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Synopsis Life history strategies are composed of multiple fitness components, each of which incurs costs and benefits.

Consequently, organisms cannot maximize all fitness components simultaneously. This situation results in a dynamic

array of trade-offs in which some fitness traits prevail at the expense of others, often depending on context. The

identification of specific constraints and trade-offs has helped elucidate physiological mechanisms that underlie variation

in behavioral and physiological life history strategies. There is general recognition that trade-offs are made at the

individual and population level, but much remains to be learned concerning the molecular neuroendocrine mechanisms

that underlie trade-offs. For example, we still do not know whether the mechanisms that underlie trade-offs at the

individual level relate to trade-offs at the population level. To advance our understanding of trade-offs, we organized a

group of speakers who study neuroendocrine mechanisms at the interface of traits that are not maximized simulta-

neously. Speakers were invited to represent research from a wide range of taxa including invertebrates (e.g., worms and

insects), fish, nonavian reptiles, birds, and mammals. Three general themes emerged. First, the study of trade-offs

requires that we investigate traditional endocrine mechanisms that include hormones, neuropeptides, and their receptors,

and in addition, other chemical messengers not traditionally included in endocrinology. The latter group includes growth

factors, metabolic intermediates, and molecules of the immune system. Second, the nomenclature and theory of neu-

roscience that has dominated the study of behavior is being re-evaluated in the face of evidence for the peripheral actions

of so-called neuropeptides and neurotransmitters and the behavioral repercussions of these actions. Finally, environ-

mental and ecological contexts continue to be critical in unmasking molecular mechanisms that are hidden when study

animals are housed in enclosed spaces, with unlimited food, without competitors or conspecifics, and in constant

ambient conditions.

Introduction

Life is full of trade-offs in which organisms must

forfeit something of value to gain something new.

Resources such as time and energy are often finite,

and thus, engagement in some activities often

excludes engagement in others. Careful attention to

constraints and trade-offs can help us elucidate the

mechanisms that underlie variation in life history

strategies. For example, energetic and time con-

straints might underlie some of the seasonal,

estrous/menstrual, and circadian cycles observed in

phenotypes related to both reproduction and energy

metabolism. With regard to annual cycles, many

warm-blooded species that inhabit temperate zones

must reconcile the benefits of immediate reproduc-

tion with the costs of high offspring and parent mor-

tality at low ambient temperatures, particularly when

cold temperatures are accompanied by low food

availability. This group of symposium papers

includes new and reviewed information about the
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trade-offs in seasonally breeding, temperate zone bats

(Willis 2017), voles (Ferkin 2017), hamsters

(Schneider et al. 2017), birds (Deviche et al. 2017),

and snakes (Lucas et al. 2017). In many such species,

reproductive processes are suppressed to conserve

energy for thermogenesis, and the hypothalamic–

pituitary–gonadal (HPG) system is inhibited in di-

rect response to the resulting energy deficits or to

indirect cues that predict the onset of winter

(reviewed by Bairlein and Gwinner 1994; Bronson

1989). Similar environmental cues can promote the

onset of reproductive processes in the spring. For

example, in this symposium, we learn that in some

bat species, one important cue for initiation of the

breeding season is an abrupt drop in barometric

pressure within the hibernaculum, which heralds a

warm front outside the cave (Willis 2017).

Additional trade-offs occur in species that show an-

nual cycles in hibernation or migration. Both of

these strategies provide the benefit of avoiding costs

associated with cold ambient temperatures and/or

low food availability, but have associated costs,

such as compromised immune function and/or loss

of restorative sleep (e.g., Willis 2017 and reviewed by

Alerstam and Lindstrom 1990). Specific interactions

between environmental cues and neuroendocrine

systems create important species and sex differences

in seasonal life history strategies (e.g., reviewed by

Bentley et al. 2017; Davies and Deviche 2014; Ferkin

2017; Lucas et al. 2017, in this symposium). In ad-

dition to annual cycles, estrous/menstrual cycles are

associated with trade-offs. The energetic costs of

reproduction require that periods of sexual activity

be preceded by periods of foraging, eating, body fat

storage, and/or food hoarding. This is particularly

important in female mammals living in habitats in

which energy supply and demand fluctuate. The fluc-

tuations in ingestive and reproductive activities syn-

chronize mating with ovulation, and might link high

levels of sexual motivation with a suppressed appe-

tite for food. Presentations in this symposium illus-

trate how availability of food and other stressors

inhibit many aspects of reproduction, including go-

nadotropin and gonadal steroid synthesis, gamete

production (Bentley et al. 2017; Deviche et al.

