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Abstract: Ischemic stroke is the leading cause of mortality and long-term disability worldwide.
Disruption of the blood–brain barrier (BBB) is a prominent pathophysiological mechanism, respon-
sible for a series of subsequent inflammatory cascades that exacerbate the damage to brain tissue.
However, the benefit of recanalization is limited in most patients because of the narrow therapeutic
time window. Recently, mesenchymal stem cells (MSCs) have been assessed as excellent candidates
for cell-based therapy in cerebral ischemia, including neuroinflammatory alleviation, angiogenesis
and neurogenesis promotion through their paracrine actions. In addition, accumulating evidence
on how MSC therapy preserves BBB integrity after stroke may open up novel therapeutic targets
for treating cerebrovascular diseases. In this review, we focus on the molecular mechanisms of
MSC-based therapy in the ischemia-induced prevention of BBB compromise. Currently, therapeutic
effects of MSCs for stroke are primarily based on the fundamental pathogenesis of BBB breakdown,
such as attenuating leukocyte infiltration, matrix metalloproteinase (MMP) regulation, antioxidant,
anti-inflammation, stabilizing morphology and crosstalk between cellular components of the BBB.
We also discuss prospective studies to improve the effectiveness of MSC therapy through enhanced
migration into defined brain regions of stem cells. Targeted therapy is a promising new direction and
is being prioritized for extensive research.

Keywords: blood–brain barrier; permeability; cell therapy; matrix metalloproteinases; inflammation;
ischemic stroke; mesenchymal stem cell; molecular mechanism

1. Introduction

Stroke is the second leading cause of death worldwide [1,2], while the available
therapeutic options are limited. Moreover, the pathophysiology of ischemia-reperfusion
brain injury exhibits extremely complex vicious cycles, including prominent events such
as increased blood–brain barrier (BBB) permeability, infiltration of immune cells, robust
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inflammatory response, oxidative stress, and apoptosis [3,4]. The BBB is a distinctive
structure found only in the brain and plays a vital role in the homeostasis of the central
nervous system (CNS) through tight regulation of ion and nutrient transport processes and
prevention of neurotoxic molecules from the circulatory system [5–7]. The impaired BBB
is responsible for secondary brain injuries of the CNS after stroke, traumatic brain injury,
epilepsy, and more [8,9]. Mechanisms of ischemia-induced BBB breakdown involve matrix
metalloproteinase (MMP) activation, basement membrane degradation, and impaired
cell–cell connections of the neurovascular unit [5,10,11]. Clinical and preclinical studies
have demonstrated that MMPs are upregulated post-stroke, resulting in the breakdown
of tight junction proteins (TJs) [12–14]. In addition, the morphological integrity and
interactions between cellular components of the brain barrier, such as pericytes, astrocytes,
and brain microvascular endothelial cells (BMVECs), play a pivotal role in regulating BBB
permeability [15]. With the robust development of science and technology in recent years,
the pathogenesis of BBB damage after stroke has gradually been clarified, opening up great
potential for targeted treatment strategies.

Currently, the two approved treatments for reperfusion following acute ischemic
stroke are recombinant tissue plasminogen activator administration and mechanical
thrombectomy [16]. However, the benefits of recanalization treatments have been consider-
ably restricted in most patients due to the strict therapeutic time window and reperfusion
injuries such as hemorrhagic transformation [16–18]. The vigorous development of preclin-
ical and clinical studies using cell therapy in stroke treatment has emerged worldwide in
the past decades, and demonstrated that stem cell therapeutic strategies diminished infarct
volume and significantly ameliorated neurological deficits following ischemia [19,20]. Po-
tential mechanisms for this therapy involved angiogenesis and neurogenesis promotion,
reduction of apoptosis and neuroinflammation via stem cell secretomes [21,22]. Several
types of stem/progenitor cells such as embryonic stem cells [23,24], neural stem cells [25],
mesenchymal stem cells (MSCs) [26,27], endothelial progenitor cells [28], and induced
pluripotent stem cells [29] have been evaluated as potential cell-based therapy for ischemic
brain injury. Among these, MSCs are considered excellent candidates for post-stroke cell
therapy due to their advantages, including feasibility (self-renewable, easily accessible,
and culturally expandable), potential mechanisms for repairing brain injury, safety in
preclinical and clinical practices, and overcoming ethical issues [21,30,31]. MSCs can be
isolated from diverse sources such as adipose tissue, bone marrow, umbilical cord, placenta,
amnion, dental pulp; these share common characteristics and generally fulfill accepted
criteria for MSCs [30,31]. With easy accessibility, MSC-based therapy has been studied
extensively in preclinical and clinical trials [32]. Preclinically, MSC transplantation has
shown beneficial effects on motor and sensorimotor functions after cerebral infarction in
systematic reviews and meta-analysis [32,33]. Results of randomized controlled trials with
MSC administration indicated improvement in clinical severity score through the National
Institutes of Health Stroke Scale (NIHSS) and modified Rankin scale (mRS) [34].

Numerous subclinical investigations indicated the amelioration of endothelial perme-
ability after MSC treatment with the highly complex relationship of cellular components
of BBB and intercellular junctions [27,35–37]. Understandably, BBB preservation post-
ischemia is receiving significant attention from investigators, promising to explore novel
therapeutic targets. Nevertheless, the molecular mechanisms of MSC therapy in preventing
BBB compromise after cerebral infarction have not yet been comprehensively reviewed.
Therefore, this review highlights the main underlying mechanisms of MSC therapy in-
volving maintenance of BBB integrity following ischemic stroke in preclinical studies.
Concomitantly, we also discuss prospective investigations to improve the efficacy of MSC
treatment through enhanced migration into particular brain regions of these stem cells.

