specific monoallelic
expression of paternally and maternally expressed imprinted genes (PEGs and MEGs) in a
region-specific manner. It plays an essential role in mammalian development: aberrant
imprinting regulation causes a variety of developmental defects, including fetal, neonatal,
and postnatal lethality as well as growth abnormalities. Mechanistically, PEGs and MEGs are
reciprocally regulated by DNA methylation of germ-line differentially methylated regions
(gDMRs), thereby exhibiting eliciting complementary expression from parental genomes.
The fact that most gDMR sequences are derived from insertion events provides strong
support for the claim that genomic imprinting emerged as a host defense mechanism against
the insertion in the genome. Recent studies on themolecularmechanisms concerning how the
DNAmethylation marks on the gDMRs are established in gametes and maintained in the pre-
and postimplantation periods have further revealed the close relationship between genomic
imprinting and invading DNA, such as retroviruses and LTR retrotransposons. In the presence
of gDMRs, the monoallelic expression of PEGs andMEGs confers an apparent advantage by
the functional compensation that takes place between the two parental genomes. Thus, it is
likely that genomic imprinting is a consequence of an evolutionary trade-off for improved
survival. In addition, novel genes were introduced into the mammalian genome via this same
surprising and complex process as imprinted genes, such as the genes acquired from
retroviruses aswell as those that were duplicated by retropositioning. Importantly, these genes
play essential/important roles in the current eutherian developmental system, such as that in
the placenta and/or brain. Thus, genomic imprinting has played a critically important role in the
evolutionary emergence of mammals, not only by providing a means to escape from the
adverse effects of invading DNAwith sequences corresponding to the gDMRs, but also by the
acquisition of novel functions in development, growth and behavior via the mechanism of
complementary monoallelic expression.
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INTRODUCTION

Genomic imprinting is widely distributed in the viviparous
mammals, the therians, comprising marsupials and eutherians
(Reik and Walter 2001; Renfree et al., 2009; Barlow and
Bartolomei 2014), yet it is an unusual biological mechanism in
that it seems to runs counter to two main pillars of modern biology:
it is an apparent exception to the rule of Mendelian genetics that
presupposes biallelic expression from two parental alleles, and it is
inconsistent with the Darwinian theory of evolution at first glance
due to the apparent disadvantage (Mann and Lovell-Badge, 1984;
McGrath and Solter 1984; Surani et al., 1984; Cattanach and Kirk
1985) of the monoallelic expression of certain essential/important
genes in development. The evolutionary advantage it nevertheless
confers as the result of a partial, functional haploidy despite such
defects has long been debated. Perhaps the most widely accepted
account is the conflict/kinship hypothesis (Moore and Haig, 1991;
Wilkins and Haig 2003; Haig 2004), which proposes that genomic
imprinting arose as a consequence of a conflict of interest between
maternally and paternally derived genomes, driven by a need for
prenatal resource control: PEGs promote embryonic growth while
MEGs repress it. Substantial numbers of imprinted genes fit this
hypothetical scenario, so it has become generally accepted and its
topic covered by many reviews (Reik and Walter, 2001; Edwards
et al., 2019; Hanna and Kelsey 2021). In this review, we first
introduce the unique nature of genomic imprinting regulated by
gDMRs, then, revisit another host defense hypothesis that proposes
that genomic imprinting arose as a consequence of the DNA
methylation machinery as a defense against repetitive/foreign
elements (Barlow 1993). We do this from the viewpoint of the
origin of gDMRs (Suzuki et al., 2011; Renfree et al., 2013; Kaneko-
Ishino and Ishino 2015, 2019) and the current knowledge on the
molecular mechanisms underlying the establishment of the gDMRs
in germ cells (Chotalia et al., 2009; Veselovska et al., 2015; Hanna
and Kelsey 2021) as well as their protection from a global DNA
demethylation wave that occurs in preimplantation embryos (Li
et al., 2008; Smallwood et al., 2011; Kobayashi et al., 2012; Takahashi
et al., 2019). Finally, we reexamine the advantage conferred by
complementary monoallelic expression (Kaneko-Ishino et al., 2003,
2006), such as functional compensation (Renfree et al., 2013;
Kaneko-Ishino and Ishino 2015, 2019) and the innovation of
genomic function (Kaneko-Ishino and Ishino, 2012). Recently,
non-canonical genomic imprinting regulated by histone 3 lysine
27 trimethylation (H3K27me3) has been reported in the placenta in
a lineage-specific manner (Okae et al., 2014; Inoue et al., 2017a,
2017b, 2018; Hanna et al., 2019; Inoue et al., 2020; Hanna andKelsey
2021), but we shall mainly focus on the canonical genomic
imprinting regulated by gDMRs that is commonly conserved in
therian and eutherian mammals.