2017) attractivity, proceptivity, and receptivity

(Ferkin 2017), and simultaneously increases ingestive

behaviors, including foraging and food hoarding

(Schneider et al. 2017). The link between ingestive

and sex behavior might provide important clues to

underlying mechanisms, clues that would not be

likely to arise from the more common assumption

that “satiety hormones” should maintain body

weight in individuals isolated from opposite-sex

conspecifics, in an enclosed space, with few behav-

ioral options, and with unlimited food (reviewed by

Schneider et al. 2013; Schneider et al. 2017). In ad-

dition to annual and ovulatory cycles, circadian

cycles are associated with trade-offs. In at least

some cases, time and/or energy constraints and their

resulting trade-offs underlie circadian fluctuations in

behavior that might synchronize activities such as

dispersal, foraging, mating, and resting/energy con-

servation (Zera 2016a). In summary, studies of an-

nual, estrous/menstrual, and circadian cycles have

formed a strong foundation for understanding

mechanistic trade-offs made by individuals.

Trade-offs are important at the level of the indi-

vidual, but in addition, some trade-offs influence the

process of evolution. This occurs when there is a cost

in fitness associated with increases in an otherwise

adaptive phenotype (Williams 1966; Stearns 1989;

Zera and Harshman 2001). A microevolutionary

trade-off can be defined as a negative relationship

between two traits that prevents each trait from

evolving independently (Stearns 1989). For example,

in some species, high levels of fecundity are incom-

patible with longevity (Jenkins et al. 2004;

Mukhopadhyay and Tissenbaum 2007). In other spe-

cies, high levels of fecundity are incompatible with

phenotypes that are necessary for dispersal (Zera and

Denno 1997). In some of these cases, the evolution

of two phenotypes is constrained because both phe-

notypes depend upon a limited resource, for exam-

ple, when there is insufficient availability of

metabolic fuels to support both the immune and

reproductive system (Zera and Harshman 2001).

Furthermore, constraints can be genetic, develop-

mental, morphological, or physiological (Stearns

1989; Harshman and Zera 2007; Heideman and

Pittman 2009; Ross et al. 2009; Heideman et al.

2010). There is a growing body of excellent research

on the underlying physiology of trade-offs (e.g., Cox

et al. 2009, 2010; Denver et al. 2009; Clark et al.

2015; Kirschman et al. 2017; Zera 2016a; Zera

et al. 2016) as well as careful work that uncovers

species that employ flexible strategies instead of mak-

ing the expected trade-offs (Merrill et al. 2015). Yet,

there remains a lack of evidence rigorously support-

ing even some of the most fundamental aspects of

trade-off physiology—such as the very existence of

purported trade-offs and the mechanisms involved.

One promising line of investigation involves com-

ponents of the neuroendocrine system. This line of

work demonstrates that the opposing pleiotropic

effects of hormones impose constraints on the evo-

lution of individual phenotypes that are affected by

these hormones (Ketterson and Nolan 1992; Finch

1152 J. E. Schneider and P. Deviche

Deleted Text: c
Deleted Text: -
Deleted Text: -
Deleted Text: (
Deleted Text: ]
Deleted Text:  and
Deleted Text: ;
Deleted Text: )). 
Deleted Text: ]
Deleted Text: (
Deleted Text: ]
Deleted Text: )
Deleted Text: (
Deleted Text: )). 
Deleted Text: ]
Deleted Text: ,
Deleted Text:  
Deleted Text: Bentley et<?A3B2 show $146#?>al.
Deleted Text:  (2017)
Deleted Text: , and Ferkin et<?A3B2 show $146#?>al.
Deleted Text:  (2017)
Deleted Text:  
Deleted Text:  (<xref ref-type=
Deleted Text: ,
Deleted Text: c
Deleted Text: (
Deleted Text: ;
Deleted Text: )). 
Deleted Text: ]
Deleted Text: <xref ref-type=
Deleted Text: ; <xref ref-type=
Deleted Text: (<xref ref-type=
Deleted Text: )
Deleted Text: &ndash;


and Rose 1995; Hau and Wingfield 2011). Some

prominent examples illustrate purported trade-offs

that appear to be hormonally-mediated and, in ad-

dition, pique some critical questions. For example, in

the brown anole lizard, Anolis sagrei, maximum lon-

gevity is incompatible with high levels of fecundity.