2. Structure of Blood–Brain Barrier

The blood–brain barrier (BBB) comprises a layer of BMVECs tightly held together
by intercellular junctions, pericytes embedded in the basement membrane, and astrocytic
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endfeet [5,38,39] (Figure 1A). The exchange of molecules across BBB is based on two funda-
mental mechanisms: transendothelial transport and paraendothelial transport. BMVECs
have distinctive properties, such as high transendothelial electrical resistance (TEER), rig-
orously selected transcytosis and paracellular transport, which pivotally contribute to
homeostasis maintenance of the CNS [5,40,41]. The major components of the interendothe-
lial cleft include tight and adherens junctions, which play crucial roles in the diffusion of
small molecules through the paracellular pathway [5,42]. The BBB controls transcytosis
of substrates through a series of distinctive structures, such as specific transporters, ion
channels, and energy-dependent pumps [4,43].
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Figure 1. Structure and transportation of metabolites through the blood–brain barrier (BBB). (A) Structural component
of BBB includes brain microvascular endothelial cells (BMVECs), pericytes, basement membrane, and astrocytic endfeet.
(B) Mechanism of transport across BBB. Major interendothelial junctions consist of tight junctions, adherens junctions,
and gap junctions. Tight junction proteins (TJs) are composed of transmembrane proteins (claudins, occludins) and
connecting adhesion molecules (JAM) which contribute to paracellular connection and interaction with zonula occludens
(ZO) proteins and actin cytoskeleton. (a) Carrier-mediated transport systems (glucose, amino acid exchange); (b) specific
receptor-mediated endocytosis (insulin exchange); (c) adsorptive endocytosis (plasma proteins exchange).

Tight junction proteins (TJs) are complex structures with multiple transmembrane
proteins, such as claudins, occludins, and junctional adhesion molecules (JAMs), associated
with auxiliary cytoplasmic proteins like zonula occludens (ZO) and cytoskeleton-related
proteins [39,44]. Evidence suggests that occludins phosphorylation causes increased BBB
permeability [45], whereas claudins contribute to the selective opening of TJs [46]. Fur-
thermore, the main interendothelial adhesive junction is the VE-cadherin protein, which
anchors to the actin cytoskeleton via catenins, participates in cohesion and maintenance
of BMVEC integrity as well as proper vascular development [47,48]. Therefore, TJs and
adherens junctions together establish a stable endothelial layer. The gap junctions are
intercellular hemichannel pairs (or connexons) that directly connect the cytoplasm of adja-
cent cells [49]. Connexin 43 is the most abundant gap junction protein in the brain, and
participates in the propagation of electrical and chemical signals between astrocytes and
adjacent cells [50].

The smooth coordination of cellular components, such as BMVECs, astrocytes, and
pericytes, pivotally contributes to BBB consistency [47]. Astrocytes are the most com-
mon glial cells in brain that directly connect to BMVECs through their endfeet [51]. The
morphological enclosing of the entire cerebral microvascular system, by the terminal feet
of astrocytes and their interactions with BMVECs through extracellular vesicles, deter-
mines the BBB properties [51–53]. In addition, astrocytes contribute to the stability of TJs



Int. J. Mol. Sci. 2021, 22, 10045 4 of 22

through VEGF-mediated signal transduction [27,36], and regulating tissue inhibitors of
metalloproteinases (TIMPs) [54].

Brain vascular pericytes are multipotent cells embedded in the basement membrane
and enclose microvessels [55–58]. Pericyte–endothelial interaction is critical in paracel-
lular permeability, profoundly affecting the basement membrane, and TJ structure and
function [59]. Previous studies have revealed that pericytes stimulate the production
of TJs, particularly occludins, claudin-1, ZO-1, and ZO-2, by secreting pro-angiogenic
factors [59,60]. Moreover, pericytes support the function of BMVECs and regulation of cere-
bral blood flow by conducting signals in gap and adherens junctions [59,61]. In addition,
pericytes simultaneously assist in the elongation and polarization of astrocytic endfeet
toward the microvascular wall, facilitating the maturation of the BBB [62].

3. Blood–Brain Barrier Changes Following Ischemia-Induced Brain Injuries
3.1. Tight Junction Disruption and Blood–Brain Barrier Opening

The disturbance of blood–brain barrier (BBB) function after stroke varies depending
on the mechanism, severity, and duration of ischemia [9]. Ischemia-reperfusion injury may
induce a biphasic opening of the brain barrier, triggering a series of secondary lesions. The
early stage of BBB opening takes place within several hours after ischemia and may reverse,
involving the effect of MMP-2 in loosening TJs [9,63,64]. In contrast, the second stage
starts from 24 to 72 h following ischemia-reperfusion insult and is irrecoverable with the
significant contribution of MMP-9 [12,63]. Otherwise stated, the early stage corresponds to
TJs impairment; the late barrier opening may be involved in neuroinflammation and cell
destruction [9,63].

Hypoxic conditions can result in BMVEC injury due to the uncontrolled genera-
tion of free radicals, pro-inflammatory factors, including tumor necrosis factor (TNF-α),
interleukin-1 (IL-1), adhesion molecules, and chemo-attractants (Chemokine (C-C mo-
tif) ligand 19-CCL19, stromal cell-derived factor-1) [4,65]. Therefore, reactive leukocytes
are attracted to the injured site and penetrate through the disrupted endothelium. Neu-
trophils are the most dominant immune cells in the acute post-stroke period [66,67]. Neu-
trophils undergo sequential rolling, adhesion, and transendothelial infiltration into the
brain parenchyma, consequently stimulating the release of reactive oxygen species (ROS),
pro-inflammatory factors, and proteases, leading to the increase of vascular permeability,
cytotoxicity and vasogenic edema [4,5,9].

Neutrophils not only secrete on their own but also activate the release of MMPs
from resident cells [67,68]. MMPs are zinc-containing proteases that can break down
the basement membrane and extracellular matrix [11,64,69]. In particular, MMP-9 or
gelatinase B is a collagenase that can disintegrate TJs and basal lamina proteins, thereby
leading to brain barrier disruption [64]. Transmigrated leukocytes are the primary source
of MMP-9, causing BBB interruption following stroke through increasing transcriptional
activity and activation of pre-MMP-9 by N-nitrosylation and oxidation [63,68]. Ischemic-
induced MMP-9 upregulation is closely related to irreversible BBB opening, neutrophil
extravasation, vasogenic edema, and hemorrhage [70,71]. Consequently, downregulating
leukocyte recruitment and MMP-9 could be a promising strategy to ameliorate BBB leakage
after stroke (Figure 2).
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Figure 2. Schematic illustration of the major molecular mechanisms of ischemia-induced BBB disruption. (A) MMP
regulation and attenuating leukocytes infiltrations. (B) Antioxidant and anti-inflammatory mechanism (comprising
antioxidants, polarization toward anti-inflammatory macrophage and anti-apoptosis). (C) Stabilizing morphology and
crosstalk of cellular components in BBB.