UNIQUENESS OF MAMMALIAN GENOMIC
IMPRINTING AMONG VERTEBRATES

Pronuclear transplantation experiments demonstrated that
both parthenogenetic and androgenetic embryos which
exclusively possess maternally and paternally-derived

genomes, respectively, cannot develop to term, and exhibit
early embryonic lethality: the former exhibited severe
placental defects, while the latter had severe embryonic
growth retardation (Mann and Lovell-Badge, 1984;
McGrath and Solter 1984; Surani et al., 1984). The
complete absence of parthenogenesis is a unique feature of
viviparous mammals because parthenogenesis is often
observed both naturally and experimentally in vertebrates
such as birds, reptiles, amphibians, and fish (Ramachandran
and McDaniel 2018; Fujita et al., 2020). The differences
between the paternally and maternally-derived genome
have also been shown by genetic experiments using mice
with partial paternal or maternal uniparental disomy
(Cattanach and Kirk, 1985; Cattanach and Beechey, 1990;
Beechey and Evans, 2004). The offspring exhibit lethality at
various stages in pre- and postnatal development as well as
growth and behavioral abnormalities, leading to the concept
of chromosomal imprinted regions. Such genomic imprinting
is well accounted for by the presence of paternally and
maternally expressed imprinted genes (PEGs and MEGs).
The early embryonic lethality of the parthenogenetic and
androgenetic embryos is due to a complete lack of expression
of PEGs andMEGs, respectively. The abnormal phenotypes in
the partial uniparental disomy mice are due to the irregular
expression of certain PEGs and MEGs in the imprinted
regions in question. From these results, it is clear that
several different PEGs and MEGs play essential/important
roles in the current developmental system in the therian
mammals, so even their monoallelic expression is
advantageous compared with a complete absence of
expression, leading to their widespread conservation.

FIGURE 1 | The reciprocal ON-OFF switch of PEG and MEG. In
imprinted regions, PEG and MEG cannot be co-expressed in cis. In the
insulator model, they are reciprocally regulated by the DNA methylation status
of the gDMR including the insulator sequence. An insulator binding
protein, such as CTCF, interrupts the downstream enhancer activity, leading
to a repression of Genes A and B without any effect on Gene C. In contrast,
DNA methylation on the insulator sequence inhibits the binding of the CTCF
protein, leading to the induction of the Genes A and B concurrently with
repression of the Gene C via DNA methylation on its promoter contiguous to
the insulator sequence. The blue and red boxesindicate paternally and
maternally active alleles, respectively, while the gray boxes indicate repressed
alleles. Then, the blue and red arrows indicate PEG and MEG expression,
respectively. The white and black circles indicate non-methylated and
methylated CpGs, repressively. This is an updated version of Figure 2 in the
previous review (Kaneko-Ishino and Ishino 2019).
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THE INTRINSIC NATURE OF RECIPROCAL
EXPRESSION BY PEGS AND MEGS

PEG and MEG cannot be co-expressed in the cis configuration
because their expression is under the control of the gDMRs,
which are also referred to as imprinting control centers (ICRs),
that contain cis-regulatory elements (Figure 1). This is a
critical part of the intrinsic character of the imprinted
regions. In most of the canonical imprinted regions, such
cis-regulatory elements have long-range effects on the
expression of neighboring genes, thus regulating a number
of PEGs and MEGs. In the insulator model, the insulator
sequences are utilized so the cis-regulatory elements are
able to inhibit downstream enhancer activity (Bell and
Felsenfeld 2000; Hark et al., 2000) (Figure 1). In the
antisense models, the promoters of antisense transcripts
interfere with the transcription of downstream genes
(Stoger et al., 1993; Wutz et al., 1997). In certain cases, two
separate regulatory regions are used to control the entire
imprinted region. In the bipartite model, two regulatory
units are required for the activity of a bipartite imprinting
center, one containing the gDMR while the other may act with

the former in gametes in the cis configuration, although the
precise molecular mechanism remains unknown (Nicholls and
Knepper 2001; Wu et al., 2012). In other cases, both the
gDMRs and secondary DMRs (sDMRs) that are established
in a manner depending on the former after fertilization, play
essential roles (Takada et al., 2000, 2002; Lopes et al., 2003;
Kagami et al., 2008; Kagami et al., 2015; Takahashi et al., 2009;
Zhou et al., 2010; Beygo et al., 2015). Regardless of which
molecular mechanism model applies, DNA methylation of
either one of the parental gDMRs inhibits the activity of the
cis-regulatory elements, thereby undoing the off state and
leading to the complementary expression of PEG and MEG
(Kaneko-Ishino et al., 2003; Kaneko-Ishino et al., 2006).

DNA methylation of the gDMRs, referred to as imprinted
memories, are established by DNA methyltransferase 3A
(DNMT3A) and its catalytically inactive cofactor DNMT3L in
either oocytes or spermatogonia (Okano et al., 1999; Bourc’his
et al., 2001; Hata et al., 2002; Bourc’his and Bestor 2004; Kaneda
et al., 2004), thus leading to the establishment of maternal and
paternal gDMRs in the oocytes and sperm (Figure 2A). Such
gDMRs are maintained in the somatic cells throughout life
(Figure 2, middle), while in germ cells, it is completely erased
for individuals in the next generation (Figure 2, bottom). From
embryonic day 10.5 (d10.5), the erasure of genomic imprinting
memory occurs in primordial germ cells (PGCs) through the
passive replication-dependent DNA demethylation mechanism
(Hackett et al., 2013; Yamaguchi et al., 2013a, 2013b; Kagiwada
et al., 2013) and possibly together with the active mechanism
catalyzed by ten-eleven translocation (TET) methylcytosine
dioxygenases (Kawasaki et al., 2014). Importantly, clone
embryos produced from d12.5 PGCs in the default mode of
genomic imprinting (no DNA methylation of parental
gDMRs) (Hajkova et al., 2002; Lee et al., 2002; Szabo et al.,
2002) also exhibit early embryonic lethality (Lee et al., 2002;
Yamazaki et al., 2005) similar to the parthenogenetic and
androgenetic embryos. They express only MEGs in the
paternally imprinted regions and only PEGs in the maternally
imprinted regions, that is, the PEGs in the former and MEGs in
the latter are repressed, respectively (Figure 2, middle). These
results indicate that DNAmethylation on the gDMRs is necessary
to induce the repressed genes in the default state, indicating the
strict requirement of having both paternal and maternal
epigenotypes, leading to the complementary expression of
PEGs and MEGs (Kaneko-Ishino et al., 2003; Kaneko-Ishino
et al., 2006).

