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Abstract: Understanding the underlying mechanism that drives the microbial community mediated
by substrates is crucial to enhance the biostimulation in trichloroethene (TCE)-contaminated sites.
Here, we investigated the performance of stable TCE-dechlorinating consortia by monitoring the
variations in TCE-related metabolites and explored their underlying assembly mechanisms using
16S rDNA amplicon sequencing and bioinformatics analyses. The monitoring results indicated
that three stable TCE-dechlorinating consortia were successfully enriched by lactate-containing
anaerobic media. The statistical analysis results demonstrated that the microbial communities of
the enrichment cultures changed along with time and were distinguished by their sample sources.
The deterministic and stochastic processes were simultaneously responsible for shaping the TCE-
dechlorinating community assembly. The indicator patterns shifted with the exhaustion of the
carbon source and the pollutants, and the tceA-carrying Dehalococcoides, as an indicator for the final
stage samples, responded positively to TCE removal during the incubation period. Pseudomonas,
Desulforhabdus, Desulfovibrio and Methanofollis were identified as keystone populations in the TCE-
dechlorinating process by co-occurrence network analysis. The results of this study indicate that
lactate can be an effective substrate for stimulated bioremediation of TCE-contaminated sites, and
the reduction of the stochastic forces or enhancement of the deterministic interventions may promote
more effective biostimulation.

Keywords: biostimulation; dechlorination; trichloroethene; lactate; microbial community; assembly
mechanism; co-occurrence network

1. Introduction

Chloroethenes, such as trichloroethene (TCE), are halogenated aliphatic organic com-
pounds that have been widely used as ingredients in industrial cleaning solutions and as
“universal” degreasing agents due to their unique properties and solvent effects [1]. Due to
its improper usage and indiscriminate disposal, TCE has been frequently detected with
its concentration above 10 parts per billion [2], and has severely accumulated in certain
anaerobic subsurface environments [3] and is often emitted into the atmosphere in vapor
form, stripped either from groundwater or wastewater treatment plants (WWTPs) [4,5],
which poses a serious risk to human health and can result in the generation of vinyl chloride
(VC), a known human carcinogen [6], via natural or induced reduction processes [1,7].

Due to the persistent nature of TCE in the environment, the development of effec-
tive and economical methods for its remediation has become a prime concern for re-
searchers, and various physical and chemical methods have been developed and applied
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for TCE removal from contaminated environmental components [8]. With the advantages
of cost-effectiveness, high-throughput, and an ecofriendly nature, bioremediation is an
attractive approach for treating TCE-contaminated sites compared with physicochemical
processes [8]. The bioremediation of TCE in contaminated sites can occur through natural
attenuation or through treatment via biostimulation or bioaugmentation. Even though
natural dehalohydrolysis of TCE is possible, the half-lives of such reactions are in the
order of days to centuries, and therefore, natural dehalohydrolysis is not considered as a
significant mechanism of degradation [1]. Furthermore, traditional wastewater or munici-
pal water supply treatment systems that utilize coagulation, sedimentation, precipitative
softening, filtration, and chlorination have proven to be ineffective in reducing the con-
centrations of TCE to nonhazardous levels [9]. Below the water table, TCE can undergo
anaerobic dechlorination under favorable geochemical and microbiological conditions, but
the biodegradation rates are highly dependent on the site conditions and on engineering
intervention [10]. Biostimulation is used to create subsurface conditions in which naturally
occurring TCE-degrading bacteria thrive and grow, resulting in enhanced dechlorination
of TCE. This in situ anaerobic treatment technology can help prevent the transportation of
contaminants to the surface, thereby reducing the potential risk to humans, and has thus
become a more favorable approach.

Under anaerobic conditions, TCE is degraded via dichloroethene (DCE) and VC to
ethene (Eth) and to ethane via anaerobic reductive dechlorination, with hydrogen (H2)
generated from organic substrates as the electron donor [11]. Reductive dechlorination
is an electron-consuming process and is often limited by the availability of suitable elec-
tron donors in contaminated environments [12]. In the field of in situ bioremediation,
fermentable substrates such as ethanol, acetate, lactate, gluconate, propionate, and bu-
tyrate, or complex organic materials, such as cane molasses, vegetable oil, surfactants, flour,
nonfat milk, whey, corn cobs, wood chips, newsprint, and municipal waste sludge, were
introduced to aquifers to stimulate the growth of indigenous or inoculated dechlorina-
tors [10–15]. The reductive dechlorination of chlorinated solvents has also been observed
in relation to a wide variety of methanogenic and nonmethanogenic consortia with various
bacterial genera, such as Clostridium, Dehalobacter, Dehalococcoides (DHC), Desulfitobacterium,
Desulfuromonas, Dehalospirillum, Geobacter, and Sulfurospirillum, were found to degrade
chloroethenes [12,16,17]. However, only DHCs are capable of the complete reductive
dechlorination of TCE to the benign product ethene, which means DCE or VC, or both,
can be accumulated if DHC is absent in contaminated sites [16,18]. DHCs are strict hy-
drogenotrophs characterized by specific requirements for an exogenous supply of key
compounds, including H2, acetate, corrinoids, biotin, and thiamine, all of which are gener-
ally provided by other microbial members of anaerobic food webs within dechlorinating
communities [19].