3.2. Morphological Changes and Impaired Interactions of Cellular Components of
Blood–Brain Barrier

Pericytes, astrocytes, and BMVECs tightly communicate together by either direct struc-
tural contact or indirect secretomes. Therefore, morphological or functional disturbance of
the cellular components of BBB in hypoxic conditions may be responsible for cerebrovascu-
lar leakage [15] (Figure 2). Electron micrographs confirmed morphological changes in the
BBB, including distortion and swell of BMVEC nuclei, mitochondrial loss, and edema of
the astrocyte endfeet at initial hours after reperfusion, and further irregular endothelium
surface, vacuolation, and enlargement of perivascular spaces due to severe destruction
of astrocyte endfeet [72]. Indeed, astrocytes responded to hypoxia by contracting their
endfeet from the capillaries, caused disruption of BBB structure and increased vascular
permeability [72,73]. In particular, ischemia-induced astrocyte dysfunction can directly
affect the endothelium by promoting vascular or cellular edema of aquaporin-4 (AQP4) [74],
increasing TJ and basement membrane degradation factors (MMPs) [51,75], and releasing
pro-inflammatory factors (IL-1β, TNF-α) [76]. AQP4 is a water channel protein, resides
on the endfeet of astrocytes. This transport system increases water entry during ischemia,
eventually leading to swollen and apoptotic astrocytes [77]. Moreover, astrocytes also
release vascular endothelial growth factor A (VEGF-A), resulting in leukocyte infiltra-
tion through degradation of TJs [73,78]. The combination of VEGF-A and its receptor on
BMVECs activates endothelial NO synthase (eNOS), deteriorates TJs, and further enhances
barrier disruption [52]. In addition to negative responses, astrocytes are involved in numer-
ous beneficial processes, including angiogenesis promotion [27], immune modulation and
neuroprotection [79], brain barrier regulation, and axon regeneration [80]. Consequently,
astrocyte-targeted therapies could be a useful solution for post-stroke regeneration.
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Pericytes regulate various critical processes following stroke, including cerebrovascu-
lar permeability, cerebral blood flow, and repair of BBB components [57]. During ischemia,
granular pericytes separate from BMVECs, leading to BBB leakage through TJ degradation
and enhanced paracellular transport [81]. These pericytes act as repair and scavenger
cells. Meanwhile, filamentous pericytes are involved in the adjustment of the capillary
lumen size. Although shrinkage of pericytes is beneficial in providing sufficient oxygen to
neurons in a healthy brain, this also aggravates hypoxia following stroke [57]. Furthermore,
pericytes may contribute to the proliferation and maturation of BMVECs through the ex-
pression of VEGF [82], platelet-derived growth factor receptor (PDGFR) [83], transforming
growth factor- (TGF-) [84], and stabilizing actin filaments [5]. Pericyte detachment from
BMVECs induces basement membrane rupture through upregulation of MMPs, facilitates
vascular budding after stroke [55]. Together with tubulogenesis, pericytes also activate
the function of transporters, localize barrier proteins, and polarize the lumen during the
remodeling phase [85].

3.3. Increase of Blood–Brain Barrier Permeability Following Vascular Remodeling

The angiogenesis process initiates from 12 to 24 h following the ischemic attack, lead-
ing to increased microvascular density in peri-infarcted areas [86,87]. Following primary
angiogenesis, newborn vessels undergo a barriergenesis process, characterized by the
migration of pericytes and astrocyte endfeet, forming the extracellular matrix, eventually
establishing a complete BBB [85,88]. Enhanced angiogenesis helps restore oxygen and
nutrient supply, subsequently improving neurological outcomes [89]. Unfortunately, some
angiogenic therapy, like VEGF treatment, can induce TJ disruption and BBB leakage. In
other words, VEGF can promote BMVEC proliferation but not maturation [78,90]. MRI and
histological techniques effectively evaluate the morphological and functional new capillar-
ies formed. The central area of the infarction has a severe decrease in cerebral blood flow;
in the opposite direction, abundant perfusion occurs in the penumbra (peri-infarct) region
observed by the arterial spin labeling technique [91]. Furthermore, evidence indicated
that leakage of the penumbra areas remarkably increased by enhancing plasma volume
(Vp) and BBB transfer rate (Ki) in the permeability coefficient maps [92]. Correspondingly,
immunohistochemical staining for an endothelial marker (RECA-1) revealed increased
signals surrounding ischemic regions, almost absent in the core area [93]. These findings
suggest that either new angiogenic vessel processes or increased BBB permeability occur in
the peri-infarct regions.

4. Potential Mechanisms of Blood–Brain Barrier Preservation by MSCs
Following Ischemia
4.1. MMP Regulation and Attenuating Leukocytes Infiltrations

Under ischemic conditions, transmigrated neutrophils secrete MMPs that damage TJs,
amplify vascular permeability, and initiate neuroinflammatory cascades, which may cause
cerebral edema and severe neurological deficits [4,65]. MMP-9 is significantly upgraded
in the late phase of stroke and can lead to irreversible BBB disruption [12,13]. Evidence
indicated that MMP9 activity was considerably downregulated by MSC transplantation,
whereas MMP2 activity was unaltered [68,94]. Therefore, inhibition of MMP-9 is an ef-
fective targeted therapy for preventing BBB compromise. Evidence suggests that MSCs
can attenuate MMP-9 upregulation from extravasated neutrophils and resident cells, con-
tributing to BBB preservation, reducing infarct volume and neurological deficits following
ischemic stroke [68,69,89,95]. Cheng et al. reported that MSC transplantation remarkably
reduced IgG leakage through declining MMP-9, TNF-α, and pro-inflammatory factors
(IL-1β, IL-6) expression, and neutrophil penetration in transient middle cerebral artery
occlusion (MCAO) models [68]. Using anti-Ly6G delivery to induce neutrophil depletion,
Wang and colleagues proved that MSC-derived extracellular vesicles treatment was inef-
fective in decreasing brain damage and infiltration of other types of immune cells such as
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monocyte/macrophage and lymphocyte [67]. Alternatively stated, blocking neutrophil
penetration is one of the key mechanisms of MSCs therapy [67,68] (Figure 2).