In support of this idea, longevity is significantly in-

creased by removal of ovarian hormones (by ovari-

ectomy) concomitant with higher levels of growth,

body fat content, hematocrit, immune response, and

parasite tolerance (Cox et al. 2010). In many bird

species, high levels of androgens promote territorial

aggression and mating, but chronically elevated

plasma concentrations of androgens incur severe

costs in terms of immune function, survival rate,

and parental care (reviewed by Wingfield et al.

1990; Hau and Wingfield 2011). Wing polymorphic

Gryllus crickets include morphs that trade-off fecun-

dity for dispersal capabilities related to large wing

size and highly developed flight muscles. A long-

winged morph has flight capability, high levels of

triglycerides (presumably for storage of flight fuel),

and high levels of acoustic sensitivity coupled with

circadian rhythms in levels of juvenile hormone that

underlie daily dispersals. Long-winged females tend

to delay ovarian growth and egg production, whereas

short-wing females have faster rates of ovarian devel-

opment and higher fecundity related to chronically

high concentrations of insulin-like peptides and

ecdysteroids (reviewed by Zera 2016a, 2016b).

These landmark studies demonstrate the potential

role of hormones in trade-offs in both wild and lab-

oratory animals, and they delineate some interesting

and fundamental questions that remain unresolved

in most systems: What are the cause-and-effect rela-

tions among hormones, metabolic pathways, meta-

bolic fuel partitioning, behavior, and measures of

reproductive success? For example, do gonadal ste-

roids alter fuel oxidation and reproductive behavior

and thereby “waste” energy that could be funneled

toward longevity (e.g., fighting parasitic infections)

and vice versa? More specifically, do the hormones

involved in uptake and/or metabolism of carbohy-

drates redirect fuels toward tissues involved in repro-

ductive output? New evidence suggests that

symbiotic microorganisms in the intestines can in-

crease or decrease calorie and nutrient uptake. Do

hormones of the HPG system alter the gut micro-

biome to allow the individual to absorb more or less

calories and nutrients from digested food during dif-

ferent reproductive stages? In addition, do gonadal

steroids promote risky behaviors and social interac-

tions that increase the incidence of infection with

bacteria, viruses, and parasites? We envision two

general possibilities: (1) energy allocated to one trait

compromises survival by competing for a common

pool of metabolic fuels or other resources necessary

for growth, survival, and/or for other phenotypes

such as mounting an immune response, or (2) pleio-

tropic effects of hormones or rhythms in hormones

might, in and of themselves, constrain the evolution

of the traits affected by the hormones. Are the two

possibilities mutually exclusive? Could they both be

simultaneously true? In reality, there might be over-

lap in and interaction among the different con-

straints. One possible example would occur when

(1) two behaviors are influenced in opposite direc-

tions by the level of available metabolic fuels, and (2)

the actions of hormones and metabolic intermediates

increase or detract from the availability of internal

resources (the overall pool of available metabolic

fuels) thereby creating the stimulus for one or the

other conflicting behavior. Furthermore, different

types of trade-offs are made at the level of the indi-

viduals, populations, and species (e.g., Brozek et al.

2017; Crespi and Travis 2017); are the mechanisms

of these types of trade-off the same, different, over-

lapping, and/or interacting (Stearns 1989)?

Physiology, animal behavior, and life history strategy

have been loosely associated with the idea of trade-

offs, and yet, we have much to learn about the mo-

lecular and neuroendocrine mechanisms that create

trade-offs.

Our symposium speakers are interested in the im-

pact of trade-offs on individuals, families, and pop-

ulations. The symposium presentations ranged from

highly molecular (e.g., the presentation by Scott

Emmons on the nematode worm, Caenorhabditis ele-

gans, a species for which all of the genes and neural

synapses are known) to highly behavioral (e.g., the

presentation by Michael Ferkin on meadow voles,

Microtus pennsylvanicus, a species in which new be-

havioral and physiological trade-offs have been re-

cently characterized). Emmons explored the trade-

off made by males of the species, C. elegans, between

survival at a plentiful food source and reproductive

success that becomes possible only upon leaving a

food source. His laboratory group was able to iden-

tify genes that prioritize sexual and ingestive moti-

vation, and to localize changes in gene expression in

the nervous system. Erica Crespi explored the trade-

off between offspring size and offspring number in

killifish born into environments with different pop-

ulation densities and predation risk, and studied the

mediation of this trade-off by progesterone (E. J.