Paternal and maternal imprinting memories are then
reestablished depending on the individual’s sex by DNA
methylation on the paternal and maternal gDMRs in the
paternal and maternal imprinted regions, respectively (Davis
et al., 1999; Li et al., 2004; Lucifero et al., 2004; Hiura et al.,
2006) (Figure 2, arrows from bottom to top), and as a result, the
“imprinted” patterns of sperm and oocytes are completed
(Figure 2, top). All of these changes in the expression pattern
are consistent with the reciprocal regulation of PEGs andMEGs in
a manner that depends on the DNA methylation status of the
gDMRs (Figure 1). Taken together, DNA methylation at the
gDMRs can be considered to serve as a major epigenetic mark in

FIGURE 2 | Cycle of genomic imprinting memory. Top: Sperm (left) and
oocytes (right) have imprinted memories to express only PEGs and MEGs in
somatic cells. Their expression patterns here represent those of androgenetic
and parthenogenetic embryos, respectively. Second: The expression
profiles of the imprinted genes in paternal and maternal imprinted regions in
somatic cells and PGCs until at most day 10.5 (Miki et al., 2005; Yamazaki
et al., 2005) This is reestablished by a combination of the sperm and oocyte
patterns. Bottom: The expression profiles of imprinted genes in the default
states of genomic imprinting (i.e., without any DNA methylation), such as day
12.5 PGC cloned embryos. The black, blue and red circles represent normal
biallelic, paternally and maternally expressed genes, respectively. There are
two types of imprinted regions, paternally (blue) and maternally imprinted
(pink) reginos, in which gDMRs are methylated paternally and maternally,
respectively. The erasure of imprinted memories in PGCs occurs around
d10.5 and completed by d12.5, then gDMR methylation in the paternally
imprinted regions (Paternal imprinting) occurs during prospermatogonia
development around the time of birth, while that in the maternally imprinted
regions (Maternal imprinting) occurs during oocyte maturation (arrows from
the bottom to top). PEG andMEG cannot be co-expressed in cis in any stages
of this cycle.
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the life cycle of genomic imprinting and has recently been
referred to as “canonical imprinting” in contrast to histone
modification-dependent imprinting, as described later.

THE ORIGIN OF gDMRs

Genomic imprinting is observed in eutherian and marsupial
mammals, but the number of imprinted genes in eutherians is
much larger than in marsupials (Cattanach and Beechey 1990;
Killian et al., 2000; O’Neill et al., 2000; Beechey and Evans,
2004; Suzuki et al., 2005; Suzuki et al., 2007). In addition, there
exist several lineage- and species-specific imprinted genes
(Hayashizaki et al., 1994; Plass et al., 1996; Hagiwara et al.,
1997; Smith et al., 2003; Wood et al., 2007; Das et al., 2012). In
her host defense hypothesis, Denise Barlow implied that the
origin of genomic imprinting lies in an existing biochemical
system, such as DNA methylation, that serves to neutralize
foreign invading DNA, such as retroviruses, direct repeats, and
retrotransposons (Barlow et al., 1991; Neumann and Barlow.
1995). We had a similar idea and independently sought
imprinted genes of exogenous origin by comprehensive
screening of PEGs and MEGs (Kaneko-Ishino et al., 1995;
Kuroiwa et al., 1996; Miyoshi et al., 1998; Miyoshi et al.,
2000; Ono et al., 2001). Identification of paternally
expressed 10 (PEG10), a gene acquired from a retrovirus
(Ono et al., 2001; Ono et al., 2006), led to the finding that
the PEG10-gDMR in its promoter region emerged with PEG10
itself in a common ancestor of therian mammals (Suzuki et al.,

2007). Subsequent comprehensive comparative genome
analysis has revealed that the DNA sequences
corresponding to the gDMR in the canonical imprinted
regions are derived from inserted DNA sequences (Suzuki
et al., 2011; Renfree et al., 2013; Kaneko-Ishino and Ishino
2019). In most cases, such insertion events correlate well with
the time when their imprinting regulation activity started as
paternally and maternally imprinted regions (Figure 3, blue
and red, respectively), providing strong support for the host
defense hypothesis. From this perspective, the gDMRs, and
most especially the cis-functional elements within them,
should be recognized as the targets of the genomic
imprinting mechanism rather than retroviruses, direct
repeats and retrotransposons, as originally proposed
(Barlow 1993; Neumann and Barlow 1995).