The enrichment culture presents a complicated mixed-culture system, which involves
competition, cooperation, or coordination among the bacterial communities [20]. The
successful enrichment of TCE-dechlorinating consortia depends, to a great extent, on the
appropriate stimulating conditions, which can promote the effective cooperation between
the DHC and coexisting members through the exchange of substrates. Therefore, detailed
investigations into the cooperative relationship between functional populations and the
assembly mechanisms of key ecological members will contribute to the development
of effective enriching strategies for the bioremediation of TCE-contaminated sites. Co-
occurrence network analysis, as a practical tool, was employed to explore the interspecies
association within the complex microbial assemblages in natural and anthropogenic envi-
ronments [21], and their findings implied that the biotic interactions govern the community
assembly and ecosystem function, and some central or keystone species play an essential
role in maintaining the structure and function of the whole microbial community [22,23].
The exploration of the ecological succession can help us to understand the microbial
community assembly mechanisms, and many previous studies have demonstrated that
microbial community assembly is shaped by deterministic (e.g., environmental selection
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and biotic interactions) and stochastic (e.g., birth, death, speciation and dispersal events)
processes simultaneously [24,25]. As a rapidly fermented substrate, lactate provides a more
rapid release of electrons with corresponding high H2 partial pressures, and has been suc-
cessfully used to enrich TCE-dechlorinating consortia [11,26–29]. However, at present, the
assembly mechanisms of key ecological members and the microbial community succession
patterns during the enriching process with lactate-feeding remain poorly understood.

In this study, we aimed to address the performance of stable TCE-dechlorinating con-
sortia with lactate-feeding and obtain a more thorough understanding the ecological mech-
anisms controlling microbial community assembly and interspecies interactions during the
whole enriching processes. To assess TCE dechlorination, three stable TCE-dechlorinating
enrichment cultures from different sources were established with TCE supplementation
and lactate-feeding. Afterwards, we employed 16S rRNA gene amplicon sequencing and
quantitative polymerase chain reaction (qPCR) analysis for reductive dehalogenase (RDase)
genes from various time-series samples to track the dynamic variations in the microbial
communities, their interactive networks, and the structure and function of microbiomes in
response to long-term subculturing processes. Overall, this study provides a fundamental
understanding of the enriching mechanism in the biostimulation process and is expected
to facilitate the development of bioremediation strategies for TCE-contaminated sites.

2. Materials and Methods
2.1. Enrichment of TCE Dechlorinating Cultures

The TCE-dechlorinating culture was enriched using an anaerobic medium containing
salts, trace elements, and vitamins and was prepared as previously described [30–33]. Two
soil samples were collected from 3.5–5.5 m below ground level at different chlorinated
solvent-contaminated sites (CS1 and CS2) in Shanghai as well as one activated sludge (AS)
sample from a WWTP in Xiamen, China. All experiments were carried out in 100-mL
serum bottles containing 40 mL (final volume) of the growth medium, which were sealed
with black butyl rubber septa and aluminum crimp caps. In brief, a 4-g sample was added
to 36 mL of the anaerobic medium and was amended with 250-µM TCE as the electron
acceptor and 10-mM lactate as the sole carbon source and electron donor. Meanwhile,
L-cysteine (0.2 mM), Na2S × 9H2O (0.2 mM), and DL-dithiothreitol (0.5 mM) were used as
the reductants, while resazurin (1 mg/L) was used as the redox indicator [33]. The micro-
cosms were incubated at 30 ◦C in the dark without agitation, and the chlorinated ethene
concentrations in all enrichment cultures were monitored fortnightly. Each treatment was
performed in triplicate. Various enrichment cultures with TCE-dechlorinating ability were
successively transferred to freshly autoclaved solutions of the aforementioned media with
10% inoculum and were supplemented with 250-µM TCE and 10-mM lactate. Following
repeated subculturing, we successfully developed three stable TCE-dechlorinating micro-
cosms: LCS1 (enriched from the CS1 samples), LCS2 (enriched from the CS2 samples), and
LAS (enriched from the AS samples).