Crespi, unpublished data). Deborah Lutterschmidt

presented her work on the neuroendocrine mecha-

nisms that orchestrate seasonal patterns in
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reproductive behavior and ingestive behavior in red-

sided garter snakes, Thamnophis sirtalis parietalis.

This species hibernates in winter, emerges in spring,

immediately engages in a two-week period of fasting

and frenzied mating behavior, and then abruptly

reverses priorities as it migrates to the feeding

grounds. These behavioral transitions are associated

with changes in a number of chemical messengers

including arginine vasotocin and neuropeptide Y

(NPY) (Lucas et al. 2017). Pierre Deviche reviewed

the diversity of neuroendocrine mechanisms in-

volved in the allocation of resources in birds with

emphasis on the HPG and hypothalamic-pituitary-

adrenal (HPA) systems (Deviche et al. 2017).

George Bentley used examples from avian and mam-

malian species to illustrate the fact that one chemical

messenger can have different effects centrally and

peripherally creating species, sex, and developmental

variation in the mechanisms involved in trade-offs

(Bentley et al. 2017). Greg Demas presented the

trade-off between reproduction and survival/longevity

in the context of the energetic costs of the immune

response and the energetic savings of sickness behav-

iors in Siberian hamsters (Phodopus sungorus). Craig

Willis presented the unique perspective on energy al-

location that comes from studying species that hiber-

nate, with emphasis on little brown bats (Myotis

lucifugus). Michael Ferkin (studying voles, M. pennsyl-

vanicus) and Jill Schneider (studying Syrian hamsters,

Mesocricetus auratus) discussed the importance of un-

derstanding the neuroendocrine control of both ap-

petitive and consummatory behaviors for

understanding trade-offs between reproduction and

survival when environmental energy is limiting

(Ferkin 2017; Schneider et al. 2017). At least three

contributors discussed inter-generational trade-offs

that include gestational programming, offspring devel-

opment, and adult energy balancing traits (Brozek

et al. 2017; Crespi and Travis 2017; Ferkin 2017).

Using killifish (Heterandria formosa) as a model sys-

tem, Crespi and Travis explored the expected trade-

off between offspring size and number in response to

population density/predation threat. Jeremy Brozek

discussed maternal programming of offspring energy

balancing characteristics, which might be adaptive

when the offspring are born into the same environ-

ment in which they were programmed, but might

force a trade-off if offspring are born into a different,

mismatched environment (Brozek et al. 2017). Ferkin

discovered that vole dams that are food restricted

during lactation spend less time nursing and licking

their offspring compared with control dams, and low

rates of maternal licking during early and middle lac-

tation had permanent effects on offspring that lasted

into adulthood. Adult offspring of lactationally food-

restricted dams showed reduced levels of attractivity,

proceptivity, and receptivity, which are likely to influ-

ence their reproductive success (Ferkin 2017). All of

the contributors are working on different physiologi-

cal systems, including the stress response (Bentley

et al. 2017), hibernation (Willis 2017), immunity

(Crespi and Travis 2017), ingestive behavior (Brozek

et al. 2017; Crespi and Travis 2017; Emmons 2017;

Ferkin 2017; Lucas et al. 2017; Schneider et al. 2017),

and reproduction (Brozek et al. 2017; Crespi and

Travis 2017; Deviche et al. 2017; Emmons 2017;

Ferkin 2017; Lucas et al. 2017; Schneider et al.

2017). Not all contributors to this symposium are

testing specific hypotheses about microevolutionary

trade-offs, and many of the contributors are primarily

concerned with neuroendocrine mechanisms. At the

same time, they are sincerely interested in both prox-

imate and ultimate influences on behavior, and their

work is likely to have something important to con-

tribute to our understanding of trade-offs. In viewing

this diverse array of model systems together as a

whole, some important themes emerge.