For example, the PEG10-and H19-gDMR sequences emerged
next to the sarcoglycan epsilon (SGCE) promotor and
downstream of the Insulin-like growth factor 2 (IGF2) gene in
both the marsupial and eutherian genomes, respectively (Suzuki
et al., 2007; Smits et al., 2008; Kaneko-Ishino and Ishino 2010).
Thus, it is certain that their insertion occurred in a common
therian ancestor. They were associated with the insertion of the
retrovirus-derived PEG10 and non-coding H19, respectively
(Table 1). In addition, imprinted paternal expression of
PEG10 (Ono et al., 2001; Suzuki et al., 2007) and reciprocal
maternal/paternal expression ofH19/IGF2 (DeChiara et al., 1990,
1991; Bartolomei et al., 1991; O’Neill et al., 2000; Killian et al.,
2001; Weidman et al., 2004; Edwards et al., 2008) have been
confirmed in both groups. Interestingly, only the PEG10

FIGURE 3 | The emergence of gDMR sequences coincides with the onset of imprinted regulation in mammals. In most cases, the emergence of gDMR sequences,
the DNA sequences corresponding to the gDMRs, correlate well with the establishment of imprinted regions in mammalian evolution. The arrowheads indicate when
each gDMR sequence appeared in the mammalian lineage tree. Blue and red represent that imprinted regulation started as the paternally and maternally imprinted
regions, respectively. Pink represents the maternally imprinted regions in which the emergence of DMR sequences preceded the onset of imprinted regulation, for
example,SLC38A4-and SNRPN-DMRs (see the text for the details). It should be noted that mouse Slc38a4 has recently been recognized as an imprinted gene regulated
by both canonical and non-canonical imprinting mechanisms (Okae et al., 2014; Inoue et al., 2017a; Bogutz et al., 2019). This is an updated version of Figure 6 in our
previous review (Kaneko-Ishino and Ishino 2019).

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8329834

Kaneko-Ishino and Ishino Complementation Between Parental Genomes

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


promoter is differentially methylated in marsupials. In contrast,
the PEG10-gDMR extends to the SGCE promoter and controls a
large imprinted region, including several MEGs, in eutherians
(Ono et al., 2003; Suzuki et al., 2007).

The PEG10 and H19/IGF2 imprinted regions are the first
two imprinted regions in mammalian history, while most of
the gDMRs emerged in the eutherian genome and constitute
eutherian-specific imprinted regions. Subsequently, some
lineage-specific imprinted regions appeared, indicating that
genomic imprinting arose at many different time points during
mammalian evolution and is still continuing to evolve (Suzuki
et al., 2011; Das et al., 2012; Renfree et al., 2013). The large
miRNA cluster, C19MC, in the human genome is an example
of a lineage-specific imprinted region that has emerged in
primates (Noguer-Dance et al., 2010; Malnou et al., 2018),
implying the existence of other primate- and/or human-
specific imprinted regions in the human genome.

Interestingly, the IGF2 receptor (IGF2R) is imprinted in
both eutherians and marsupials (Killian et al., 2000; Szabo
et al., 2000), however, it is regulated by different gDMRs. It is
located on intron 2 in the former and intron 12 in the latter
(Stöger et al., 1993; Suzuki et al., 2018). Both gDMRs function
as promoters of antisense non-coding RNAs, a long Antisense
of IGF2R non-protein coding RNA (AIRN) in the former
(Stoger et al., 1993) and a short non-coding RNA,
Antisense LncRNA in the IGF2R gDMR (ALID), in the
latter. It is thus likely that they emerged independently and
are regulated by different mechanisms. Marsupial-specific
expansion of intron 12, which has occurred as the results of
accumulation of a number of transposons, may have
contributed to the establishment of the ALID/IGF2R-gDMR
(Suzuki et al., 2018).

Two apparent exceptions are the DNA sequence
corresponding to the Small nuclear ribonucleoprotein
polypeptide N (SNRPN)- and the Solute carrier family 38,
member 4 (SLC38A4)-gDMRs (Figure 3, pink) because their
insertion did not coincide with the onset of maternal

imprinted regulation. The former regulates the Prader-
Willi/Angelman (PWS/AS) region as the PWS-shortest
region of deletion overlap (SRO) together with the AS-SRO
located 880 bp at a site 35 kb upstream of the SNRPN upstream
open reading frame (SNURF)-SNRPN (Nicholls et al., 1998).
The DNA sequence corresponding to the SNRPN-DMR is
conserved in both marsupials and eutherians, although, in
marsupials, the SNRPN, and Ubiquitin Protein Ligase E3A
(UBE3A) regions exist on separate chromosomes. The PWS/
AS region arose by chromosome rearrangement in eutherians,
and the SNRPN-DMR located in SNURF was established in the
newly reconstructed DNA sequence (Rapkins et al., 2006).
Similarly, the corresponding sequence to the SLC38A4-gDMR
already existed in monotremes (Suzuki et al., 2011), but it
became differentially methylated only in the rodent lineage in
association with the rodent-specific insertion of MT2A
retrovirus (Bogutz et al., 2019; Hanna et al., 2019) (see next
section). Slc38a4 has also been recognized as a member of non-
canonical imprinted genes in mice, implying that an
evolutionary route to the SLC38A4 imprinted region may be
complicated (Okae et al., 2014; Inoue et al., 2017a).

MOLECULAR MECHANISMS UNDERLYING
THE ESTABLISHMENT OF DIFFERENTIAL
DNA METHYLATION PATTERNS IN THE
FEMALE AND MALE GAMETES

So what, then, is the actual biochemical system that serves to
neutralize foreign DNA that had been hypothesized by
Barlow? Recent work has shown that the gDMRs are
established as a consequence of differential responses to
the invading DNAs in the oocytes and prospermatogonia
as well as to afford subsequent protection from DNA
demethylation in preimplantation development (see the
next section).

TABLE 1 | Newly acquired genes in the imprinted regions. The essential/important imprinted genes that have emerged in therian- and eutherian-specific imprinted regions
are summarized.

Orthologs and paralogs Imprinted
gene

Conservation Origin Phenotypes in mutant
mice: Human diseases

PEG10 therians Retroviral GAG and POL Placenta formation, maintenance of fetal capillary network:
Llung, liver, panreus cancers, Angelman syndrome?