2.2. DNA Extraction, 16S rDNA Amplicon Sequencing

Approximate 4-g “original samples” (AS_0, CS1_0, and CS2_0) were collected directly
from activated sludge/soil samples (AS, CS1, and CS2), and after repeated subculturing
(about 18-months later), approximate 4-mL enrichment cultures from the “initial samples”
after transferring into fresh medium (LAS_29, LCS1_18, and LCS2_18) and the “final
samples” after TCE was depleted in the same batch incubation (LAS_31, LCS1_20, and
LCS2_20), were filtered through 0.22-µm mixed cellulose ester membranes. Genomic
DNA was extracted from all samples using the EZNA® Soil DNA Kit (Omega Bio-Tek,
Norcross, GA, USA), with the extraction and purification procedure performed according
to the manufacturer’s instructions. The V4–V5 region of the prokaryotic 16S rRNA gene
was amplified using the universal primers 515F (5′-GTG YCA GCM GCC GCG GTA-3′)
and 907R (5′-CCG YCA ATT YMT TTR AGT TT-3′) [34]. PCR was performed under the
following conditions: 95 ◦C for 3 min, 30 cycles of 95 ◦C for 45 s, 50 ◦C for 60 s, 72 ◦C for
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90 s, and 72 ◦C for 10 min. Triplicate PCR products were combined and purified using
the QIAquick PCR purification kit (Qiagen, Valencia, CA, USA). The 16S rDNA amplicons
were sequenced on an Illumina MiSeq platform using a paired-end sequencing strategy
(2 × 250 bp) at the Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China). Since
each treatment was performed in triplicate, 27 samples were sequenced. The 16S rDNA
amplicon sequencing and the shotgun sequencing data were deposited in the National
Center for Biotechnology Information’s short reads archive database under BioProject
number PRJNA702557.

2.3. Analytical Methods and Data Analysis

Analyses of the chloroethenes and ethene were performed using the gas chromatog-
raphy (GC, Agilent 7890A, CA, USA) equipped with a headspace sampler and a flame
ionization detector. A 60-m × 0.32-mm DB-624 capillary column with a 1.8-µm film thick-
ness (J&W Scientific Inc., Folsom, CA, USA) was used to separate the compounds. We
withdrew 100-µL headspace samples using gastight 250-µL glass syringes (model 1725,
Hamilton Co., Reno, NV, USA) and were manually injected into a split injector operated
at a split ratio of 2:1. The conditions of the GC were as follows [12]: carrier gas = ultra-
high-purity nitrogen, flow rate = 3.0 mL/min, injection temperature = 200 ◦C, and detector
temperature = 220 ◦C, with the oven temperature programmed to hold at 50 ◦C for 3 min
before increasing to 200 ◦C at a rate of 50 ◦C/min and finally holding at 200 ◦C for 2 min.
The concentrations of chloroethenes and ethene were calculated by analyzing the headspace
samples as previously described [31,35].

2.4. Quantification of RDase Genes

In the quantification of the RDase genes (tceA, vcrA, and bvcA), qPCR reactions were
performed in triplicate using an Applied Biosystems 7500 Real-time PCR system (Applied
Biosystems, Waltham, MA, USA) alongside TaqMan primers and probe sets [36]. Each
MicroAmp optical tube had a 20-µL reaction volume containing a 10-µL TaqMan Universal
PCR Master Mix (Applied Biosystems), 0.4-µL forward primer and reverse primer (10 µM),
and 0.8-µL TaqMan probe (300 nM each), 0.4-µL ROX Reference Dye; 6-µL Nuclease-Free
Water and 2-µL DNA template from each 10-fold-diluted sample. PCR conditions were as
follows: 30 s at 95 ◦C, followed by 40 cycles of 5 s at 95 ◦C and 34 s at 60 ◦C. The PCR was
carried out in a spectrofluorimetric thermal cycler (ABI Prism 7700 Sequence Detection
System, Applied Biosystems). The abundance of dehalogenase genes was assessed via the
calibration curve according to a previously described method [33,36].

2.5. Sequencing Analysis

The 16S rRNA gene amplicon reads were trimmed and processed using the LotuS
pipeline tool [37]. The low-quality reads were excluded from further analysis [38], whereas
the remaining high-quality reads were chimera-checked and clustered into operational
taxonomic units (OTUs) at a 97% identity threshold using UPARSE [39]. The α- and β-
diversity indices of the microbial communities were then processed after rarefaction to the
same sampling depth using QIIME v1.9.0 [40]. Taxonomic annotation was performed using
the RDP classifier and the SILVA database (v132) (https://www.arb-silva.de/ (accessed on
10 April 2018)), with a bootstrap cutoff of 80%.

2.6. Network Analysis

Networks were generated for OTUs grouped taxonomically at the OTU level, and
used to identify the potential microbe–microbe interactions in anaerobic TCE-degrading
consortia. The co-occurrence networks of the identified OTUs were constructed via the
Spearman correlation and the Spearman’s rank coefficients (ρ) across all 97%-cutoff OTUs,
with occurrence in 16 (out of 18) samples and were calculated pairwise using the R package
Hmisc tool [41]. Subsequently, the significant (FDR-adjusted p value < 0.01) and robust
(ρ ≥ 0.6) correlations among the OTUs and modular analysis were conducted by using

https://www.arb-silva.de/
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the R package igraph tool [42]. Network visualization was performed using Gephi [43].
Both nodes with high betweenness centrality (BC, represented potential key connector or
bottleneck species) and with high degree (represented hubs in the network) were indicators
for potential keystone species [44].