Moving beyond endocrine secretions

Certainly, hormones and their receptors play a role in

orchestrating trade-offs (Adkins-Regan 2005). For ex-

ample, trade-offs between territoriality and parental

investment appear to be linked to polymorphisms in

the estrogen receptor (Huynh et al. 2011; Horton

et al. 2012, 2013). It is important to remember, how-

ever, that the definition of a hormone is a human

invention, and there is little evidence that evolution-

ary forces, such as natural selection, abide by this

definition. It is clear that we must move beyond tra-

ditional endocrine secretions to consider a more in-

clusive array of chemical messengers. In addition to

peripheral hormones, neuropeptide hormones, neuro-

transmitters, and their receptors, the list of chemical

factors that influence trade-offs includes immune

secretions, such as growth factors, cytokines, chemo-

kines, neurotrophins, complement factors, prostaglan-

dins, metabolic intermediates, and enzymes, including

aromatase. Some enzymes influence trade-offs by their

effects on hormone synthesis, whereas others moon-

light as signal transducers. Many different types of

chemical messengers can be altered by environmental

stimuli and can act as signaling molecules that send

information from cell to cell. Like hormones, they as

well can orchestrate trade-offs.

In its simplest form, a trade-off implies that an

increase in one trait leads to a decrease in another,

and many chemical messengers can stimulate one
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physiological process while inhibiting another. For

example, each member of a growing list of chemical

messengers increases food intake while simulta-

neously inhibiting reproductive processes. The chem-

ical messengers that increase ingestive behaviors and

inhibit reproductive processes include ghrelin and

(at high circulating levels) insulin. In addition, the

list includes a rapidly growing list of neuropeptides

and monoamines. Our symposium highlighted

gonadotropin-inhibition hormone (GnIH) and its

mammalian ortholog, RFAmide-related peptide-3

(RFRP-3), in talks by Bentley and Schneider.

Lutterschmidt emphasized arginine vasotocin and

NPY. Other investigators have emphasized ghrelin,

agouti-related protein, melanin-concentrating

hormone, serotonin, and b-endorphin. Conversely,

when food availability is abundant, ingestive behav-

iors are decreased by chemical messengers of the

endocrine system such as leptin, the adipocyte hor-

mone studied by at least four speakers in our sym-

posium (Emmons, Lutterschmidt, Schneider, and

Willis). Other anorexigenic molecules include

glucagon-like peptide, cholecystokinin, estradiol,

kisspeptin, dopamine, and a-melanocyte stimulating

hormone. Many of these chemical messengers

stimulate HPG function, courtship and copulatory

behavior, maternal behavior, growth, maturation,

and many aspects of the immune response, and

many are involved in seasonal cycles of feeding and

breeding (Hobbs et al. 2012; Schneider et al. 2013;

Kriegsfeld et al. 2015; Ashley and Demas 2017;

Deviche et al. 2017; Lucas et al. 2017). Thus, systems

that orchestrate trade-offs can be mediated by a wide

array of molecules. The trade-off might occur be-

cause of the pleiotropic effects of these chemical

messengers and/or because these chemical messen-

gers control behaviors that compete for the same

pool of resources.

In addition to these neuroendocrine molecules, it

is important to recognize a role for other molecules,

such as sex determination factors, growth factors

(e.g., transforming growth factor-b [TGF-b] and fi-

broblast growth factor-21 [FGF21]), prostaglandins,

cytokines, (e.g., the proinflammatory cytokine,

interleukin-6), and enzymes. Energy is the most im-

portant constraining factor that controls reproduc-

tion (Bronson 1989), and thus, it makes sense to

include in this list the various inhibitors of the

enzymes involved in intermediary metabolism, par-

ticularly glucose and fatty acid oxidation, which are

central to energy allocation (Schneider et al. 1997,

1998; Schneider and Zhou 1999). Energy for repro-

duction competes with energy for the immune

responses, growth, and development, and chemical

messengers such as FGF21 mediate the seasonal

effects of day length on ingestive behaviors, energy

storage, and energy expenditure (Samms et al. 2014,

2015), despite the fact that they do not technically

qualify as hormones. Some enzymes and other chem-

ical messengers not only partition energy toward in-

gestive behavior and away from reproduction, they

literally decrease the oxidation of metabolic fuels and

energy expenditure and increase the amount of en-

ergy that is shunted into storage in adipose tissue.

