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maintenance of relevant visual information within short-term 
memory. Thus, theta oscillations in V4 could provide a possi-
ble mechanism for supporting and coordinating cross-neuronal 
interactions within neuronal ensembles during visual memory. 
However, physiological evidence for directed oscillatory interac-
tions in the theta-frequency range during short-term memory 
has not been obtained yet.

A description of the interaction patterns of oscillatory processes 
is provided by different measures that quantify various aspects of 
functional coupling. For example, some measures such as the phase-
locking value (Lachaux et al., 1999, 2000) provide insights into the 
instantaneous phase-relationship between two oscillatory processes 
and are derived from Wavelet- or Hilbert transform-based methods. 
In contrast, coupling measures derived from multivariate autore-
gressive (MVAR) models are becoming increasingly important as 
they capture not only instantaneous interactions between neural 
signals, but can give insights into the causal relationship between 
oscillations as well as the direction of their interaction. Thus, MVAR 
models are powerful in capturing the complex nature of oscillatory 
interactions and their role in neural processing.

IntroductIon
Cortical oscillatory activity measured from local field potential 
(LFP) recordings or electroencephalogram (EEG) is a widespread 
neuronal phenomenon and is considered to underlie the commu-
nication of local and distant neural populations throughout the 
brain (Fries, 2005). Different parameters of oscillations in distinct 
frequency bands often show correlations with various aspects of 
sensory information processing (Buzsaki and Draguhn, 2004). A 
prominent example is the modulation of gamma synchrony in 
visual cognition, for example in tasks involving the manipulation 
of visual attention (Fries et al., 2001), binocular rivalry (Gail et al., 
2004) or object recognition (Supp et al., 2007).

In contrast to visual processing, several studies revealed a spe-
cific role of theta oscillations (3–12 Hz) in mnemonic process-
ing, for example in spatial memory in rodents (Okeefe, 1993; 
Buzsaki, 2005), working memory in humans (Klimesch, 1999; 
Raghavachari et al., 2001, 2006) and visual short-term memory 
in non-human primates (Rainer et al., 2004; Lee et al., 2005). 
In the latter study, neuronal oscillations in the theta band in 
extrastriate area V4 have been shown to mediate the coding and 
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Multivariate autoregressive models are a generalization of uni-
variate autoregressive (AR) models, which were among the first 
methods that were applied to EEG data to reveal the spectral prop-
erties of brain signals already in the late 1960s (Zetterberg, 1969). 
MVAR models are able to take the interactions of multiple simul-
taneously recorded brain signals into account. A large set of cou-
pling measures in the frequency domain such as coherency (Nunez 
et al., 1997, 1999), Directed Transfer Function (DTF; Kaminski and 
Blinowska, 1991) or Partial Directed Coherence (PDC; Baccala and 
Sameshima, 2001) as well as variants of these and similar measures 
can be derived using the MVAR model parameters (Schlögl and 
Supp, 2006; Porcaro et al., 2009) and the implementation of cou-
pling analyses is readily achieved by various toolboxes (Cui et al., 
2008; Schlögl and Brunner, 2008).

Importantly, DTF and PDC, unlike coherency, assess the direc-
tionality of couplings between signals, i.e., they measure the direc-
tion of information flow between different channels. Both measures 
are based on the concept of Granger causality (Granger, 1969), 
which can be informally stated as follows: if the observation of a 
time series x(t) significantly improves the prediction of a time series 
y(t), x(t) “Granger-causes” y(t). PDC differs from DTF by hav-
ing the ability to reveal exclusively direct couplings, which means 
that it does not assess indirect couplings via intermediate sites. For 
example, if the model incorporates three observed channels, with 
a connection structure A → B → C, PDC is not expected to show 
a connection from A to C. It is important to note that Granger 
causality is not identical to physical causality, but is a statistical 
measure reflecting the improvement of predictability of one signal 
based on the information of another.

Previously, AR models have been applied to EEG data and LFP 
data for various brain areas and frequency bands of interest and have 
revealed important insights into the functional relations between 
neuronal assemblies involved in sensorimotor behavior, sensory 
integration and visual attention (Bressler et al., 1999, 2007; Liang 
et al., 2000, 2001, 2003; Brovelli et al., 2004; Chen et al., 2006; Supp 
et al., 2007; Anderson et al., 2009; Kayser and Logothetis, 2009).

In the present study, we applied MVAR modeling to simultane-
ous LFP recordings from multiple electrodes in V4 while monkeys 
performed a visual identification task. MVAR models have been used 
previously to examine causal influences in area V4 in order to eluci-
date physiological mechanisms underlying neuronal oscillations in the 
alpha frequency range (i.e., 10–15 Hz) (Bollimunta et al., 2008).

In our study, our goal was to exploit the advantages of MVAR mod-
els in order to investigate the directed functional relationship between 
multiple sources underlying theta oscillations during visual memory 
in V4. In order to gain insights into the direct interaction between 
multiple oscillatory components (i.e., bypassing coupling due to indi-
rect influences) our MVAR models incorporated LFP activity of more 
than two simultaneously recorded channels. In addition, we evaluated 
the temporal and spatial dynamics of these direct interactions and 
provide a first description of causal and directed oscillatory coupling 
in the theta-frequency range during visual memory.

MaterIals and Methods
In the following, we describe the procedure that was used for our 
analysis. Afterwards, the experimental procedures for the data 
acquisition are described.