2.7. Ecological Null Model Analysis

A null model approach, which is based on the weighted β-nearest taxon index (βNTI)
in combination with Bray–Curtis based Raup-Crick (RCbray), was performed to quantify
the contribution of the main ecological (deterministic or stochastic) processes underly-
ing the assembly of taxonomic communities [45,46]. There are five ecological processes
(homogenizing selection, variable selection, dispersal limitation, homogenizing dispersal,
and undominated (ecological drift)) simulating by this null model [45,46]. The weighted
β-mean nearest taxon distance (βMNTD) among the communities was calculated and
imported to null model for testing the βNTI. The βNTI values are significantly higher (>2)
and lower (<−2) than expected were considered as homogenizing and variable selection,
respectively [47]. For the case of |βNTI| < 2, but with RCbray values of >0.95 and <−0.95,
the contributions were regarded as dispersal limitation and homogenizing dispersal, re-
spectively. The trace contributions (|βNTI| < 2 and |RCbray| < 0.95) were identified as
undominated processes.

2.8. Statistical Analysis

In order to assess the enriching effect by lactate-feeding and TCE-supplementing,
and explore the microbial community succession patterns during the enriching process,
the indicator OTUs for these communities were classified using IndVal analysis with the
R package labdsv tool [48]. Only OTUs with highly significant indicator values (IndVal
index >0.95, p < 0.001) were considered strict habitat specialists [49]. Principal coordinate
analysis (PCoA) was used to visualize the β-diversity pattern of the microbial communities
based on Bray–Curtis distance matrices. In addition, permutational multivariate analysis
of variance (Adonis) and analysis of similarity (ANOSIM) were used to test the significant
variations in the microbial communities among the different enrichment cultures (LAS,
LCS1, and LCS2) [21,50]. Statistical analyses and plots were performed using the R packages
ComplexHeatmap [51], ggplot2 [52], phyloseq [53], and vegan [54] tools.

3. Results
3.1. Dechlorination of TCE by Enrichment Culture

Mixed cultures capable of dechlorinating TCE were successfully enriched from CS
and AS samples with lactate as the sole carbon source and electron donor. The chlorinated
solvents and ethene concentration trends of dechlorinating cultures with fresh inoculum
were then monitored. Figure 1 presents the variations in TCE, cis-DCE (cDCE), tDCE,
VC, and Eth concentrations in each microcosm following inoculation. On transferring the
samples to a fresh medium, TCE dechlorination to cDCE and tDCE was evident in each
microcosm, and with this transformation completed in 28 days and 41 days in the LCS
and LAS microcosms, respectively. The daughter product, cDCE was converted into VC
continually during treatment, while the tDCE appeared to remain at a low concentration
(≤4 µM). The VC was subsequently dechlorinated very slowly to ethene, which was
detected in 14 days following inoculation, with the concentration gradually increasing over
time. In the meanwhile, three previously identified DHC RDase genes (tceA, vcrA, and
bvcA) were confirmed via PCR with primer sets [36] prior to quantification. All enrichment
consortia produced strong PCR products for both tceA and vcrA, whereas the detection
of bvcA did not yield a positive signal, indicating the presence of tceA- and vcrA-carrying
dechlorinators but the absence of bvcA-carrying dechlorinators. The quantification results
(Figure 1) showed that the vcrA gene copy numbers were relatively stable at a low level,
albeit slightly increased over time. Simultaneously, the tceA abundances all significantly
increased from a 105 to a 107 level, indicating that the overall dechlorination ability of the
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enrichment cultures could be due to the combined activities of tceA- and vcrA-carrying
dechlorinators, with higher dechlorinating activity of TCE to DCEs to VC, but lower
dechlorinating activity of VC to Eth.

Figure 1. Cont.
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Figure 1. Reductive dechlorination of TCE during the incubating period in microcosms LAS (A)
established with activated sludge in Xiamen, and LCS1 (B) and LCS2 (C) from chlorinated solvent-
contaminated soil in Shanghai. Each microcosm was supplied with 250 µM of TCE and 10 mM of
lactate dissolved in anaerobic medium. Copy numbers determined by qPCR of tceA and vcrA in each
microcosm were shown above each set of columns. Concentration of VOCs (including TCE, c-DCE,
t-DCE, VC and Eth) in each microcosm were shown above each set of curves. Data were averaged
from triplicate microcosms.

3.2. Variation in Microbial Community Composition of Enrichment Cultures

High-quality reads (147,212–283,139) representing 3263 OTUs were generated through
the quality filtering of a total of 5,671,663 reads across the 9 original and 18 enriched samples.
The results of the α-diversity analysis indicated that the phylogenetic diversity (Shannon
diversity and equitability) and richness (OTUs and Chao1 richness) were significantly
higher in the original samples than those in the enriched samples (including initial and
final samples) communities (Wilcoxon test, p < 0.001) (Figure 2). These results imply
that the microbial communities in the original samples were more diverse than those
in the enriched samples. In addition, a slightly higher α-diversity was observed for the
microbial communities of the final samples than those of the initial samples in the same
batch (Figure 2).