Intercellular adhesion molecules 1 (ICAM-1) is a ligand for leukocyte’s integrin, di-
rectly involved in the transmigration of these immune cells [96]. MSCs suppress ICAM-1
expression through AMP-activated protein kinase (AMPK) [68]. AMPK refers to a het-
erotrimeric kinase that controls the cellular enzymes, acting as an energy sensor to maintain
metabolic homeostasis and synthesis [97]. Upregulation of ICAM and phosphorylation
of AMPK in BMVECs increased following ischemia but reversed after co-culturing with
MSCs. These effects might be mediated via an AMPK-dependent ICAM-1 downregula-
tion in BMVECs, consequently impairing leukocyte extravasation and preventing BBB
compromise. Collectively, ICAM-1 might be a pivotal paracrine factor of MSCs in regu-
lating leukocytes diapedesis [68] (Table 1). Nevertheless, elevated ICAM expression is
proportional to immunosuppressive capacity of MSCs [98], promotes adhesion of MSCs
to endothelial cells through p38 mitogen-activated protein kinases (MAPKs) signaling
pathway [99]. Therefore, the regulation of ICAM by MSCs needs to be further investigated
to optimize the benefits of stem cell therapy.

Tissue inhibitors of metalloproteinases (TIMPs) are endogenous proteins that neu-
tralize MMPs, stabilize the extracellular matrix, and reduce BBB disruption following
stroke [11,100]. Indeed, more severe BBB interruption and neuronal apoptosis were re-
ported in cerebral ischemia-induced TIMP-1 knockout mice [101]. Correspondingly, BBB
leakage and infarction volume significantly improved in TIMP-1 overexpressed mice fol-
lowing ischemic injury [102]. TIMP-1 can inhibit a wide range of MMPs, even though it
has been described as particularly potent against MMP-9 [103]. TIMP3 expression after
MSCs administration considerably alleviated BBB permeability through blocking VEGF-
A-induced breakdown of interendothelial junctions [104]. Nevertheless, Bharath et al.
revealed that MSC-mediated downregulation of MMPs after stroke was not induced via the
TIMP pathway. Ischemia-induced injuries promoted upregulation of all MMPs (MMP-7,
-8, -9, -11, -12, -14, -21, and -28) and all four TIMPs (TIMP-1, -2, -3, and -4); subsequently
attenuated by MSC therapy [14]. This inconsistency is probably related to the different
roles of MMPs and TIMPs that need to be studied further in the future.

Although an increase of MMPs in the initial stage seriously degrades TJs and damages
the BBB, MMPs are considerably impaired in the late stages, affecting regeneration and
glial scarring formation [105]. Indeed, evidence indicates that TIMP-1 and TIMP-2 simulta-
neously upregulate MMP-9 and MMP-2 in astrocytes and leukocytes. Therefore, TIMPs
might regulate MMPs through not only inhibition but also activation during post-traumatic
neurological regeneration [80]. Moreover, other evidence suggested that upregulation of
MMP-9 facilitated MSCs migration into targeted areas [106], whereas elevated MMP-2
level may promote proliferation and maturation of endothelial cells [89], further improving
neurological outcomes after stem cell administration. MSCs may regulate MMPs in distinct
ways concerning different stages after stroke. Therefore, further investigations to elucidate
these mechanisms need to be continued in the future.

4.2. Antioxidant and Anti-Inflammatory Mechanism

Proinflammatory and reactive oxygen species (ROS) secreted by immune cells such
as neutrophils and monocytes/macrophages are considered central factors of TJ disrup-
tion and BBB leakage following oxidative stress-induced injuries [107]. Therefore, the
antioxidant effects of MSC therapy, reported in various investigations, might be a potential
strategy for endothelium barrier restoration. Evidence showed that CCR2-overexpressed
MSCs (MSCCCR2) preserve BBB integrity by alleviating ROS production and TJ breakdown
in vivo, involving the role of CCR2 in MSC homing enhancement. Meanwhile, co-culturing
BMVECs with MSCCCR2/MSCcontrol reduced OGD-activated TJ loss and ROS levels in vitro,
suggesting an antioxidant mechanism of MSC secretomes. Based on genome-wide RNA se-
quencing (RNA-seq) analysis, a series of antioxidant-related genes of MSCs were screened,
revealing high expression of the peroxiredoxin (PRDX) antioxidant enzyme family. Among
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these peroxiredoxins, PRDX4 dominantly contributes to antioxidant-mediated BBB preser-
vation. Using short interfering RNA against PRDX4 (shPRDX4) to block the effect of PRDX4
impairs the antioxidant effects of MSCCCR2, leading to an increase in BBB leakage [108].
Briefly, the PRDX4-mediated antioxidant pathway might be a potential mechanism of MSCs
in preventing microvascular barrier disruption. In addition, MSC therapy also enhanced
the secretion of other antioxidant enzymes such as heme oxygenase-1 (HO-1) through the
Cx43/Nrf2 signaling pathway, significantly reducing brain edema and cell death [109].

The anti-inflammatory actions of MSCs are characterized by the downregulation of
pro-inflammatory cytokines [110], prevention of leukocyte penetration [95], and promo-
tion of polarization toward the M2 phenotype of microglia [94] (Figure 2). Cheng et al.
transplanted MSCs into stroke mice via the intracerebral ventricular route and reported si-
multaneous reductions of IL-1β and TNF-α, neutrophil recruitment, and BBB leakage in the
treated group [68]. The neuroinflammatory response and increased BBB permeability es-
tablish a vicious cycle that is difficult to control; thus, inflammatory inhibition can stabilize
BBB function and vice versa [110]. Indeed, the investigation of Yoshida et al. exhibited that
the BBB integrity significantly increased in the human amniotic mesenchymal stem cells
(hAMSC) injected group, accompanied by a decrease of TNF-α and iNOS, and suppression
of microglial transformation towards the pro-inflammatory M1 phenotype [94]. Amnion
stem cell-induced M2 macrophage polarization and further secretion of anti-inflammatory
cytokines (IL-10 and IL-6) might contribute to repairing the injured brain areas [111]. In
addition, MSC secretomes, including tissue growth factor-β3 (TGF-β3), thrombospondin-1
(TSP-1) [112], miR-182 [113], and miR-322 [114] also contribute to the polarization toward
anti-inflammatory macrophage direction.