PreProcessIng
Local field potential data was preprocessed using standard tech-
niques, as described for example in Ding et al. (2000). First, we 
resampled the data to a frequency  f

s
 of 200 Hz. This sampling rate 

is low enough to be able to use a sufficiently low MVAR model 
order while being high enough for an adequate representation 
of the frequency bands of interest. Then, we used a 50 Hz notch 
filter to suppress the electrical supply line noise. Afterwards, the 
data was normalized by subtracting the mean waveform across 
trials (grand-averaged mean waveform) from each single trial and 
subsequently dividing the result by the standard deviation across 
trials. This is necessary to remove first order instationarities from 
the data and to set the ensemble mean of the resulting data set to 
zero. We did not apply the same normalization procedure using 
the temporal mean and standard deviation for each separate trial, 
which is also frequently proposed, because this can lead to an 
underestimation of the low frequency components in which we 
were particularly interested.

MultIvarIate autoregressIve ModelIng
To assess coupling between different LFP channels, we separately 
generated linear MVAR models of the data for each recording ses-
sion and each time interval of interest. The MVAR model can be 
expressed as:

y y x( ) ( ) ( ).t t p tp
p

P

= − +
=

∑A
1

The model tries to predict the data at sample t from a linear 
combination of the P previous samples of all M channels. Here, 
y(t) is the vector of M simultaneously observed LFP recordings, 
P is the model order stating the number of preceding samples 
that are used to predict the data at sample t, and the innova-
tion process x(t) (sometimes addressed as the “residual error” or 
“prediction error”, see Schlögl, 2000; Supp et al., 2007 for com-
ments) is assumed to be a multivariate white noise process and 
is equal to the difference between the model prediction and the 
actual data. In order to estimate the model parameter matrices 
A

p
 that weight the previous samples of the time series to pre-

dict the current one such that the mean quadratic error is mini-
mized, we use the Burg-type method of Vieira–Morf (Marple, 
1987) which, according to Schlögl (2006), is expected to provide 
the most accurate estimates of the model parameters. We used 
250 ms windows for the time-frequency analysis, with an overlap 
of 200 ms for subsequent time intervals (Ding et al., 2000 called 
this procedure an Adaptive MVAR or AMVAR approach), and 
1 s windows for the assessment of statistical significance of cou-
pling and change in coupling between the two investigated task 
conditions (cf. Experimental Task). Note that the model assumes 
the data to be stationary, which is usually not the case for longer 
time segments of electrophysiological data, but for the short time 
intervals that are investigated in this study, the data is assumed 
to be quasi-stationary. We used the freely available open source 
Matlab implementation of the BioSig Toolbox for biomedical 
signal processing (Schlögl and Brunner, 2008) for our analysis, 
which can be found at http://biosig.sf.net/.

http://biosig.sf.net/
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model order does not determine the spectral resolution, which is 
in fact infinite, but instead it determines the number of observed 
frequency components for each pair of channels, which is P/2, and 
relates to the “frequency resolution” in this sense; Schlögl and Supp, 
2006) and overparametrization and approximately corresponds to 
the model orders used in similar approaches. For example, Brovelli 
et al. (2004) used a model order of 10 (corresponding to a 50 ms 
window) for analyzing beta oscillations, Supp et al. (2007) revealed 
couplings in the gamma frequency range using a model order of 
15 (30 ms), and Kayser and Logothetis (2009) and Anderson et al. 
(2009) studied oscillations including the theta range using model 
orders of 6 (60 ms) and 17 (85 ms), respectively. Additionally, this 
model order fulfills all the requirements stated in Schlögl and Supp 
(2006) to obtain a sufficient model of the data. Furthermore, one 
should note that slight changes in the model order do not lead to 
arbitrarily large changes in the prediction error, but it is still an 
important parameter for the correct estimation of the couplings 
(Schlögl, 2000).

generalIzed PartIal dIrected coherence
As mentioned earlier, we used generalized partial directed coher-
ence (GPDC; Baccala et al., 2007) for our analysis, which is a slightly 
adapted version of PDC with better variance stabilization proper-
ties. Analysis of the validity of this coupling measure using simu-
lated and real data for which the ground truth is known as well as 
a comparison to DTF and other measures can be found elsewhere 
(Baccala and Sameshima, 2001; Kus et al., 2004; Pereda et al., 2005; 
Gourevitch et al., 2006; Porcaro et al., 2009). Moreover, Porcaro 
et al. (2009) indicated that PDC is the most suitable method for 
this kind of analysis based on their results on MEG data.

Generalized partial directed coherence is derived by first trans-
forming the MVAR model from the time domain into the fre-
quency domain to obtain the frequency representation of the model 
parameters:
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p
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where I refers to the M-dimensional identity matrix and f
s
 is the 

sampling frequency. Note that in this equation, i2 = −1.
Then, GPDC

ij
 (which reflects the coupling from channel j to 

channel i) is calculated to be:
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where σi
2 refers to the variance of the innovation process x

i
(t). 

GPDC
ij
 is normalized in the interval [0, 1], with increasing values 

for stronger interactions at particular frequencies, and sums up to 
one for each frequency component over all destination channels 
including the channel itself. The idea is to calculate the degree of 
influence of channel j to channel i with respect to the total influ-
ence of j on all channels. Note that this normalization procedure of  
(G)PDC was recently criticized (Schelter, 2009) because of some 
difficulties in comparing interaction strengths for  different 

There exists a number of criteria for estimating the optimal 
model order for each data set such as the Akaike Information 
Criterion (AIC; Akaike, 1974) or Schwarz’s Bayesian Information 
Criterion (BIC; Schwarz, 1978) which try to estimate the optimal 
model order for the MVAR model.