PCoA ordination indicated that the enriched samples were clustered more tightly than
the original samples (Figure 3A), and that communities of the original and final samples
from each site were clearly separated (Figure 3A,B), but communities of the initial samples
were clustered together (Figure 3B). The communities of the AS and CS1 samples were
separated from each other over the sampling time (Figure 3A,B), but the initial and final
samples originating from the CS2 site were clustered together (Figure 3B). The Adonis
and ANOSIM analyses further confirmed that the compositions of the whole communities
were significantly different between the original samples and enriched samples (Adonis:
R2 = 0.535, p < 0.001, ANOSIM: R = 0.504, p < 0.001), as well as among the samples
originating from different sites (Adonis: R2 = 0.316, p < 0.001, ANOSIM: R = 0.263, p < 0.01)
(Table 1). Moreover, the microbial taxonomic communities in the original samples had
greater β-diversity than those in the enriched samples (Kruskal–Wallis test, p < 0.001), and
they were also greater in the final samples than in the initial samples (Kruskal–Wallis test,
p < 0.001) (Figure S1).
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Figure 2. Comparison of α-diversity indices of the prokaryotic communities in all enriching samples at different time points:
Original (9 samples), Initial (9 samples) and Final (9 samples). Error bars indicate standard deviation of the mean, and the
asterisks indicate significant difference (*** p < 0.001), whereas “NS” indicates no significant differences.

Figure 3. PCoA ordination analyses based on Bray–Curtis dissimilarity matrix of the prokaryotic communities in three
microcosms (enriched from CS1, CS2 and AS samples) over the (A) whole timeline (Original, Initial and Final) and (B)
incubation timeline (Initial and Final).
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Table 1. Significance test of the structure of the prokaryotic communities between sample sources
and enriching time using Adonis and ANOSIM analysis.

Factor b Adonis ANOSIM

R2 p R p

Whole a
Site 0.082 <0.01 0.028 0.214

Time 0.535 <0.001 0.504 <0.001
S * T 0.228 <0.001 — —

Incubation
Site 0.316 <0.001 0.263 <0.01

Time 0.223 <0.001 0.235 <0.01
S * T 0.148 <0.05 — —

a Whole, the prokaryotic communities during the enriching period (from original to initial time) and incubating
period (from initial to final time); incubation, the prokaryotic communities during the incubating period. b Site,
sites of sample sources, including contaminated soil (CS1 and CS2) and activated sludge (AS); time, sampling time,
including three time points (original, initial and final); S * T, the interactive effects of sample sources and time.

The heatmap result of the shared OTUs also presented the similar distribution patterns
with the PCoA analysis. The original, initial and final samples were discerned clearly
except for the LCS2_20 and LAS_29_2 samples (Figure S2). Further analysis found that the
enriched samples (including initial and final samples) shared more OTUs than the original
samples, which indicated that there would be convergence in the microbial community
structure after a long-term enriching period under the same conditions.

3.3. The Ecological Processes Underlying the Assembly of Enriched Microbiomes

The ecological processes underlying the structure of the microbial communities were
deciphered using a quantitative ecological framework, which incorporated the phyloge-
netic (βNTI) and taxonomic (RCbray) β-diversity dissimilarity-matrix-based null models.
The results indicated that an undominated process was the main process in determining
the assembly of the microbial communities within the microbiomes of AS, CS1, and CS2
(51.9–77.78%), while variable selection (7.4–37.0%) played a certain role in these micro-
biomes. Here, homogenizing selection (11.1% and 14.8%) shifted the ecological assembly
processes of the CS1 and CS2 microbiomes to a certain extent, whereas homogenizing
dispersal (22.2%) played a relatively important role in shaping the CS2 communities
(Figure 4A). Along the enriching timeline, an undominated process (51.9%) and variable
selection (48.1%) were the main processes governing the turnover of the original sam-
ple communities, whereas homogenizing selection (59.3%) and homogenizing dispersal
(37.0%) were the most important processes in determining the assembly of the microbial
communities at the initial stage, with an undominated process (81.5%) playing the key
role, alongside limited contributions from homogenizing selection (7.40%) and variable
selection (11.1%), in shaping the communities of the final time samples (Figure 4B).

3.4. Distribution of Indicators during the Enrichment Process

Homogenizing selection, as a deterministic force, drives the turnover of the microbial
communities during the incubating period, which exhibited distinct and stage-specific
characteristics. Indicator species analysis showed that 10 genera (Hafnia-Obesumbacterium,
Lactococcus, Brochothrix, Caulobacter, Methylobacterium, Thermus, Psychrobacter, Chryseobac-
terium, Stenotrophomonas, and Deinococcus) and genera (Gracilibacter, DHC, Hydrogenoanaer-
obacterium, and Anaerovorax) were highly associated with the microbial communities at
the initial and final stage samples, respectively (Figure 5). However, no indicators were
observed at the original stage samples (Figure 5) contributing to the stochastic force, which
shaped the primary community composition to become more complex and homogeneous.
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Figure 4. The contributions of ecological processes to microbial assemblages in each of the enriching samples originated
from different sites (A) at different time points (B). Weighted β-nearest taxon index (βNTI) were applied to evaluate the
assembly processes, where the deterministic processes mainly included homogeneous and variable selections, and the
stochastic processes included dispersal limitation, homogenizing dispersal, and undominated processes.