RTL1/PEG11 eutherians Retroviral GAG and POL Placenta, muscle and CNS defects in mice: Kagami-Ogata and
Temple syndromes

Acquired genes from retrovirus and
genes of unknown origin

AntiRTL1/
AntiPEG11

eutherians Unknown Placenta, muscle and CNS defects in mice by RTL1/PEG11
mRNA regulationl via RNAi: Kagami-Ogata syndrome

PEG3 eutherians C2H2-type zinc finger protein
fused by retrovial GAG

Fetal growth, materal behavior, sex-biased birth rate,
thermoregulation: Glioma

NNAT/PEG5 eutherians Unknown lipoprotein Cerebellar folding, postnatal growth restriction and adult
obesity: Lafora disease, diabetes and cancer

NDN eutherians One ofMAGE family members Fetal growth defect and partial neonetal lethality: Prader-Willi
syndrome

Duplicated genes by retropositioning MAGEL2 eutherians One ofMAGE family members Postnatal growth defect and obsity: Prader-Willi syndrome,
Schaaf-Yang syndrome

MKRN3 eutherians MKRN1 or MKRN2 Precosious puberty: Precosious puberty
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Discovery of the oocyte-specific transcripts spanning the
gDMRs has provided an important clue to the mechanism of
the establishing of the maternal gDMRs (Chotalia et al., 2009;
Veselovska et al., 2015; Smallwood et al., 2011; Hanna and
Kelsey 2021). In oocytes, DNA methylation is exclusively on
active gene body regions, including the maternally imprinted
gDMRs (Kobayashi et al., 2012). Initially, histone lysine
methylase SETD2 deposits H3K36me3 (Figure 4A), and
subsequently this epigenetic mark guides DNA methylation
because it promotes the binding of DNMT3A in the oocyte
(Chotalia et al., 2009; Veselovska et al., 2015; Xu et al., 2019;
Shirane et al., 2020) (Figure 4B). Interestingly, long terminal
repeats (LTRs) of some endogenous viruses (ERVs) are used
as the promoters of the oocyte-specific alternative upstream
transcripts in the species-specific canonical imprinting
(Brind’Amour et al., 2018; Bogutz et al., 2019). These data
indicate that the oocyte-specific transcripts from the upstream
promoters, such as integrated LTRs, play a critical and
fundamental role in the mechanism underlying the
establishment of the maternal gDMRs.

On the other hand, in the male germline
(prospermatogonia), the lysine methyltransferase NSD1
deposits H3K36me2 in the euchromatic regions included on
the paternally imprinted gDMRs, and subsequently this
epigenetic mark guides DNA methylation (Shirane et al.,
2020). Thus, there is a sexually dimorphic pattern of DNA
methylation in mature mouse gametes via the deposition of
distinct H3K36 methylation marks (Xu et al., 2019; Shirane
et al., 2020). Among the three paternal gDMRs, Ras protein
specific guanine nucleotide releasing factor 1 (Rasgrf1)-gDMR
is known to use an LTR from the RMER4 retrotransposon as an
upstream promoter to generate small RNAs that recruit the
PIWI-piRNA mechanism to establish de novo DNA
methylation in spermatogenesis (Watanabe et al., 2011),
although the molecular mechanism remains elusive in the
other two gDMRs, the H19- and DLK1-MEG3 intergenic
(IG)-gDMRs. These data demonstrate that integrated
retroviruses (ERVs) and LTR retrotransposons are
ingeniously integrated in the DNA methylation of gDMRs
that occurs in germ cells.