Both criteria take the goodness of fit to the empirical data into 
account, but also penalize for increasing numbers of free parameters 
to avoid overfitting to the data. Note that smaller values indicate 
better model orders. Unfortunately, the optimal model order is usu-
ally not consistent for different criteria and different data sets. We 
tried to estimate the optimal model order (in the range between 1 
and 50, which reflects the length of the 250 ms windows we used for 
the time-frequency analysis) by using these measures, but the results 
did not show consistent local minima and qualitatively decreased 
with increasing model order instead (see Figure 1). We compared 
models of order 20 and 40 for the 250 ms windows and found the 
resulting average power spectra and couplings to be qualitatively 
consistent. Therefore, we used a model order P of 20 for every 
data set, which corresponds to a time window of 100 ms given the 
sampling frequency of 200 Hz. This model order reflects a tradeoff 
between spectral resolution (specifically, we make clear that the 

Figure 1 | evaluation of model orders using Akaike information 
Criterion (left, AiC) and Schwarz’s Bayesian information Criterion 
(right, BiC), normalized between maxima and minima of each session 
for the 1-s data from the delay condition. Gray lines indicate single 
sessions, black lines correspond to the average over all sessions. Criteria  
did not show consistent local minima, but qualitatively decreased with 
increasing model order up to P = 50. Smaller values indicate better model 
orders.  For the data from both animals and all sessions, the model order  
P = 20  was chosen as a tradeoff between frequency resolution and 
overparametrization.
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external reference. The analog signal was then filtered and ampli-
fied (BAK electronics, Germantown, MD, USA) to extract the LFP 
responses. After an additional waiting period of at least 1 h we 
started the recordings. The LFP was obtained by band-pass filtering 
the signal between 0.1 and 300 Hz and digitizing with a sampling 
rate of 4464 Hz. One unit of the analog-to-digital converter cor-
responds to 5 μV.

We recorded LFP activity from 44 channels in 10 sessions from 
monkey 1 and 86 channels in 20 sessions from monkey 2. This 
resulted in 202 channel pairs for monkey 1 and 398 channel pairs 
for monkey 2. For each monkey, the minimum number of channels 
per session was 3, the maximum number of channels was 6. The 
spatial distribution of all recorded channels for monkey 1 and 2 can 
be found in Figure 2. For each recording site, its location is defined 
by two dimensions (anterior to posterior, and medial to lateral) 
based on the recording grid placed within the recording chamber. 
In order to measure coupling as a function of distance between 
recording sites, we calculated the Euclidian distance between two 
sites based on their respective locations along the two dimensions. 
The minimal distance between sites was 0.5 mm (i.e., sites directly 
neighboring each other within the grid), the maximal distance we 
obtained was 4 mm.

statIstIcal analysIs
In order to be able to calculate confidence intervals that can be used 
to evaluate the significance of differences in coupling between differ-
ent time intervals, we used a bootstrapping procedure that samples 
with replacement from the original trial set in order to generate 
bootstrap samples of the same size as the original data, but with dif-
ferent subsets of trials in them (Efron and Tibshirani, 1993). For each 
regarded data set of 1 s (last second of baseline and delay period), a 
set of 1000 bootstrap samples was generated. These bootstrap sam-
ples were then independently used to calculate the MVAR models 
as stated above and to estimate the couplings between the simul-
taneously recorded LFP channels with their respective confidence 
intervals. Change in coupling was considered significant if both the 
0.01st and 99.9th percentile of the bootstrap distribution was above 
(increase) or below (decrease) the average baseline level.

 frequencies. As the values A
ij
(f) and A

ji
(f) are not necessarily iden-

tical, directionality of coupling is obtained. As GPDC
jj
 has to be 

interpreted as the remaining amount of coupling that can not be 
assigned to the influence on other channels, we excluded self-cou-
pling of channel j to itself for the subsequent analysis.

exPerIMental task
Two adult male rhesus monkeys (Macacca mulatta) participated in 
the experiments. All studies were approved by local authorities and 
were in full compliance with applicable guidelines (EUVD 86/609/
EEC) for the care and use of laboratory animals. The behavioral task 
of the monkeys was a delayed matching to sample task. The mon-
key was seated in front of a screen at a distance of approximately 
110 cm. An initial tone indicated the potential start of a trial. The 
monkey initiated a trial-start by grasping a lever and fixating on 
a small fixation spot on the center of the screen (baseline period). 
After 1500 ms, a first stimulus appeared on the screen for 250 ms, 
the so-called sample stimulus. As sample stimuli we used different 
natural images. The stimuli that were used in all of the experi-
ments were chosen from the Corel-Photo-CD “Corel Professional 
Photos” comprising a collection of natural images showing birds, 
flowers, monkeys and butterflies in their natural surroundings. 
The images used in this study were randomly selected. All images 
were manipulated by Fourier techniques that have been described 
in detail elsewhere (Liebe et al., 2009). The sample stimulus was 
followed by a delay period of 1500 ms during which the monkey 
held fixation. After the delay, a second stimulus, the so-called test 
stimulus, was presented. The monkeys were rewarded for a lever 
release whenever the test stimulus matched the sample stimulus. 
Whenever the test stimulus did not match the sample, the monkeys’ 
task was to withhold the lever release until, after a brief delay of 
200 ms, a second test stimulus appeared, that always matched the 
sample. This procedure ensured that the monkey had to initiate 
a behavioral response on every trial. The monkeys were rewarded 
with juice for every correct trial. Within one session, the different 
trial types were randomly interleaved. Stimuli were 7° × 7° in size, 
at 24-bit color depth, and presented at the center of gaze on a 21″ 
monitor (ViewSonic P810) with linear luminance response as well 
as linear response at separate color channels (gamma corrected).