Figure 5. Heatmap diagram showing the distribution of 14 prokaryotic indicators (genera level) during the enriching
and incubating period. Each row and column of the heatmap diagram corresponds to a single indicator and samples,
respectively. The row data for each indicator were z-score transformed. Dendrograms were constructed based on Pearson
correlation clustering. The grey and dark grey colors in the column annotations indicate the Original, Initial and Final
samples, respectively. The row annotations on the right-hand side indicate the phylum/class of each indicator.
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3.5. Topological and Taxonomic Properties of the Co-Occurrence Networks

We used co-occurrence networks to evaluate any potential microbial interactions and
to identify keystone species that are especially interactive. The entire network derived from
the TCE-dechlorinating enrichment microbiome dataset (including 18 samples without the
original samples), which consisted of 168 nodes with 229 edges.

Based on their connectivity pattern, we clustered the OTUs using modularity maxi-
mization, resulting in 11 major modules, each of which was composed of a group of OTU
nodes that interconnected more frequently among themselves than with nodes in other
modules (Figure 6A, Table S1). The modules could be perceived as functional units in the
microbial communities, whereas previous studies have also interpreted the modules as
niches [55]. Among them, Pseudomonas dominated almost all of module I, II, and III, and
was highly connected to other species within and outwith Module I; while Desulforhabdus
(OTU_9) with the highest BC value, was highly connected to other species in and outside
of its own Module VI. As the predominant TCE dechlorinator, the genus DHC (OTU_10)
was highly connected to Christensenellaceae, Gracilibacteraceae, and an unknown Clostridi-
ales bacterium in its own Module IV, which was regarded as the potential dechlorinating
center. Most notably in this network, the genus Methanofollis (OTU_4), as the sole identi-
fied archaea group, was assigned to Module VIII, which might play a special role in the
dechlorination process.

Figure 6. Networks of TCE-dechlorinating cultures microbiome. Co-occurrence networks of 97%-cutoff operational
taxonomic units (OTUs) within TCE-dechlorinating cultures microbiome based on correlation analysis. The size of each
node is proportional to the number of connections (i.e., degree). The edges indicate strong Pearson Correlation Coefficient (r
> 0.77) and significant (p < 0.05) positive correlations between nodes. (A): OTUs colored by modularity class; (B): OTUs
colored by the phyla/classes-level taxonomy.

Based on their evolutionary relationships, all OTUs in the network were classified
into seven major phylum/classes: Gammaproteobacteria (39.3%), Firmicutes (16.7%), Al-
phaproteobacteria (9.52%), Actinobacteria (8.33%), Bacteroidetes (7.74%), Chloroflexi (5.36%),
and Deltaproteobacteria (2.38%) (Figure 6B, Table S1). The genera (including Pseudomonas, an
unknown genus in the Clostridiales family XII, Aminivibrio, Psychrobacter, Flavobacterium,
Acinetobacter with a higher degree value, in company with the genera (including Desulforhab-
dus, Pseudomonas, Aquabacterium, Acetobacterium, an uncultured genus in Anaerolineaceae,
Lysobacter, an uncultured genus in Saprospiraceae (OTU_59), and an unknown genus in
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Holophagae subgroup 7 with a higher BC value were regarded as the potential keystone
species (Figure 7, Table S2).

Figure 7. Keystone species analysis. Betweenness centrality vs. node degree of all species in the
prokaryotic community networks of TCE-dechlorinating microcosms. Nodes with high betweenness
centrality represented potential key connector (or bottleneck) species. Nodes with high degree
represented hubs in the network. Both measures were indicators for potential keystone species.
Bacterial species (dots) were colored by phylum/class membership. Bacterial species that were
maximal in property are highlighted in plots. The genus Pseudomonas and Desulforhabdus may act as
potential keystones in the dechlorinating microbiome.