FIGURE 4 | Molecular mechanisms underlying how gDMRs are established and maintained. (A) Expression of oocyte-specific transcripts from alternative
promoters including LTRs. Oocyte-specific alternative upstream transcripts (dashed arrows) run through the gDMR (a pink box) within gene bodies with deposition of
H3K36me3 (yellow trapezoids). In some cases, LTRs are used as the promoters for such transcripts (light blue boxes). (B) DNA methylation in gene body regions
including maternal gDMRs. The H3K36me3 epigenetic mark guides DNA methylation in the oocytes, leading to the gene body DNA methylation. There are many
more differential methylated CpG sequences than gDMRs in oocytes. (C) Protection of gDMR DNA methylation from a global DNA demethylation wave. Most of the
differentially methylated CpG sequences disappear during preimplantation development due to a global DNA demethylation wave (right), however, both maternal and
paternal gDMRs remain protected by a large complex including either ZFP57 or ZNF445, members of the KRAB-ZFPs playing an essential role in repressing invaded
retroviruses (left and center). (D) The resulting canonical imprinted regions. Double-headed arrows indicate a therian-/eutherian-specific (left) and a species-specific
(center) imprinted region in somatic cells. The gDMR DNAmethylation is maintained during postimplantation period by symmetric CpGmethylation catalyzed by DNMT1
included in the KRAB-ZFPs complex. The differential recognition mechanisms in the paternal and maternal germ cells lead to the imprinted region in somatic cells.
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MOLECULAR MECHANISMS UNDERLYING
GDMR MAINTENANCE IN PRE- AND
POSTIMPLANTATION DEVELOPMENT
Another important fact is that there are more than 1,600
differentially methylated CpG islands in oocytes and sperm,
including the imprinting loci (Kobayashi et al., 2012)
(Figure 4B). Most of these differences disappear during
preimplantation period, while the gDMRs of the canonical
imprinted regions are protected from such a global DNA
demethylation wave (Figure 4C) (Kobayashi et al., 2012;
Smallwood et al., 2011) and maintained in the
postimplantation period (Figure 4D), indicating that the
canonical genomic imprinted regions have been selected and
conserved in mammals because of their evolutionary advantages.
Interestingly, certain members of the Kru€ppel-associated box
(KRAB)-containing zinc finger proteins (ZFPs), such as ZFP57
and ZNF445, play a key role in this process (Li et al., 2008;
Takahashi et al., 2019). ZFP57 and ZNF445 bind a CpG-
containing hexanucleotide motif present in multiple copies in
most ICRs (Quenneville et al., 2011; Strogantsev et al., 2015;
Anvar et al., 2016), and each forms a large complex that represses
transcription by recruiting KRAB-associated protein1 [KAP1, aca
tripartite motif containing 28 (TRIM28)], SET domain bifurcated
histone lysine methyltransferase 1 (SETDB1), heterochromatin
protein 1 (HP1) and DNMT1, and then maintain DNA
methylation on the gDMRs of the newly replicated DNA by
symmetric CpG methylation (Sharif et al., 2007; Quenneville
et al., 2011; Liu et al., 2013; Mochizuki et al., 2021) (Figure 4C).
The KRAB-ZFPs are evolutionarily diverse proteins that protect
against the insertion of retroviruses (Macfarlan et al., 2012; Rowe
et al., 2013), demonstrating that another host defense mechanism
against retroviruses also exists and is functional in the
maintenance of genomic imprinting memories (Edwards et al.,
2019; Ondičova et al., 2020; Hanna and Kelsey, 2021). Thus,
accumulating evidence indicates a close relationship between
genomic imprinting and the insertion of retroviruses and LTR
retrotransposons, as originally proposed in the host defense
hypothesis. Importantly, newly invading DNAs are not
completely repressed in both of the parental alleles because of
the differential recognition mechanisms in the paternal and
maternal germ cells, thereby leading to the complementary
monoallelic expression of PEGs and MEGs (Figure 4D).

EVOLUTIONARY ADVANTAGES OF
GENOMIC IMPRINTING

What is the evolutionary advantage of genomic imprinting? In
other words, why have the canonical genomic imprinted regions
been selected and widely conserved in therian mammals? We
would like to address this issue based on the complementary
monoallelic expression mechanism. First, this arrangement
allows for the expression of all of the genes in the imprinted
regions as PEGs and MEGs by controlling for the cis-elements in
the gDMRs (Figure 1). As mentioned earlier, the cis-elements
involved in the newly inserted gDMR sequences (Figure 3) exert

a long-range effect on nearby genes, and thus repress a substantial
number of resident genes. However, DNA methylation of the cis-
elements in one of the alleles allows for recovery of the expression
of such resident genes, so DNA methylation is required for the
expression of certain imprinted genes (Figures 1, 2). As several of
the PEGs and MEGs play an essential role in the current
mammalian developmental system, their monoallelic
expression would be expected to be disadvantageous in a
general sense. However, under a special constraint, such as
described for the cis-elements, monoallelic expression affords
an advantage, because even a limited monoallelic expression is
preferable to the complete loss of expression (Figures 1, 2). This
indicates that genomic imprinting arose as a consequence of an
evolutionary trade-off for survival (Kaneko-Ishino and Ishino
2015, 2019). This may also account for why the canonical
imprinted regions have been so widely conserved in the
therian mammals.

As mentioned in the introduction, it is likely that the conflict
over maternal resources exerts pressure on PEGs promoting and
MEGs repressing embryonic growth. In most cases, at least one
imprinted gene in each canonical imprinted region seems to fit
the conflict/kinship hypothesis (Moore and Haig, 1991; Wilkins
and Haig 2003; Haig 2004) although most imprinted genes
appear to be bystanders, that is, they are simply involved in
this process as bystander genes (Barlow and Bartolomei 2014). In
addition, it is also likely that gene dosage regulation of the
evolutionarily conserved resident imprinted genes is another
important factor in selection, because it must have contributed
to the formation of the current mammalian developmental
system by increasing pre-and postnatal fitness (Charalambous
et al., 2012; Ball et al., 2013; Wolf et al., 2014).

Other hypotheses have been proposed that suggest genomic
imprinting arose for the prohibition of parthenogenetic
development or protection against the development of
malignant placental tissue in such parthenogenetic embryos
(Solter 1988; Varmuza and Mann 1994). Although it is
difficult to prove these hypotheses by experiment, these
features are surely advantageous for viviparous mammals and
seem to have been acquired from the beginning via genomic
imprinting, because the first two imprinted regions established in
a common therian ancestor were the PEG10 and H19/IGF2
regions (Figure 3), that exert potent effects on placental
formation and growth, respectively. This also supports the
placenta hypothesis (Hall 1990; Kaneko-Ishino et al., 2003),
which proposes that genomic imprinting is deeply related to
the emergence of the placenta in the course of evolution, because
a considerable number of imprinted genes play important roles in
the placenta. In addition, H3K27me3 based non-canonical
imprinting is unique to the placenta, and contributes to
placental development and growth in a species-specific
manner, such as Xist, Gab1 and Sfmbt2 in mice (Itoh et al.,
2000; Okae et al., 2014; Inoue et al., 2017a, 2017b, 2018; Hanna
et al., 2019; Inoue et al., 2020; Hanna and Kelsey 2021).