electroPhysIology
Local field potentials were recorded from recording chambers 
placed on the surface of the skull based on stereotaxic coordinates 
allowing vertical access to the dorsal region of extrastriate area V4. 
The Hoarsley–Clark coordinates for the center of the recording 
chambers for monkey 1 were AP: −6.5, ML: −29.7. For monkey 2 
the chamber coordinates were AP: −5.2, ML: −29.9. The implanta-
tion as well as surgical procedures used are described in detail in 
Lee et al. (2005). Neural signals were measured using two custom 
made micro drives mounted on a plastic grid (Crist Instruments, 
Hagerstown, MD, USA). In each recording session 4–6 tungsten 
microelectrodes (UEWLGDSMNN1E, FHC Inc., Bowdoinham, 
ME, USA) were manually lowered down into the cortex in pairs 
with a minimal separation between electrodes of 0.5 mm. The 
impedance of the microelectrodes was approximately 1 MΩ. The 
signal from each electrode was preamplified (factor 20, Thomas 
Recording, Giessen, Germany) using the recording chamber as the 

Figure 2 | recording locations along the medial–lateral and anterior 
posterior direction for monkey 1 and 2. 1 unit corresponds to 1/2 mm. Note 
that symbols are slightly jittered at their recording locations for 
better visualization.
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the onset of the test stimulus) to the power spectrum obtained from 
the 1000 ms time interval preceding the onset of the sample stimu-
lus (“baseline”). Figure 3 shows the median amplitude spectra of 
LFP activity across all recorded channels (Figure 3A) derived using 
a Morlet wavelet based approach (Tallon-Baudry and Bertrand, 
1999; Graimann and Pfurtscheller, 2006). In both monkeys, the 
power spectra showed a local peak in the theta-frequency range 
during the delay period (black) which is absent during the pre-
stimulus baseline period (gray). Figure 3B shows the distribution of 
power at the peak frequency within the theta range for the baseline 
vs. delay period and illustrates a significant change in theta power 
during the delay compared to the baseline.

general couPlIng analysIs
Based on the occurrence of enhanced theta power during the delay 
period, we analyzed coupling strength between the different record-
ing sites using GPDC obtained from MVAR modeling. We were 
interested in whether the enhanced theta power we observed  during 
the delay period of the task coincides with directed coupling in the 
theta band. Thus, we first examined GPDC coupling as a function of 

Significance of coupling strength compared to the hypothesis 
that there was no coupling at all was assessed using a shuffling 
procedure. For each recording channel, trials were independently 
permuted repeatedly to obtain 1000 shuffled samples. MVAR model 
estimation was then also applied to these data sets.

For assessing the statistical significance of the effects of coupling 
as a function of distance between recording sites, we used a shuf-
fling procedure that randomly shuffles the coupling values over 
distances to obtain 104 shuffled samples. Statistical significance of 
the real rank correlation was then calculated with respect to this 
distribution.

results
Power sPectra
First, we examined the frequency content of induced oscillations 
during different periods of the visual memory task. Previously it 
had been found that there is enhanced power in the theta band dur-
ing the delay period of the task in V4 (Rainer et al., 2004; Lee et al., 
2005). We first sought to confirm these findings and compared the 
power spectrum for the delay period (i.e., across last 1000 ms before 

Figure 3 | enhanced power in the theta band during the delay period of 
the task. (A) Amplitude spectrum of LFP activity (median across all recorded 
channels in V4, N = 44/86 for monkeys 1/2, respectively) during the pre-stimulus 
baseline period (gray) and the delay period (black) of the delayed matching to 
sample task for frequencies from 1 to 40 Hz. We find enhanced power in the 

theta band (4–10 Hz) during the delay period for both monkeys. (B) Boxplots 
showing the distribution of power at the peak frequency within the theta range 
for the baseline vs. delay period. Both monkeys show a significant increase in 
theta power from baseline to delay (Wilcoxon signed rank test Z = 6.95/4.47, 
p < 0.01 for monkey 1/2, respectively).
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Subsequently, we assessed changes in coupling between the 
baseline and the delay period for several frequency bands that 
have been traditionally implicated in the interaction of oscilla-
tory components during sensation and cognition and also follow 
conventional definitions of theta and beta bands [theta (3–12 Hz), 
beta (20–35 Hz), gamma (40–80 Hz); Buzsaki, 2006]. Figure 4B 
shows the median absolute difference in coupling between baseline 
and delay period (left). The graph shows that the degree of change 
significantly decreases with increasing frequencies with the largest 
coupling change occurring in the theta band. Likewise, the propor-
tion of pairs that show significant changes in coupling is highest 
in the theta range compared to the other frequency bands (right). 
In the theta band, 116 of 202 pairs showed significant changes in 
coupling (57%, p < 0.001) in monkey 1, in monkey 2 235 pairs 
showed significant changes in coupling (59%, p < 0.001). In both 
monkeys we found significant increases as well as decreases in 