When energy availability is limiting (low energy sup-

ply and high demand), these chemical messengers

conserve energy that would be wasted on reproduc-

tion or wasted on mounting an immune response at

a time when the energy must be expended on activ-

ities necessary for immediate survival (reviewed by

Wade and Schneider 1992). In the first talk of our

symposium, we learned that a small cluster of genes

with pleiotropic effects on ingestive and reproductive

behaviors has been discovered in C. elegans. At the

time of this writing, C. elegans was the only species

for which the entire connectome is known. The

trade-off between uncertain reproductive success

and assured survival in C. elegans is related to pleio-

tropic effects of the genes for some traditional endo-

crine receptors (e.g., insulin receptor, serotonin

receptor, thyroid hormone receptor, and pigment

dispersing factor) (Lipton et al. 2004; Barrios et al.

2012; Garrison et al. 2012; Emmons 2017). In addi-

tion, this trade-off is influenced by sex determination

factor, the vitamin D receptor, TGF-b, and the pro-

tein product of the daf-12 gene. Some of these factors

play a similar role in trading off sex for ingestive

behavior in other model systems. (McCann and

Hansel 1986; Wade et al. 1991; Heisler et al. 1994;

Bruning et al. 2000; Sullivan et al. 2002; Benoit et al.

2004; Woodside et al. 2012; Zendehdel et al. 2012;

Blevins and Ho 2013; Sabatier et al. 2013; French

et al. 2014; Lopez-Esparza et al. 2015; Schellekens

et al. 2015; Santoso et al. 2017; Woodside 2016).

This initial 1-h kick-off to the symposium suggested

many possibilities for linked genes with pleiotropic

and/or antagonistic effects that would constrain phe-

notypic expression and lead to population divergence

due to selection for different optima.

The integration of physiology, brain, and
behavior

Many effects of chemical messengers on behavior are

assumed to occur in the brain; however, core elements

of the trade-offs occur in peripheral tissues. The sec-

ond talk scheduled in our symposium was to be given

by Irene Miguel-Aliaga, but unfortunately, the talk
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was cancelled at the last minute due to unforeseen

circumstances. It was to be a prime example of pe-

ripheral mechanisms involved in trade-offs. Miguel-

Aliaga’s work is based on the fact that energetic

investment in female reproduction includes hyperpla-

sia of many tissues, including the midgut (intestines),

which allows greater food ingestion and absorption of

calories and nutrients. For example, in Drosophila

melanogaster, females produce hundreds of eggs, and

their fertility is enhanced by increased cell number

and tissue size of the midgut. This remodeling of

the digestive tissue is triggered by juvenile hormone,

the secretion of which is stimulated by mating (Reiff

et al. 2015). Thus, it appears that the nutrient alloca-

tion toward reproduction is not only dependent upon

brain mechanisms that increase eating, but also pe-

ripheral mechanisms that increase the size of the gut

in response to a reciprocal hormone-behavior rela-

tion. Specifically, the behavior of the mating pair elic-

its hormone secretion in the female, which enhances

peripheral remodeling of the female digestive system,

which in turn enables greater food ingestion and ab-

sorption (Reiff et al. 2015).

A broad, evolutionary overview of this topic in

vertebrate and protovertebrate systems was provided

in the presentation of George Bentley. He noted that

the “neuroscience perspective” implicates the hypo-

thalamus as the initiator of trade-offs between repro-

duction and survival when energy is constrained.

Many of the so-called neuropeptides, however, are

synthesized and released in the periphery, where

they act on their cognate receptors to orchestrate

trade-offs. For example, the gonadotropin-releasing

hormone (GnRH) pulse generator has been assumed

to be the locus of stress-induced, GnIH-mediated

inhibition of reproduction, but in European star-

lings, Sturnus vulgaris, the gonads respond directly

to fluctuations in corticosterone and metabolic fuels

by increasing GnIH secretion and thereby modulat-

ing sex steroid secretion. Corticosterone upregulates

GnIH expression in testes, whereas metabolic stress

upregulates GnIH in ovaries, and modulation of go-

nadal secretion modulates reproductive and ingestive

behavior (McGuire et al. 2013). In general, finding

that an exogenous agent application to the brain

elicits behavior does not exclude a role for this agent

in peripheral control of cardiac, hepatic, enteric, di-

gestive, excretory, and metabolic systems that feed-

back and control behavior. Similarly, it might be

expected that interoreceptive and exteroreceptive sig-

nals that stimulate trade-offs in sex and ingestive

behvior would be integrated within deep brain struc-

tures, but in C. elegans, the integration of sensory

signals that determine the choice between food and

sex is at least partially integrated at the premotor

interneurons (Emmons 2017). This type of periph-

eral processing might be loosely analogous to the

idea of “muscle memory.” Thus, an emerging theme

of this symposium was the importance of the central

and peripheral nervous system and its chemical and

neural integration with peripheral tissues.