4. Discussion
4.1. Performance of the Reductive Dechlorination of TCE by Enriched Cultures

In this study, we successfully enriched three stable TCE-dechlorinating consortia
using lactate as the sole carbon source and electron donor. Since chlorinated ethene
respiring microorganisms may exist in sites that have not been reported to have chlorinated
solvent contamination [56–59], it is not surprising that TCE dechlorination occurred in
our enriched cultures, which were either from chlorinated solvent-contaminated sites or
from activated sludge. All enriched cultures were able to completely remove 250-µM
TCE in 28–41 days, achieving the TCE-degradation rate of 6.1–8.9 µM/day (Figure 1),
which proceeded more slowly than those observed in previous studies (with the TCE-
degradation rate of 11–50 µM/day) involving lactate-enriched cultures under similar
conditions [26–28]. Furthermore, partially reductive dechlorination of TCE was observed
in our consortia, with a buildup of VC and a limited generation of Eth, which indicated the
possible inhibition of VC dechlorinators. DHC is the only known genus that can reduce
VC to Eth [29], and the existence and abundance of DHC in our enriched consortia were
confirmed via qPCR analysis of RDase genes and 16S rRNA gene amplicon sequencing. In
fact, DHC was determined to be an indicator in our enriched consortia at the final time
of the incubation period (Figure 5), as well as the key dechlorinator that responds most
positively to the TCE-dechlorinating process (Figure 1). The achievement of complete
reductive dechlorination is strictly dependent on the key microorganisms equipped with
the RDase enzymes, among which are the tceA gene coding for a protein that catalyzes
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the sequential metabolic transformation of TCE to cDCE and VC, and the cometabolic
generation of Eth from VC. Meanwhile, vcrA reduces DCE isomers and VC, while bvcA
is involved in the metabolic transformation of VC to Eth [60]. In our study, the tceA
gene was detected with abundance and significantly increased, which indicated that the
dechlorination of TCE to DCE and VC may be dominated by the tceA-carrying populations
and the stable low level of the vcrA gene could explain the accumulation of VC and the
presence of a limited amount of Eth. Reductive dechlorinations catalyzed by dechlorinators
produce final products that vary depending on the physiological groups involved and may
occur via a combination of metabolic and cometabolic processes [26]. The accumulation of
VC has also been frequently observed in various field and laboratory experiments since
VC reduction is the rate-limiting step in the reductive dechlorination of TCE to Eth [61]. As
is well known, VC is a human carcinogen and is more toxic than its parent compounds.
Appropriate supplementation with substrates promoting complete dechlorination is the
key element to determine the success of the biostimulation approach.

4.2. Interactions of TCE Dechlorinators and Other Keystone Species in the Enriched Consortia

Lactate can be used as a common growth substrate for major groups of bacteria, which
could catalyze lactate to pyruvate via lactate dehydrogenase [62], including Pseudomonas
spp. [63,64], Acinetobacter spp. [65], sulfate-reducing bacteria (SRB), and acetogenic bac-
teria [62]. The microbial community of enrichment cultures is complex, the analysis of
co-occurrence networks using abundant data could enable a better understanding of micro-
bial community ecology through identifying the interactome relationships among species
that cannot be obtained through the use of traditional analytical approaches [66,67]. From
the analysis results for the microbial interactome networks and the potential syntrophic
relationships in our enriched cultures, we ascertained that Pseudomonas populations with
the highest node degree and highest proportion (>74% of the classified sequences) were
present in our dechlorinating consortia. Pseudomonas spp. has been reported as a dechlori-
nation bacteria [68–70], and might play an indirect but crucial role in the dechlorinating
process by merging into the pyruvate cycle, which operates the energy production and
regulates the TCA cycle. Another identified dominant group contained SRB, including
Desulforhabdus spp. (accounting for 0.05–0.16% of the classified sequences) with the highest
BC (Figure 6) and Desulfovibrio spp. (accounting for 0.35–10.03% of the classified sequences),
which were also identified as keystone members that can utilize lactate as the preferred
electron donor [71]. Syntrophic lactate oxidation in the presence of a hydrogenotrophic
methane-producing partner has been described in relation to Desulfovibrio spp. [72], which
belongs to incomplete oxidizing SRB and could not use acetate as an electronic donor [73].
When involving in the anaerobic dechlorination of TCE, Desulfovibrio spp. plays a role in
scavenging O2 and providing necessary nutrients [74]. Meanwhile, Desulforhabdus spp.
could oxidize formate, acetate, propionate, and ethanol during sulfate reduction [73], com-
peting with DHC in terms of acetate. As a member of hydrogenotrophic methanogens [72],
Methanofollis spp. (accounting for 0.02–7.92% of the classified sequences) was the sole
archaea member detected in our enriched consortia, which would compete with DHC in
terms of H2.

DHC is strictly hydrogenotrophic and is fastidious regarding its growth conditions,
including pH, H2, acetate, corrinoids, biotin, and thiamine, all of which are generally
provided by coexisting members of anaerobic food webs within dechlorinating communi-
ties [19,75]. To survive and to undergo complete dechlorination to Eth, in addition to the
collaboration with other microorganisms, DHC also must compete for nutrient substances
and H2 with other members. The limited generation of Eth and the accumulation of VC
identified in our study indicate that the current environment does not provide favorable
conditions for complete TCE dechlorination. While reductive dechlorination can occur
under a variety of redox conditions, the reaction commonly only accounts for a small
fraction of electron flow in microbial communities, with other terminal-electron-accepting
processes, such as sulfate reduction, iron reduction, nitrate reduction, methanogenesis,
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homoacetogenesis, and volatile fatty acid formation typically accounting for a large fraction
of the electron flow in these systems [76]. While DHC may play the dominant role in TCE-
dechlorinating processes, it was clearly not the predominant member (only accounting
for 0.05–2.03%) in our enriched culture. Given that the microbial fermentation of lactate
proceeds rapidly and generates a high concentration of H2, a considerable amount of
H2 is consumed during alternate terminal electron-accepting processes, thus limiting the
efficiency of reducing the equivalent consumption in the reductive dechlorination pro-
cess [12]. How to shape the lactate-feeding community for competent TCE dechlorination
thus requires further investigation.