 frequency during delay (see Figure 4A). Similar to the power spectra, 
we observed local peaks in GPDC coupling within the theta range 
(3–12 Hz) for both monkeys, albeit at slightly different frequencies. For 
monkey 1 the average peak frequency for highest coupling within the 
theta range was 4.33 ± 3.6 Hz (mean across sessions, ±1 SD) and was 
located well within the range of the maximum power peak frequency 
at 5.86 ± 0.81 Hz (see Figure 3). For the second monkey the average 
peak frequency for highest coupling was larger (8.35 ± 3.8 Hz), and 
also higher than the average peak of power (5.51 ± 1.77 Hz), but not 
significantly higher (p > 0.05). Similarly, inspection of Figure 3 shows 
that although the peak in power for monkey 2 is around 5 Hz, we find 
elevated power during the delay up to 10 Hz. Thus, the peak frequen-
cies at theta power and theta coupling were overall similar. Note that 
these and subsequent results are based on the models that were fitted 
to 1 s time intervals in baseline and delay conditions (equivalent time 
intervals as for power spectra).

Figure 4 | generalized partial directed coherence coupling in theta band 
during the delay period of the task. (A) Median degree of coupling (GPDC) as 
a function of frequency during the delay period (black) across all pairs in V4 for 
monkeys 1 and 2 for non-shuffled (black) and shuffled pairs. For both monkeys 
we find a peak in coupling in the theta-frequency range (3–12 Hz), although peak 
coupling occurred at slightly different frequencies (around 5 Hz for monkey 1, 
around 9 Hz for monkey 2). Dashed lines correspond to ±34th percentiles of 
values around the median. Note that for the shuffled data, overall coupling was 
found to be around 0.02 for the whole frequency range. (B) Median absolute 

difference in degree of coupling (GPDC) (left) and proportion of pairs showing a 
significant change (p < 0.001) in coupling between pre-stimulus baseline and 
delay period for different frequency bands (right). Error bars correspond to ±34th 
percentiles around the median. In both monkeys, the median change in coupling 
between baseline and delay is highest in the theta band (non-parametric ANOVA 
Kruskal–Wallis test, χ2 = 11.4/4.23, p < 0.01). Likewise, the proportion of pairs 
showing significant changes in coupling is also highest in the theta band 
compared to the other frequency bands (χ2 test for comparison of proportions, 
χ2 > 8.2, p < 0.001 for all comparisons).
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all pairs with the respective opposite direction and computed the 
median coupling across these pairs. The reasoning behind the pro-
cedure is as follows: if all channels show significant changes in 
theta coupling in both directions (i.e., from channel X to  channel 

theta  coupling during the delay when compared to the baseline. 
Specifically, in monkey 1 74 pairs showed significant increases, and 
42 pairs showed significant decreases in coupling. In contrast, in 
monkey 2 89 pairs showed increases and 146 pairs decreases. Thus, 
monkey 1 shows significantly more increases than monkey 2 and 
vice versa (χ2 = 18.5, p < 0.01). One factor that might contribute 
to this difference is the different distribution of electrode spacing 
between the animals, with monkey 1 showing significantly larger 
distances between electrodes than monkey 2 (mean [median] dis-
tance 4.6 [4]/3.5 [3] for monkey 1/2, respectively; ranksum-test, 
Z = 5.23, p < 0.01). This is supported by several facts. First, for 
the smallest distance between electrodes, i.e., the distance that is 
identical and therefore comparable between the animals (unit 1, or 
0.5 mm), the proportion of increases vs. decreases is similar between 
the monkeys, i.e., statistically identical (50%/27% increases, Z = 3.6, 
p > 0.05). Second, for the smallest distance we find an identical 
proportion of increases and decreases (i.e., 50/50) in monkey 1. 
Third, the proportion of significant decreases is slightly enhanced 
for smaller distances (50% at distance 1 vs. 20% at distance 4 for 
monkey 1, and 72% vs. 53% for distances 1 and 3 for monkey 2) and 
likewise the proportion of increases reduced at smaller distances. As 
the distances between electrodes are significantly lower in monkey 
2 compared to monkey 1, the percentage of decreases should be 
higher in monkey 2, and vice versa. Ultimately, due to the limita-
tions in spatial sampling, the differences in spatial configuration 
can only give an indication of why we find differences in the pro-
portion of significantly increased vs. decreased coupling between 
the monkeys. In summary, our findings demonstrate that signifi-
cant directed interactions between LFP within V4 during visual 
memory predominantly occur in the theta-frequency range and 
the frequencies at which highest coupling occurs are comparable 
to the frequency range of power increases during the delay period. 
Based on these results we further investigated the time course and 
directionality of theta coupling during the delay period.

tIMe course and dIrectIonalIty of couPlIng
To illustrate the time course of theta coupling during the task, we 
used moving windows comprising time intervals of 250 ms (with an 
overlap of 200 ms) and fitted MVAR models to these individual win-
dows. Figure 5 shows representative time courses of theta coupling 
in single recording pairs as well as the time course of coupling in the 
opposite direction (left/right graphs, respectively). These examples 
represent channel pairs with a significant (p < 0.001) increase or 
decrease in GPDC during the delay period compared to the base-
line period and were chosen based on the previous analyses using 
coupling measures obtained from 1 s windows (see also Materials 
and Methods).