Another beneficial effect of MSCs on BBB maintenance involves the anti-apoptosis of
astrocytes [110,115,116] through suppression of endoplasmic reticulum (ER) stress [110],
IL-6/STAT3 signaling pathway [115], and Cx43/Nrf2 interaction [109]. Evidence has re-
vealed that markers for pro-apoptotic processes like Bax were downregulated, whereas
the expression of anti-apoptotic proteins as Bcl-2 was upregulated after transplantation
of MSCs [110,115]. ER stress causes impairment in folding proteins such as GRP78, XBP-1
PERK, eIF2a, ATF4, CHOP, and cytotoxicity, consequently leading to apoptosis [117,118].
Chi and colleagues confirmed that blocking ER stress of MSCs induced suppression of the
pro-apoptotic pathway more dominant than anti-apoptotic promotion [110]. In addition,
IL-6 is a crucial factor for astrogliosis and BBB consistency, which could be upregulated
following cerebral infarction [119]. Oxygen-glucose deprivation (OGD) alleviated IL-6
levels in astrocytes, while co-culture with MSCs remarkably improved IL-6 secretion. Con-
comitantly, the anti-apoptotic mechanism of IL-6 in astrocytes might be directly involved in
the IL-6/STAT3 signaling pathway [115]. Moreover, MSC-based therapy also enhances con-
nexin 43 (Cx43) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression, promotes
antioxidant reactions of astrocytes, including increased secretion of heme oxygenase-1
(HO-1) enzyme and impaired apoptosis [109].

4.3. Stabilizing Morphology and Crosstalk of Cellular Components Blood–Brain Barrier
4.3.1. Brain Microvascular Endothelial Cells

The morphological and functional stability of BMVECs is vital for ensuring BBB con-
sistency. Indeed, intravenous administration of human adipose-derived MSCs dramatically
improved disruption, engorgement, and distortion of the microvasculature, thus reduc-
ing BBB leakage in stroke rats [95]. Annexin A1 (ANXA1) is expressed in microglia and
BMVECs [120,121] and acts as an anti-inflammatory agent through an agonist of formyl
peptide receptors (FPRs) [122,123]. Furthermore, ANXA1 is found in the extracellular vesi-
cles of MSCs [124,125]. Gussenhoven et al. evaluated endothelial resistance through TEER
values following oxygen-glucose deprivation (OGD) induction. MSC-derived extracellular
vesicle (MSC-EV) treatment gradually improved TEER values and stabilized them at 122 Ω,
12 h after OGD; however, this amelioration was not observed after inhibiting FPR1 and
FPR2 receptors [125]. In addition, BBB leakage occurs in ANXA1 knockout mice due to
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endothelial TJ degradation and actin microfilament instability [126]. ANXA1-FPR2 receptor
interaction can inactivate the small GTPase RhoA, linking β-actin to the plasma membrane
and facilitating TJ formation [126,127]. On the other hand, ANXA1 induces phagocytosis of
apoptotic cells and debris by microglia without eliciting a pro-inflammatory response [128],
and promotes microglial polarization and migration [121]. Therefore, the molecular mech-
anism of BBB preservation of MSCs might involve endothelium layer stabilization and
anti-inflammatory effect through the ANXA1/FPR-axis.

MSCs exhibit another potential mechanism involving the suppression of VEGF-
induced BBB leakage. Kikuchi-Taura and colleagues suggested that MSCs uptake glucose
from endothelial cells and inhibited the absorbance of VEGF into these cells, thus reducing
BBB permeability. Immunohistochemistry image showed the overlap of connexin (Cx) 37,
43, MSCs and BMVECs signals. Moreover, blocking the gap junction channel of MSCs
reversed the VEGF uptake of BMVECs in vitro and in vivo. These results revealed cell–cell
interaction between MSC and BMVECs through gap junction [36]. Previous studies have
shown that VEGF stimulates angiogenesis and increases BBB permeability, promoting
inflammatory responses following stroke [129,130]. Concomitantly, MSCs and circulating
lymphocytes/monocytes also established a direct interaction via gap junction. In brief, gap
junction-mediated MSC-recipient cell interaction serves as a potential therapy to warrant
BBB steadiness after ischemic brain injury involving suppression of VEGF uptake and
inflammatory responses [36].

Recently, endothelial mitochondria have played an essential role in cellular responses
to environmental stresses, notably oxidative stress, which profoundly affected the BBB
integrity [131]. Tunneling nanotubes (TNTs) is a distinct method of intercellular communi-
cation involving the transport of organelles such as mitochondria, intercellular vesicles,
lysosomes, lipid droplets, viral genome, and so forth [132]. MSCs transferred healthy
mitochondria to damaged endothelial cells via TNTs, contributing to the restoration of
hypoxia-induced vascular injuries in both in vitro [133] and in vivo [134]. Oxygen glucose
deprivation/reoxygenation (OGD/RO) stress stimulated TNTs generation via membrane
protrusions and surface-exposed phosphatidylserines, promoted a mostly unidirectional
mitochondrial transport from MSCs to endothelial cells, concomitantly removed damaged
mitochondria by lysosomal transfer, thus significantly diminished anaerobic metabolism
and apoptosis processes of vascular cells [133]. Transplantation of MSCs into the rat MCAO
model established a significant correlation between microvessel density and the number of
transferred mitochondria from MSCs [134]. Moreover, evidence revealed that Cx43 [135]
and Rho-GTPase 1 [136] could enhance MSC-mediated mitochondria transfer.

4.3.2. Astrocytes

MSCs can enhance the interaction between astrocytes and BMVECs in regulating
angiogenesis and vascular maturation (Table 1 and Figure 2). Although VEGF serves as a
vascular permeability factor in the initial stages of a stroke, it also plays an essential role in
BMVEC proliferation and survival [35,90]. VEGF combines with its receptor on BMVECs,
VEGF receptor 2 (Flk1) and directly participates in angiogenic promotion [137]. Whereas,
angiopoietin-1 (Ang-1)–Tie-2 interaction recruits mural cells to wrap around BMVECs,
thus contributes to maturation and stabilization of new capillaries [138]. Angiogenesis-
induced BBB leakage after brain injury significantly reduced through enhancing the release
of Ang-1 from astrocytes [139,140]. Indeed, MSC therapy promoted astrocyte-BMVECs
crosstalk via endogenous Ang1 and VEGF upregulation and their respective receptors Flk1
and Tie2 in BMVECs, thus increased endothelial occludins expression and BBB integrity.
In addition, inhibition of Flk1, Ang1, and Tie2 attenuated remarkably MSC-activated
capillary tube formation. VEGF/Flk1 and Ang1/Tie2 systems might be involved in the
beneficial effect of MSC therapy in BBB stabilization following ischemia [35,141]. In
addition, Ang-1 diminished MMP-9 activity, thereby improved VEGF-induced endothelial
barrier leakage [90]. Thrombospondin-4 (TSP4)-overexpressing MSC increased all VEGF,
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Ang-1, MMP-9, MMP-2 expression through the TGF-β/Smad2/3 signaling pathway and
improved endothelial proliferation and migration [142].