Context is critical

Reproduction is more than just copulation and

includes appetitive aspects of behavior, such as

attractivity, mate searching, territoriality, courtship

(including song), and maternal behaviors (Ferkin

2017). Ingestive behavior is more than just food in-

take per unit time, and includes the latency to eat,

the rate of food consumption, food hoarding, and

the preference for food versus opposite-sex conspe-

cifics (Schneider et al. 2017). The symposium pur-

posely included work on appetitive behaviors from

many different species that represented most verte-

brate taxa as well as some invertebrates. More than

one group of researchers at this symposium empha-

sized the choice between food and sex as a pheno-

type in and of itself, and considered this approach

more enlightening than studying daily food intake in

the absence of mates or sex behavior in the absence

of food (e.g., Emmons 2017; Lucas et al. 2017;

Schneider et al. 2017). In addition, behavioral prior-

ities are closely linked to prior energetic status, the

presence of food, predators, and opposite-sex con-

specifics. Genes, chemical messengers, and receptors

were discovered by studying the option to engage in

appetitive behaviors in their appropriate species-

specific context. Appetitive behaviors are those that

reflect motivation independent of performance

(Craig 1917; Lorenz 1950). Attractivity is related to

the ability to change the behavior of a potential mat-

ing partner (Beach 1976). Had some of these

researchers restricted their attention to daily food

intake in the absence of mating partners or copula-

tion in the absence of food, the role of the various

genes, chemical messengers, and receptors would not

have been elucidated. Other talks illustrated that

metabolic fuel availability and endocrine disrupting

compounds have differential effects on sexual moti-

vation, attractivity, and sexual performance (e.g., the

contribution of Ferkin 2017). The mechanisms that

govern the choice between food and sex are not just

an interesting feature of one particular species.

Rather, they may be a feature common to all living

organisms, given that the choice between food and

sex measured in different energetic conditions is a

useful model system in mammals, reptiles, and
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nematode worms (Emmons 2017; Ferkin 2017; Lucas

et al. 2017; Schneider et al. 2017). For example,

Schneider et al. (2017) show that female hamsters

are prodigious food hoarders in nature, but when

females are fed unlimited amounts of food, they

choose to spend time with males and ignore the

opportunity to hoard food consistently on every

day of the estrous cycle. Even ovariectomized females

with little or no circulating ovarian steroids will visit

males instead of hoarding food. By contrast, mildly

food-restricted females become prodigious food

hoarders on 3 out of the 4 days of the estrous cycle.

Only on the day of estrous do they forgo food

hoarding and visit males. Similarly, mildly food-

restricted, ovariectomized females choose to hoard

massive amounts of food rather than visit males,

but treatment with estradiol and progesterone switch

their priorities back to sex. The effects of ovarian

steroids are masked in conditions of food abun-

dance, and they are shown in sharp relief when en-

ergy availability is limited. Similarly, activation of

RFRP-3 cells in the brain is increased by food re-

striction and this effect is modulated by ovarian ste-

roids (Schneider et al. 2017). This theme was echoed

in the contributions of Deviche in avian species and

Bentley a wide array of chordates and protochordates

(Bentley et al. 2017; Deviche et al. 2017). Context is

important.

Demas emphasized the importance of context in

species that forfeit reproductive opportunities in re-

sponse to illness. Instead of searching and competing

for mates, they often display sickness behaviors, such

as fever, loss of appetite, and social isolation. Rather

than simply indicating pathological side effects, sick-

ness behaviors such as fever, loss of appetite, and

social isolation can be viewed as coordinated adap-

tations that help fight infections and conserve energy

(Hart 1988). Sickness behaviors and their effects on

disease states vary with individuals and with environ-

mental variables. Even the famous suppressive effects

of gonadal steroids on immune function depend on

reproductive context. Gonadal steroids and their

receptors have a reputation for promoting reproduc-

tive success while simultaneously suppressing the im-

mune system. In female rodents, however,

testosterone lowers inflammation at ovulation, pre-

sumably preventing immune interference toward the

sperm at conception. Thus, gonadal steroids can

have positive influences on fertility while at the

same time promoting an immune response (Lorenz

et al. 2017).