In all examples, theta increases and decreases occur shortly after 
the offset of the sample stimulus and are sustained throughout the 
entire 1500 ms long delay period. Interestingly, in all selected pairs 
we find differences in coupling strength and even opposing effects 
between pair directions, for example a significant increase in theta 
coupling in one, and a significant decrease in theta coupling in the 
opposite direction (see graph B example for monkey 1). To investi-
gate this asymmetry across all channel pairs in more detail, we first 
computed the median coupling across all pairs showing significant 
increases or decreases in the theta band. We subsequently selected 

Figure 5 | Single example LFP channel pairs showing significant 
changes in coupling during the delay period compared to baseline.  
(A) One example for each monkey in which there is significant increase in 
coupling in the direction from channel 1 to 2 (left). (B) Two examples in which 
there is significant decrease in theta in one direction (left). The opposite 
directions show less strong or even opposing trends, indicating that coupling 
is not symmetric between sites. Dashed lines represent the on- and offset of 
the sample stimulus, as well as the onset of the first test stimulus during the 
trials, from left to right, respectively. This convention is also used in the 
subsequent figures.
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the delay. This result is further illustrated in Figure 7 that shows 
the ratio of median coupling between pairs of channels and their 
opposite directions separately for each monkey (Figures 7A,B). 
Furthermore, Figure 7C shows coupling strength in the delay for 
sites with significant changes from baseline to delay in the theta 
band vs. the couplings in the opposite direction. Similarly to the 
observed asymmetries in coupling values, significant proportions 
of pairs (64/48% monkey 1/2, Z > 15.4, p < 0.001) show significant 
increases in one direction only and significant proportions of pairs 
(57/58% monkey 1/2, Z > 18.6, p < 0.001) of the pairs show signifi-
cant decreases in only one direction. Overall, in three out of four 
cases, the majority of pairs showed significant changes of coupling 
in one channel pair direction, but not the other.

Taken together, these findings illustrate that theta coupling dur-
ing the delay is not symmetric between channel pairs and provide 
evidence for a complex interaction involving both directionally 
dependent increases and decreases in coupling during visual 
memory. In the following we examine a different aspect of these 
coupling phenomena, namely their dependence on the spatial lay-
out of the different oscillatory components. Our recording setup 
allowed us to simultaneously measure the activity of up to 6 LFP 
electrodes that were spatially distributed across a cortical surface 
area of approximately 6 mm × 6 mm. Therefore, within one ses-
sion, electrode locations varied in spatial position and distance 
to each other.

relatIon of couPlIng strength and dIstance between 
recordIng sItes
Figure 8 illustrates the dependence of absolute directed coupling 
and changes of coupling on the distance between electrodes, with 
higher direct coupling occurring at lower distances (both monkeys: 
ρ

s
 = −0.52/−0.32, p < 0.0001). Similar effects were found for the 

changes in coupling (i.e., decrease M1: rank correlation coefficient 
ρ

s
 = −0.24, p < 0.05, M2: ρ

s
 = −0.31, p < 0.01 and increase M1: 

ρ
s
 = −0.12, p = 0.1, M2: ρ

s
 = −0.2, p < 0.05) during delay with respect 

to the baseline). Note that the decrease of change in coupling with 
higher distance in monkey 1 does not reach a significance level of 
p < 0.05 for increases in coupling, but is at trend level.

Our results indicate that both the strength of coupling and the 
change in coupling from the baseline to the delay condition are 
stronger for smaller distances between site pairs. This dependence 
could be found despite the differences in electrode spacing between 
the animals (see also General Coupling Analysis). Thus, not only 
absolute coupling but also the dynamic changes in coupling are a 
local phenomenon within the neural network. Our findings are 
consistent with earlier reports for example from V1 recordings of 
in the macaque showing that pairwise spectral coherence in LFP 
activity between electrodes decreases as a function of receptive field 
distance (which is related to spatial distance; Frien and Eckhorn, 
2000) and from recordings of several sites of the human cortex 
(Raghavachari et al., 2006) and extend these previous results using 
directed coupling measures.

dIscussIon
Oscillatory activity in neural networks as measured by EEG or 
LFP recordings is a widespread phenomenon of neural behav-
ior and is thought to arise from the synchronous activity of 

Y and from channel Y to channel X), each channel pair will be 
represented in both groups. Consequently the median coupling 
across the channel pairs would be the same.

However, this is not the case. Figure 6 displays the resulting 
median coupling strength over all site pairs showing significant 
couplings within the theta range (left) and their respective opposite 
direction (right): for both monkeys we find asymmetrical, i.e., more 
unidirectional increases and decreases in theta coupling during 

Figure 6 | grand-Median directed coupling across all pairs showing 
significant increase (A) or decrease (B) during delay compared to 
baseline (p < 0.001, left column) as well as the median coupling for the 
opposite direction of channel pairs (right column). Note that if there is 
significant increase (decrease) in both directions (i.e., from x to y and vice 
versa), both channel pair directions will contribute to the median for both 
directions of interaction. Otherwise, if all pairs would show significant 
increase (decrease) in both directions, left and right plots would be identical.
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The quantification of neural synchrony has traditionally been 
carried out using measures that assess the pairwise and instantane-
ous correlation in either amplitude or phase between two neural 
signals, for example using cross-correlation analysis between spike 
trains of multiple neurons (Aertsen and Arndt, 1989), spike-field 
coherence between the spiking activity of neurons and LFP activity 
(Fries et al., 2001; Pesaran et al., 2002) or phase-locking analy-
sis of simultaneously recorded LFP or EEG data (Lachaux et al., 
1999, 2000). However, despite the fact that these measures assess 
the strength with which two neural processes are coupled, they fail 
to provide information on several aspects of synchronization that 
can be important to fully describe their interaction, for example 
the direction of coupling between neural elements.