4.3. Assembling Mechanism of Stable TCE-Dechlorinating Communities

Lactate is considered as one of the favorable feedstock for major groups of bacteria
and is also a key intermediate in the anaerobic digestion of biomass in the environment [72].
In our study, long-term feeding with lactate and TCE contributed to a stable consortium
capable of TCE dechlorination. Revealing the ecological processes driving the assembly of
the aforementioned TCE-dechlorinating communities is of significance to the bioremedi-
ation of TCE-contaminated sites. Here, we found that the communities of our enriched
cultures were shaped by both stochastic and deterministic processes (Figure 4A). A recent
study proposed that environmental heterogeneity and regional processes were the primary
factors to determine the community structure [77]; hence, variable selection played an
essential role in the formation of the unique microbial assemblages in the original samples
(Figure 4B), and greater β-diversity (Figure S1) due to distinct primary environment was
observed among the different original samples.

When the samples were transferred into the same enrichment medium, their commu-
nity patterns began to converge (Figure S1) under the same environment with repression
and induction of the lactate-TCE-feeding. For the alteration of environmental conditions,
certain microorganisms may become locally extinct or may be maintained at low levels,
while they may also become more abundant and capable of playing a greater role in the
given ecosystem [78]. For the initial stage samples, homogenizing selection process drove
the alteration of the community structure (Figure 4B), resulting in the decrease in α-diversity
(Figure 2). Meanwhile, homogenizing dispersal also played a certain role (Figure 2) for
the operation of transferring to different serum bottles. Subculturing procedure might
bring a trace amount of oxygen, which will contribute to the emergence of facultative
anaerobic populations such as Hafnia-Obesumbacterium [79], Psychrobacter [80], Chryseobac-
terium [81,82], and Stenotrophomonas [83]. Simultaneously, supplementation with abundant
lactate can increase the number of lactate-metabolizing groups (LMG) represented by the
genera of, for example, Pseudomonas, Lactococcus, Brochothrix, Thermus, and Deinococcus
(Figure 5).

With the generation of secondary metabolites and the reduction in TCE toxicity,
enrichment communities adapt to the culturing environment (such as carbon source,
pH, content of pollutants, anaerobic degree), and the stochastic process revert back to
dominate the turnover of microbial community (Figure 4). In the final stage samples,
the recovery of α-diversity was observed in all enrichment cultures (Figure 2). Lactate
utilization may provide sufficient direct electron donors and related cofactors to activate the
strictly anaerobic and/or dechlorinating-related populations, such as DHC, Gracilibacter,
Hydrogenoanaerobacterium, and Anaerovorax (Figure 5). However, the stochastic process will
increase the phylogenetic diversity (Figure 2) and develop a more complex community
structure (Figure S1), which was not beneficial for the accumulation of DHC.

The aforementioned assembling mechanism indicates that successive stimulation with
appropriate substrates can promote bioremediation for TCE-contamination, and also hints
to us that the reduction of the stochastic forces or the enhancement of the deterministic
processes may promote more effective biostimulation.
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5. Conclusions

In summary, this study revealed the succession pattern and associated assembly mech-
anisms of lactate-fed consortia for the reductive dechlorination of TCE. The long-term
subculturing results for the microbial communities of the enrichment cultures changed
along with time, while the different sample sources tended to shape distinct patterns of
the microbial community, and the indicator pattern also exhibited distinct and enrich-
ment time-specific characteristics. The co-occurrence network showed that complete TCE
dechlorination in our enrichment cultures required cooperation by keystone populations
such as DHC, LMG, SRB. While repeated subculturing enhanced the selecting effect,
deterministic and stochastic processes were simultaneously responsible for shaping the
TCE-dechlorinating community assembly. The achievement of stable TCE-dechlorinating
consortia presents an effective strategy for the bioremediation of TCE-contaminated sites.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9040751/s1, Figure S1: Box plots of the variance in the Bray–Curtis distance
of taxonomic communities in different sampling time point; Figure S2: Heatmap showing the
percentage of OTUs shared between any two samples in this study; Table S1: Topological attributes
of modules and taxonomies information in the co-occurrence networks of microbial communities;
Table S2: Topological attributes of nodes and taxonomies information in the co-occurrence networks
of microbial communities.
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