MSCs affect BBB consistency based on either astrocytic morphology integrity or
astrocyte-secreted angiogenic factors [27,35]. MSCs can restore the density of filaments
within astrocytic endfeet surrounding microvessels, representing a morphologically sta-
bilizing effect of MSCs on ensuring BBB function [27]. Indeed, MSC transplantation after
inducing LPS significantly enhanced the density of astrocytic endfeet around vessels, pre-
vented neutrophil infiltration, and LPS-induced VEGF-A downregulation in astrocytes. To
identify the regular mechanism of MSCs on astrocyte-secreted VEGF-A, BMVECs were
treated with VEGF-A and then co-cultured with MSCs. MSC treatment induced decrease
of VEGF-A level and TJ breakdown via enhancing endothelial nitric oxide synthase (eNOS)
expression [27,52,78]. IL-1β secreted by responsive microglia following brain injury ini-
tiates the VEGF-A-related eNOS-dependent signaling pathway by interacting with its
receptors in astrocytes [27,52,143]. Furthermore, MSCs can considerably promote secretion
of the anti-inflammatory cytokines IL-6, IL-10, and TGFβ in astrocytes, thus attenuating
microglial activation [27,144]. Collectively, MSC transplantation prevented BBB compro-
mise by preserving astrocytic endfeet around vessels, decreasing LPS-stimulated VEGF-A,
and improving eNOS-dependent TJ impairment.

Aquaporin-4 (AQP4) plays an essential role in water homeostasis of CNS [145]. Is-
chemic brain injury activates AQP4 upregulation, induces astrocyte swell, further increases
apoptotic astrocytes and BBB dysfunction [77,145]. Tang et al. showed that MSC treatment
inhibited neuroinflammatory factors, consequently suppressing robust AQP4 expression
and apoptosis of astrocytes in a transient middle cerebral artery occlusion (tMCAO) model.
Knockdown of AQP4 attenuated the apoptosis of cultured astrocytes in vitro via the p38
signaling pathway, but not the JNK pathway. Although p38 and JNK activation occurred in
ischemia-induced astrocytes, the study of Tang et al. proved that increase of AQP4 expres-
sion is only related to the p38 pathway. This result suggested that p38 might be a dominant
pathway of regulation of AQP4 after ischemic stroke. The immunomodulatory functions
could explain the beneficial effects of MSCs on AQP4 downregulation in astrocytes via
decrease of inflammatory cytokines IL-1β, IL6, and TNF-α [146].

4.3.3. Pericytes

Evidence suggests that MSCs can regulate pericyte morphology and pericyte–BMVEC
interaction. Lu and colleagues revealed that cleavage of pericytes from the vessel wall after
spinal cord injury (SCI) involves the NF-κB p65 signaling pathway, consequently causing
severe BBB breakdown. MSC-derived extracellular vesicle treatment prevented detachment
of pericyte from microvascular system through NF-κB p65 pathway inactivation [37]. Fur-
thermore, MSC-extracted growth factors such as VEGF B reinforced the interaction between
pericytes and BMVECs and increased pericyte survival, thus considerably improving BBB
leakage [147]. Moreover, pericytes are a type of MSCs that serve as pivotal factors in main-
taining BBB integrity. Investigations on the BBB mimicking model in vitro showed that
MSCs contributed similarly to pericytes in increasing trans-endothelial electric resistance
(TEER) and decreasing permeability against macromolecules [148]. Taken together, these
findings suggest that MSCs might be used as a potential therapy for BBB preservation by
substituting lost pericytes [149].
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Table 1. Investigation of the molecular mechanism of MSC therapy in blood–brain barrier preservation after ischemic
brain injury.