Here, MVAR models have proven to be efficient tools for assessing 
the direction of coupling and can be more appropriate to capture the 
complexity of oscillatory dynamics as synchrony between neuronal 
ensembles changes across time or behavioral conditions. However, it 
is important to note that unipolar signals are vulnerable to volume 
conducted far-field effects and issues related to the usage of a com-
mon reference against which all differences in electrical potential are 
measured. Both factors might lead to adversely affected measures 
of coupling strengths, and elaborate methods for resolving these 
issues completely (besides using bipolar signals) need still be found 

 neuronal populations at various spatial and temporal scales 
(Salinas and Sejnowski, 2001; Buzsaki and Draguhn, 2004; Fries, 
2005). In many studies it has been shown that oscillations in dif-
ferent frequency bands are important for neural computations. 
Synchronous activity can, for example, establish and support 
temporal relationships between different elements within a neu-
ral network depending on context, stimulus or behavioral state 
(Tallon-Baudry, 2009; Uhlhaas et al., 2009) or represent informa-
tion about sensory events that can not be inferred from spiking 
activity alone (Montemurro et al., 2008). Thus, oscillatory activity 
serves the precisely timed cooperation between neural ensembles 
and could also provide temporal windows that allow for the selec-
tive routing and gating of information in an efficient manner 
(Mizuseki et al., 2000; Fries et al., 2001; Salinas and Sejnowski, 
2001). Another important characteristic of neuronal oscillations 
is that oscillations at different frequencies are thought to subserve 
different behavioral and cognitive functions. Prominent examples 
are the involvement of gamma oscillations (>40 Hz) in visual and 
attention-related processes (Fries et al., 2001; Keil et al., 2001), 
the role of beta oscillations (15–35 Hz) in sensorimotor tasks 
(Murthy and Fetz, 1992) and the importance of theta oscillations 
in memory-related processing (Okeefe, 1993; Rainer et al., 2004; 
Lee et al., 2005; Raghavachari et al., 2006).

Figure 7 | ratio of median coupling between pairs showing significantly 
enhanced (A) and reduced (B) directed coupling during baseline and their 
opposite pairs (i.e., coupling in opposite direction). Plots a–b show the ratio of 
median coupling across the time course of the trial for different frequencies for 
monkey 1 and 2, respectively. A ratio larger (or smaller) than one indicates a 
stronger median coupling in one than the opposite direction, thus the ratio is an 
indicator of how “directed” or “symmetric” the coupling is between pairs of 

channels. Graphs (C) plot the degree of coupling of significant pairs and their 
opposite directions (y-axis pairs chosen based on sign difference between delay 
and baseline, x-axis shows opposite direction) in the theta band. If the degree of 
coupling is not symmetric between directions, data points deviate from the 
diagonal. Also note that if there was a significant increase (decrease, respectively) 
in both directions for a single pair, two data points are shown (one below, one 
above the diagonal if the respective increase/decrease is not fully symmetric).
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into the directed spatio-temporal dynamics of multiple cortical areas 
during cognitive processing that went beyond the description of 
synchrony between these areas.

In our study we used MVAR models to provide a description 
of the directed coupling of theta oscillations during short-term 
memory. This oscillatory phenomenon has been described in a 
number of studies in relation to short-term memory processes both 
in humans and animals. There are mainly two lines of research that 
focus on the role of these oscillations for memory-related proc-
esses. A large set of studies provides strong evidence on a connec-
tion between theta oscillations and (especially spatial) memory 
for the rat hippocampus, revealing that the timing of spikes both 
within hippocampus and within regions like prefrontal cortex is 
strongly connected to the hippocampal theta rhythm (Okeefe, 1993; 
Mizuseki et al., 2000; Buzsaki and Draguhn, 2004; Siapas et al., 
2005). A second line of research has concentrated on the importance 
of theta oscillations for memory performance in primates with the 
focus on EEG and LFP recordings in various cortical areas. Using 

(Schlögl and Supp, 2006; Bollimunta et al., 2009). Nevertheless, 
the application of coupling measures based on MVAR models has 
revealed important insights into neural interactions in many studies 
(Bressler et al., 1999; Brovelli et al., 2004; Supp et al., 2007; Kayser and 
Logothetis, 2009). For example, Brovelli et al. (2004) analyzed inter-
action patterns in monkey sensorimotor cortex and found unidirec-
tional couplings from somatosensory areas to motor areas within the 
beta frequency range that might be used to control motor output. In 
a different study Kayser and Logothetis (2009) investigated interac-
tions of monkey auditory and superior temporal cortices related to 
sensory integration and found that while interactions from auditory 
cortex to superior temporal regions prevail below 20 Hz, interactions 
in the other direction are more pronounced at frequencies above 
20 Hz. A third example are the findings of the study by Supp et al. 
(2007) in which the authors demonstrated that visual processing of 
familiar and unfamiliar objects engages different cortical networks 
at different degrees of directionality via interactions in the gamma 
frequency range. In all these studies, MVAR models revealed insights 