Finally, we would like to address another benefit of the
complementary monoallelic mechanism. It provides a means
of expression for both newly inserted genes as well as the
conserved, already resident genes, therefore, allows for the
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acquisition of new genes in the canonical imprinted regions, and
genes like PEG10 and H19 (Figure 5). Therefore, genomic
imprinting may have made a contribution to the innovation of
the emergent mammalian functions. Such newcomer genes may
be separated into two groups: 1) newly acquired genes from
retroviruses or of unknown origin, and 2) genes duplicated by
retroposition. Among these genes, several play essential/
important roles in development, growth and behavior, as
discussed in the following two sections.

NOVEL FUNCTIONS PROVIDED BY NEWLY
ACQUIRED IMPRINTED GENES IN
MAMMALS
In addition to PEG10 and H19, there are several imprinted
regions that are accompanied by novel acquired genes. In the
Delta like non-canonical Notch ligand 1 (DLK1)-Iodothyronine
deiodinase 3 (DI O 3) region, a large insertion comprisingMEG3,
Retrotransposon GAG-like 1 (RTL1)/PEG11, antiRTL1/
antiPEG11, and MEG8/RNA imprinted and accumulated in
nucleus (RIAN) and MEG9/microRNA-containing gene
(MIRG) occurred in association with the emergence of an
intergenic (IG)-DMR between DLK1 and MEG3 in eutherians
(Kobayashi et al., 2000; Miyoshi et al., 2000; Schmidt et al., 2000;

Wylie et al., 2000; Charlier et al., 2001; Edwards et al., 2008).
Thus, they are eutherian-specific genes: RTL1/PEG11 is a protein
coding gene while the other maternally expressed non-coding
RNAs include a cluster of siRNA and/or snoRNAs (Charlier et al.,
2001; Cavaillé et al., 2002). In the PEG3 region, the PEG3-DMR
localizes on the PEG3 promoter and regulates PEG3 itself and
neighboring paternally expressed Ubiquitin specific peptidase 29
(USP29), as well as maternally expressed Zinc finger imprinted 1
(ZIM1) and ZIM3 (Kim et al., 2001, 2007). PEG3 is also a
eutherian-specific acquired gene. PEG3 has quite unique zinc
finger motif in terms of its amino acid sequence and its intervals,
and no homologous C2H2-type of zinc finger protein is present in
marsupials, monotremes or other vertebrates (Kuroiwa et al.,
1996). The construction of the PEG3 imprinted region is
polymorphic among eutherian species, that is, there are certain
differences that occur in a species-specific manner (Kim et al.,
2007). NEURONATIN (NNAT, aka PEG5) (Kagitani et al., 1997;
Kikyo et al., 1997) is inserted within an intron of the non-
imprinted Bladder cancer associated protein (BCAP) and its
promoter became the NNAT/PEG5-DMR (John et al., 2001).
NNAT/PEG5 is another eutherian-specific gene encoding a
proteolipid of unknown origin, and there is a single imprinted
gene in this locus (Evans et al., 2005) (Table 1).

Interestingly, PEG10 and RTL1/PEG11 are derived from
retrovirus GAG and POL (Charlier et al., 2001; Ono et al.,

FIGURE 5 | Generation of a novel canonical imprinted region. (A) Before an insertion event. A chromosomal region comprising three non-imprinted evolutionary
resident Genes A, B and C. A downstream enhancer sequence (green) regulates the activation of the three genes. (b) Insertion of a large DNA fragment (yellow)
containing an insulator sequence as a critical cis-element (pink) and a novel gene (orange) between Genes B and C. The insertion event leads to the repression of Genes
A and B via the insulator function (see Figure 1). The novel added gene is expressed from the newly integrated DNA fragment in addition to Gene C. (C) DNA
methylation on the inserted insulator in oocyte. Emergence of an upstream promotor (light blue) that expresses an oocyte-specific alternative transcript (dashed line). This
transcript goes through the insulator, leading to DNAmethylation on the insulator in an oocyte-specificmanner. (D) Expression of a newly added gene from paternal allele
of a novel imprinted region (arrow), while Genes A and B from maternal allele because the gDMR in the paternally-derived chromosome is not DNA methylated.
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2001). They exhibit a certain similarity to the sushi-ichi LTR
retrotransposon, thus have come to be referred to as
retrotransposon-GAG like genes. In any event, it is likely that
the “gypsy” type of LTR retrotransposon to which the suchi-ichi
retrotoransposon belong is derived from a retrovirus (Kim et al.,
1994; Song et al., 1994). PEG3 was probably generated by fusion
of the same retroviral GAG and a C2H2-type of zinc finger
protein generated by gene duplication (Campillos et al., 2006).
PEG10 is essential for the induction of placenta-specific cells,
i.e., the trophoblast cells in the spongiotrophoblast and labyrinth
layers, so its deficiency causes early embryonic lethality (Ono
et al., 2006). It also plays an essential role in the maintenance of
the fetal capillary network in the labyrinth layer: mutant mice
with defective PEG10 protease exhibit perinatal lethality due to
severe damage of the entire fetal capillary network (Shiura et al.,
2021). PEG10 is also associated with progression of various
cancers, such as lung, breast, liver, and pancreatic cancer
(Okabe et al., 2003; Li et al., 2006). Recently, accumulation of
the PEG10 protein was reported in neurons differentiated from
induced pluripotent stem cells (iPSs) from Angelman syndrome
(AS) patients, suggesting an important role in the brain (Pandya
et al., 2021).