Reference Signaling
Pathway

Component of
BBB Molecular Mechanism Model

Number of
Cells and
Sources

Route Time Treat-
ment/Passage

[68] ICAM/AMPK MMPs,
ICAM-1

↓ICAM-1
↓neutrophil infiltration,

↓MMP-9
tMCAO 2 × 105

BMMSC
ICV 15 min/3

[146] P38 AQP-4
astrocytes

↓AQP-4,
↓neuroinflammatory,
↓apoptotic astrocytes

tMCAO 2 × 105

BMMSC
ICV 20 min/3

[27] VEGF/eNOS Astrocytes
endfeet

↑density of astrocytic
endfeet,

↑VEGF/eNOS-dependent
TJs

LPS 1 × 106

BMMSC
IV 4 h/6

[115] IL-6/STAT3 Astrocytes ↑IL-6
↑anti-apoptosis of astrocytes HIBD 2 × 105

BMMSC
ICV 5 days/3–5

[35] VEGF/Flk1
Ang1/Tie2

Astrocytes
BMVECs

↑Ang1/Tie2→ ↑occludins
and VEGF/Flk1 expression
↑vascular maturation

tMCAO 3 × 106

BMMSC
IV 24 h/-

[108] PRDX4 BMVECs
↑PRDX4-mediated

antioxidant
↓ ROS

tMCAO 2 × 106

BMMSC
IV 24 h/5–10

[95] - BMVECs ↓Neutrophil infiltration
↓Endothelial damage GCI 1 × 106

ADMSC
IV Immediately/2

[125] ANXA1-FPR BMVECs ↓endothelial resistance UCO
OGD

BMMSC-EVs
2doses

~2 × 107
IV 1,4 days/-

[134] Mitochondrial
TNTs BMVECs

Transfer mitochondrial to
BMVECs via

TNTs→↓oxidative stress
tMCAO 5 × 105

BMMSC
IA 24 h/3–5

[133] Mitochondrial
TNTs hUVECs

Transfer mitochondrial to
hUVECs via

TNTs→↓oxidative stress

OGD
RO - - 4 h/3–5

[142] TGF-β
Smad2/3 BMVECs ↑VEGF, ↑Ang-1 pMCAO 2 × 106

BMMSC
IV 3 h/3

[36] VEGF Gap junc-
tionBMVECs

↑gap junction-mediated
cell-cell interaction

↓glucose, ↓VEGF uptake in
ECs

pMCAO 5 × 105

BMMSC
IV 24 h/9

[37] NF-kB p65 Pericytes ↓NF-kB p65→↓pericyte
migration SCI

BMMSC-EVs 1
dose

~2 × 106
IV 30 min/3–5

[110] ER stress ER
Astrocytes

↓ER stress-induced
apoptosis

↓inflammation
tMCAO

2 × 106

3 doses
ADMSC

IV 0, 12, 24 h/2

[94] - -
↓pro-inflammatory,
↓polarize towards

M1-phenotype
pMCAO

4 × 106

cells/kg
hAMSC

IV 24 h/-

GCI, global cerebral ischemia; tUCO, transient umbilical cord occlusion; tMCAO, transient middle cerebral artery occlusion; pMCAO,
permanent middle cerebral artery occlusion; HIBD, hypoxic-ischemic brain damage; OGD, oxygen glucose deprivation; RO, reoxygenation;
LPS, lipopolysaccharide; SCI, spinal cord injury; BMMSC, bone marrow stem cell; hAMSC, human amniotic mesenchymal stem cells;
ADMSC, adipose-derived mesenchymal stem cells; ER, endoplasmic reticulum stress; BMVECs, brain microvascular endothelial cells; EVs,
extracellular vesicles; ICV, intracerebral ventricular; IV, intravenous; IA, intra-arterial; TNTs, tunneling nanotubes.

5. Prospective of MSC-Based Strategies
5.1. Mesenchymal Stem Cell Therapy

With the explosive development of basic research in recent years, the molecular patho-
genesis of cerebral ischemia has gradually been elucidated, suggesting novel targeted
strategies. Increasing studies have demonstrated that systemically administered MSCs can
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migrate into infarct areas, contribute to neurological regeneration through their paracrine
actions and differentiation into neuron-like cells or astrocytes [150–152]. Although tropism
towards the injured brain is a critical property in the repair mechanism of MSCs, over-
coming the BBB remains a significant challenge to cell therapy [43,72]. To enhance the
extravasation of MSCs through the barrier, many potential strategies have been inves-
tigated, including BBB opening (ultrasound, mannitol) [153,154] and MSC modification
(genetic modification, drug combination, preconditioning) [155].

Recently, the use of ultrasound (US)-responsive biomaterials comprising microbub-
bles, liposomes, and nanoparticles have been considered as a prospective theranostic
method. Ultrasound-based techniques exert the energy of stimulated microbubbles to
induce transient BBB opening and facilitate substrates transport through the brain en-
dothelium [156]. Both focused ultrasound and low-intensity ultrasound combined with
microbubbles have been investigated to enhance the transportation of drugs and cells
through the BBB [157,158]. Evidence suggests that low-intensity ultrasound-targeted mi-
crobubble destruction (LI-UTMD) is probably a non-invasive and effective BBB opening
method for MSCs implanted into infarcted brain areas [153,159]. Indeed, Cui et al. re-
ported that the hippocampal BBB was opened via transtemporal ultrasound irradiation,
corresponding to ischemic injuries. MSC homing initiated on day 1, progressively ele-
vated, and maximized on day 14 [153]. The cavitation effect activated by the low-intensity
ultrasound-irradiated microbubbles stimulated the consecutive migration of MSCs into
the cerebral infarct region. Moreover, MRI-guided LI-UTMD allows targeted BBB dis-
ruption and assists drug and cell delivery to determined locations in the brain [160,161].
LI-UTMD-supported MSC transmigration remarkably ameliorated neurological outcomes
after 1–2 weeks of transplantation in stroke models [153,162]. Furthermore, low-intensity
diagnostic ultrasound can be widely applied in clinical practice because of its safety and
commercialization. However, the difficulty in controlling the sonication volume and ex-
posure conditions due to the unfocused ultrasound beam limits the effectiveness of this
apparatus [153]. Further studies should focus on the exposure window, and the detection of
proper pressure amplitude at the targeted site of the brain due to the significant differences
in skull thickness, brain size, and acoustic attenuation between humans and animals before
clinical application.

Osmotic BBB opening via infusion of a hypertonic solution such as mannitol, fructose,
milk amide, and glycerol is a common modality used in preclinical studies to improve
drug and cell delivery into the brain parenchyma [154,163]. Osmotic BBB disruption is
explained by vasodilatation, dehydration, and shrinkage of BMVECs, leading to the exten-
sion of the interendothelial cleft along with the BBB [164]. Barrier impairment facilitates
the penetration of stem cells into targeted brain areas, thus enhancing the efficacy of cell
therapy. Recent investigations have demonstrated that although mannitol pretreatment did
not notably increase the number of cells reaching the lesion sites, enhanced transfer of neu-
rotrophic factors released by stem cells via BBB correlated positively with amelioration of
neurological deficits and infarct size [165,166]. The low rate of cellular transmigration may
be related to the limited number of intravenously administered cells due to entrapment in
pulmonary, liver, spleen capillaries [167], and large-sized stem cells [168]. Moreover, the in-
consistency and non-selectivity of BBB opening zones following intra-arterial (IA) mannitol
infusion has limited the clinical application of this approach [169]. Intra-arterial injection of
mannitol usually influences deep brain regions and rarely affects the cerebral cortex due to
the role of local collateral circulation [170], thus, temporary contralateral common carotid
artery ligation can considerably increase BBB permeability in the ipsilateral cortex [163].
Recently, real-time MRI has provided a great approach and spatial control for selective BBB
opening, applied in investigating BBB interruption by inducing mannitol [171,172] and
focused ultrasound [160]. IA infusion and selective BBB opening through real-time MRI
can supply localized intervention and minimize systemic exposure [163]. The combination
of induced pluripotent stem cells IPSC-derived 3D BBB and osmotic opening of mannitol
has opened up new potential research directions involving the transport of agents and cells
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via the brain barrier in vitro [173]. Briefly, osmotic disruption via mannitol might be an
effective approach for MSC delivery into targeted brain areas. However, the side effects
of aggravating local inflammatory reactions and the duration of mannitol administration,
implanted routes need to be further evaluated.