Figure 8 | Dependence of gPDC in theta band on distance between 
simultaneously recorded channels. (A) Absolute coupling as a function of 
Euclidian distance across all recorded pairs. Open symbols denote coupling 
values for single pairs, closed symbols represent the mean ± 1 SD across pairs 
within three bins. For both monkeys, absolute coupling decreases with increasing 
distance. (B) Dependence of increases and decreases in GPDC during delay 

relative to baseline in theta band on distance between simultaneously recorded 
channels. Absolute decrease (left) and increase (right) in coupling as a function of 
Euclidian distance across all recorded pairs showing decreases (left) or increases 
(right) in coupling. In both cases, changes in coupling during delay are higher for 
smaller distances. Note that we shifted the data points for M1 (blue) and M2 (red) 
slightly to the left and to the right, respectively for better visual discriminability.
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EEG in human subjects, multiple studies have shown that there are 
increases as well as decreases in theta power that can depend on 
the specific nature of the memory task demand (Klimesch, 1999; 
Raghavachari et al., 2001, 2006). For example, Raghavachari et al. 
(2001, 2006) showed an increase in theta power during the delay 
period of a memory task that co-varied with delay period length in 
multiple cortical regions, including frontal, temporal and occipital 
areas. Very recently, one study also incorporated MVAR modeling 
to reveal directional influences between different cortical regions 
(Anderson et al., 2009), providing evidence for memory-related 
theta-frequency interactions between prefrontal and medial tem-
poral sites in the human brain. In contrast to human studies, only 
few studies have investigated the relation between theta oscillations 
and visual memory in the non-human primate. Here, research has 
focused on the extrastriate visual area V4, in which theta oscillations 
occur during the memory phase of the task, are modulated by task 
difficulty (Rainer et al., 2004) and are involved in the coding of 
visual stimuli during visual memory (Lee et al., 2005). In summary, 
research on theta synchrony during short-term memory has thus 
far provided evidence for the hypothesis that memory processing 
is accompanied by increased theta power and synchrony.

However, as previously mentioned, measures of directed cou-
pling based on MVAR modeling have shown to be useful for inves-
tigating the complex interaction patterns in LFP during cognitive 
processing. Thus we applied these coupling measures to analyze 
neural interactions in the theta band during visual short-term 
memory within V4. Our analyses firstly confirmed earlier results, 
showing enhanced theta power during the delay period. Using the 
coupling measures based on MVAR models, we additionally found 
increases as well as decreases in coupling between recording sites 
in the delay period with respect to the baseline period that were 
most prominent in the theta band. This was evident in the coupling 
value estimates as well as in the proportion of site pairs show-
ing significant changes in coupling. More importantly, however, 
we showed that these changes in coupling tend to be asymmetric 
between sites, i.e., they depend on the considered direction between 
site pairs. This finding suggests that not the mere occurrence of 
oscillatory activity or coherence in the theta band correlates with 
memory processing. Instead, the selective and direction-dependent 
change in theta coupling, which ultimately represents a change in 
functional connectivity within the neural circuit, plays an impor-
tant role in this process. Our results on the asymmetrical nature of 
directed interaction during memory also favors the hypothesis that 
theta oscillations and therefore coupling arise locally within the V4 
network. In contrast, if coupling would be a phenomenon due to 
common input, one would expect bidirectional coupling with simi-
lar strength in both directions if the data from the neural elements 

producing the common input is not incorporated by the model. 
When interpreting the results from MVAR models, one should keep 
in mind that the model is based on data from only a small subset 
of the whole neural system (Stevenson et al., 2008). In addition, we 
were able to confirm earlier work on the relations of interaction 
strength and spatial distance that showed decreasing coherence of 
signals with increasing distance between sites and extended their 
results by measuring direct causal interactions instead of coherence 
(Frien and Eckhorn, 2000; Raghavachari et al., 2006).

Taken together, these effects would not have been revealed using 
more traditional methods that incorporate only phase synchroniza-
tion or coherence. Therefore, our work clearly shows the advantage 
of using directed coupling measures based on MVAR models for 
studying functional connectivity patterns within the brain and 
highlights the importance of direction-dependent modulations of 
local interactions between neural populations for studying sensory 
and cognitive processing.

Finally, we would like to point out that while the methods that 
we applied provide important insights into the functional connec-
tivity patterns within the brain, their power is still limited because 
they can only assess linear interactions. While some extensions to 
nonlinear MVAR models (together with all the issues of nonlinear 
optimization) have been proposed (Pereda et al., 2005; Sun, 2008; 
Jachan et al., 2009), there is still work to be done to further improve 
these methods. In addition, our findings provide only the elemen-
tary description of the pattern of interaction between different 
oscillatory processes during visual memory. Further investigation 
will be needed to assess the specific role of directed coupling in 
relation to various cognitive parameters, for example task difficulty, 
performance or memory load. In addition, MVAR analysis can also 
be used to assess the interactions of LFP and spiking activity if the 
spike trains are properly preprocessed for this purpose. Here, it 
seems to be interesting to see how oscillations at the level of the 
LFP exert an influence on neuronal firing directly measured from 
the spiking activity of single neurons.
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