RTL1/PEG11 plays essential roles in the placenta, muscle and
brain and is the major gene responsible for the Kagami-Ogata and
Temple syndromes, two genomic imprinting diseases. It is located
on human chromosome 14 (Kagami et al., 2008; Sekita et al.,
2008, Kitazawa et al., 2017, 2020, 2021). Both overexpression and
deficiency lead to abnormalities in the placenta as well as a variety
of neuromuscular and/or psychiatric symptoms (Kitazawa et al.,
2020, 2021). In the placenta, severe defects of the fetal capillaries
can lead to late embryonic lethality or growth retardation (Sekita
et al., 2008; Kitazawa et al., 2017). It is likely that damage to
neonatal respiration-related tissues such as the intercostal,
abdominal and diaphragm muscles lead to neonatal lethality
(Kitazawa et al., 2020), presumably associated with
abnormality of motor neurons in the descending
corticonuclear tract that innervates the cranial nerves
regulating the respiration-related muscles. RTL1/PEG11 is also
expressed in neurons in the corpus callosum, hippocampal and
anterior cerebral commissures as well as limbic system, such as in
the hippocampus and amygdala, suggesting that their
malfunction is related to the psychiatric symptoms that
manifest in these diseases (Kitazawa et al., 2021).

PEG3 is also essential for placental functions as well as in the
fetal and adult brain. Its defect causes fetal growth retardation, a
problem in suckling milk in the pups, and abnormal maternal-
care behaviors due to defects in themilk release process in females
(Li et al., 1999) and thermoregulation (Broad et al., 2009), while
biallelic expression of Peg3 leads to subtle impacts in male and
female mice (Bretz and Kim 2017). Certain mouse Peg3
mutations also cause sex-biased outcomes (Kim et al., 2013;
He et al., 2016). PEG3 functions as a tumor suppressor in
glioma in the brain (Kohda et al., 2001; Maegawa et al., 2004;
Jiang et al., 2010). The loss of NNAT/PEG5 is associated with
decreased cerebellar folding in mice (Kikyo et al., 1997) and leads
to postnatal growth restriction and adult obesity (Millership et al.,
2018). It is reported that aggregates of the NNAT/PEG5 protein

cause neuronal loss in Lafora disease, diabetes, and cancer
(Joseph, 2014).

NEW FUNCTIONS PROVIDED BY
IMPRINTED GENES DUPLICATED BY
RETROPOSITIONING
NECDIN (NDN), MAGE Family Member L2 (MAGEL2) and
Makorin Ring Finger Protein 3 (MKRN3) are located in the PWS/
AS imprinted region and are retroposed genes generated from the
cDNAs of their paralogs (Rapkins et al., 2006) (Table 1). The
retropositioning events are sometimes associated with the
generation of newly imprinted regions (Wood et al., 2007),
such as the nucleosome assembly protein 1-like 5 (NAP1L5)
and Inositol Polyphosphate-5-Phosphatase F (INPP5F_V2)
regions in eutherians, and also the Malignant T-cell-amplified
sequence 2 (MCTS2) and U2 small nuclear RNA auxiliary factor
1-related sequence 1 (U2AF1-RS1) regions in a lineage- and
species-specific manner. Their own promoter regions became
DMRs and interestingly, their original genes were localized in the
X-chromosome (Wood et al., 2007). These genes were introduced
into the eutherian genome as imprinted genes, presumably via
surprising and complex processes that exploited the
complementary monoallelic expression mechanism of genomic
imprinting (Figure 5).

Among these genes, NDN, MAGEL2, and MKRN3 play
essential roles in the brain. The former two genes are
responsible for certain symptoms of PWS including neonatal
lethality, prenatal growth retardation and postnatal growth
abnormalities, such as, obesity (Lee et al., 2005; Bischof et al.,
2007), and the latter gene is responsible for precocious puberty
(Abreu et al., 2013; Li et al., 2021). MKRN3-mediated ubiquitin
signaling controls expression of Gonadotropin releasing
hormone 1 (GNRH1) at both transcriptional and post-
transcriptional levels (Li et al., 2021). MAGEL2 mutations
causes Schaaf-Yang syndrome, a rare neurodevelopmental
disorder that shares multiple clinical features with the
genetically related PWS (Schaaf et al., 2013).

CONCLUSION

Accumulating evidence has painted a picture of a close
relationship between genomic imprinting and invading DNA:
1) the insertion of DNA sequences corresponding to the gDMRs
(Figure 3), 2) retroviral LTRs are used as promoters of oocyte-
specific transcripts for DNA methylation on the gDMRs
(Figure 4B), 3) the antiviral KRAB-ZFP system protects the
gDMRs from global DNA demethylation (Figure 4C),
providing strong support for the host defense hypothesis.
Taken together, it is likely that each genomic imprinted region
arose by chance as a consequence of an evolutionary trade-off for
survival (Kaneko-Ishino and Ishino 2019) using the existing
DNA methylation machinery against foreign DNA. Each
region has been selected and conserved in therian/eutherian
mammals for the advantage(s) it confers. We have also
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discussed another evolutionary advantage that is exerted by the
complementary monoallelic expression mechanism which is that
it affords a kind of genome innovation machinery that enables the
introduction of novel genes via acquisition from retroviruses and
also gene duplication by retroposition (Kaneko-Ishino and Ishino
2012; Edwards et al., 2019). As discussed in this review, in
addition to the “Conflict” and “Complementation” activities,
there are a variety factors acting in concert that make up the
biological significance of genomic imprinting which remains a
fascinating and critically important theme in mammalian
biology.
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