Genetically modified MSCs offer a broad prospect for the treatment of cerebral infarc-
tion. Gene-transfected MSCs either preserve their original therapeutic effects or enhance
the benefits of implanted exogenous genes [155]. Enhanced MSC transmigration toward
the injured site involves overexpression of some exogenous genes, including FGF21 [174],
CCR2 [108] CXCR5 [175], and CXCR4 [106]. However, the potential tumorigenicity and eth-
ical issues associated with transplantation of transgenic cells limit the clinical applicability
of this therapeutic approach. In addition, MSC-drug conjunction is a feasible and potential
strategy that promotes survival, proliferation, and homing of transplanted cells. In particu-
lar, MSC migration into infarcted areas was significantly enhanced in combination with
sodium ferulate [176] or in pre-treatment with valproate or lithium [177]; preconditioning
refers to changes in physical medium such as hypoxia [178], hyperbaric oxygen [179].
The penetration toward the injured position of hypoxia-preconditioning-induced MSCs
increases significantly through upregulation of CXCR4 and MMP-2 [178]. Meanwhile, the
long-term hyperbaric oxygen approach can enhance the migration of MSCs or neuroge-
nesis [180]. Collectively, enhancing MSC migration induces angiogenesis, neurogenesis
promotion and effectively improves neurological deficits following brain injuries.

5.2. MSC-Derived Extracellular Vesicle Therapy

Overcoming the BBB of MSC-derived extracellular vesicles (MSC-EVs) also contributes
to the efficacy of stem cell therapy. Improvement in neurological deficits following cerebral
insults might be dominantly involved in the paracrine activities of MSCs via EVs [181].
Although EVs are classified into four types, including exosomes, microvesicles (MVs),
apoptotic bodies, and oncosomes, only exosomes and MVs play pivotal roles in the thera-
peutic effects of EV-based strategies. MSC-EVs have functionally analogous efficiency to
MSCs [182] and more smoothly traffic through the BBB [183]. EVs contain numerous thera-
peutic elements, including cytokines, growth factors, and miRNAs [184]. MSC-EV therapy
markedly contributes to cerebrovascular barrier integrity following ischemia by restoring
components of BBB [184]. However, the most noticeable disadvantage of applying EVs
in vivo is the limited BBB overcome after intravenous transplantation. Novel directions
promoting MSC-EV delivery to definite brain regions have been investigated, such as
magnetic navigation and MSC modification [184–186]. Exosome-mimetic nanovesicles
(NVs) were generated by a serial extrusion process of stem cells, which either maintain
the natural properties of EVs or attain large-scale production [187]. To advance targeting
capacity, Kim and colleagues fabricated magnetic exosome-mimetic nanovesicles (MNVs)
by extrusion of iron oxide nanoparticle (IONP)-containing MSCs. IONPs mediate their
magnetic navigation to promote NVs migration toward the injured site and stimulate the
secretion of growth factors of MSCs. Under magnetic navigation, MNV accumulation in
infarct areas remarkably increased, thus inducing polarization of microglia toward the M2
phenotype and neurogenesis [185].

NVs can be inserted into many types of resident cells, such as astrocytes, pericytes,
BMVECs, and macrophages/microglia, which might be the underlying mechanisms of
EV-based benefits [184–186]. Furthermore, exosomes derived from BBB components are
also potential directions, especially when the interrelationships between astrocytes, peri-
cytes, and BMVECs are increasingly elucidated. Astrocyte-derived exosomes, whose main
components include miR-190b [188], miR-361 [189], and miR-34c [190], are involved in
suppressing the apoptotic process and enhancing autophagy, consequently providing a
remarkable protective effect on the injured brain. In addition, pericyte-extracted exosomes
could protect the blood–spinal cord barrier from the impact of inflammatory response
and apoptosis post-injury through HIF-1a, Bax, Aquaporin-4, and MMP2 downregulation
and TJs and Bcl-2 upgradation involved in the PTEN/AKT pathway [191]. The main
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components of endothelial cell-derived exosomes contain several types of miRNAs, such as
miR-27a, miR-19a, miR-298, miR-195, and miR-126 [192], play a critical role in axonal prolif-
eration and improve behavioral outcomes, whereas exosomes from endothelial progenitor
cells mainly involve angiogenic promotion [193].

Engineering MSCs can secrete EVs with beneficial cargo through viral vectors or
the CRISPR-Cas9 system [194,195]. Owing to the stealth features of EVs and stable gene
expression of adeno-associated virus (AAV), investigators have developed a new notion
of EVs known as vexosomes [194]. Based on the advantages of evasion of the body’s
immune response to AAV and long-term stable gene expression, vexosomes might become
a promising non-invasive approach, effectively enabling targeting to the injured brain [196].
Recently, a novel hybrid biomaterial has been studied, named enveloped protein nanocages
(EPNs) or self-assembling protein nanocages, which act as potential carriers in biomedicine.
EPNs in combination with vesicular stomatitis viral glycoprotein can merge with target cells
and transfer cargo from one cell to another [197]. In addition, the CRISPR-Cas9 technique
is a gene-editing tool with high precision and specificity. The transgenic efficiency of the
CRISPR-Cas9 system is similar to that of the lentivirus vector [198]. Indeed, employing
CRISPR-Cas9 to knockout (KO) toll-like receptor 4 (TLR4) gene of hMSCs significantly
ameliorated the inflammatory response and secretion of EVs compared with the unedited
group [199]. However, unstable gene integration restricted the efficacy of this approach
and should be further improved in future studies [195]. Collectively, EV-based therapy
with modifications to enhance the ability to target lesions is a feasible and highly applicable
research direction in the future.

6. Conclusions

Following ischemia, BBB disruption initiates a series of adverse events causing vaso-
genic edema, neuroinflammatory response, and cell death, resulting in long-term sequelae.
Recent investigations of how MSC therapy preserves ischemia-induced BBB breakdown
may open up novel therapeutic targets for treating cerebrovascular diseases. The under-
lying mechanisms of BBB preservation include prevention of immune cells recruitment,
regulation of metalloproteinases, stabilization of morphology, and crosstalk of the cellular
components of the BBB. However, these mechanisms are highly complex, and interrelated
signaling pathways require further investigation. To improve the therapeutic effect of
MSC-based therapy, strategies to increase the overcome barrier ability of MSCs and EVs are
attracting research attention, promising to provide many potential solutions in the future.
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