The effects of environmental context on popula-

tion divergence in heritable phenotypes are the es-

sence of evolution by natural selection, and

examination of hormone action in different environ-

ments can reveal either obligatory trade-offs or plas-

ticity, which can avoid the need for trade-offs. For

example, Crespi and Travis show that female killifish

from populations at historically high densities are

consistently smaller in size and give birth to small

clutches of large offspring (Crespi and Travis 2017).

Conversely, females from low-density populations

with high predation risk are larger in size and give

birth to large clutches of small offspring. These pop-

ulations that developed in different environments

also differ in their activity and mating behaviors

exhibited in the presence of predators. For example,

males from a high predation population exhibit high

levels of female chase and lower levels of circulating

cortisol after exposure to a predator than do males

from a high density/low predation threat population.

Conversely, reproductive output of females from the

high density population is unaffected when housed

in high density conditions, whereas those from the

high predation/low density population dramatically

reduce reproductive output when placed in high

density conditions. In either case, prior exposure to

stressors causes different reaction norms that favor

higher reproductive output (e.g., adaptive plasticity).

Thus, in this species and context, fitness trade-offs

are not observed (Crespi and Travis 2017).

Furthermore, levels of glucocorticoids and progestins

vary between populations that were historically ex-

posed to either high density or high predation risk,

which might explain differences in the offspring size

and number of trade-off exhibited by these popula-

tions (E. J. Crespi and J. A. Travis, unpublished

data). The underlying mechanisms hypothesized by

Crespi and Travis are new examples of the impor-

tance of context for hormonally-mediated trade-offs.

Summary

One of the biggest draws of the annual meeting of

the Society for Integrative and Comparative Biology

is the agreement that an evolutionary and ecological

context is critical for understanding underlying

mechanisms. Conversely, molecular mechanisms in-

form our understanding of evolutionary processes.

This symposium was a prime example of the excite-

ment of integrating these two approaches.

Future challenges will include efforts to rigorously

document the existence of trade-offs and flexible

strategies. To discover the underlying molecular

mechanisms, it will be important to move beyond

the traditional endocrine mechanisms, now that we

understand that growth factors, prostaglandins, and

chemical messengers of the immune system can be
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involved in control of behavior and physiology.

Furthermore, it will be important to consider the

integration of central and peripheral systems, partic-

ularly metabolic systems. Both mainstream endocri-

nology and evolutionary endocrinology focus on

hormones and their receptors. The question of how

trade-offs arise from energetic constraints remains

closely tied to unanswered questions about the

effects of chemical messengers on metabolism, the

nature and location of sensory detectors of metabolic

fuel availability, and the effectors of fuel allocation

and partitioning. In addition to application of the

latest molecular techniques, it will continue to be

important to understand the environmental/ecologi-

cal contexts that lead to trade-offs and to use that

understanding to design laboratory experiments that

manipulate the relevant independent variables.

The research presented in this symposium is not

only exciting, but also relevant to clinical/transla-

tional endocrinology. Most of the work presented

at this symposium is funded by or potentially funded

by the National Institutes of Health, the National

Science Foundation, the United States Department

of Agriculture, or other agencies that support re-

search on climate change, conservation, and health

and disease in people and domestic animals. For ex-

ample, understanding the pleiotropic mechanisms

that underlie the link between energy homeostasis,

reproduction, aggression, stress, immunity, and lon-

gevity is relevant to understanding obesity, eating

disorders, child abuse, infertility, inflammation, de-

pression, and cancer in our own species (Korte et al.

2005). More specifically, Willis is making progress in

understanding the role of energy constraints in

trade-offs between immune function and homeo-

thermy with regard to the epidemic of white nose

syndrome in bats M. lucifugus (Willis 2017).

Similarly, understanding the constraints and trade-

offs associated with the evolution of sickness behav-

iors is relevant to drug development and therapeutic

treatments for cancer, autoimmunue disease, and

infections (Sylvia and Demas 2017). Clinical rele-

vance and ecological/evolutionary importance are

not mutually exclusive. Changes in climate and pol-

lution directly impact health and disease as well as

evolution and epigenetic change (Denver et al. 2009).

Many of the contributors to this symposium are ex-

cellent examples of scientists who work without

boundaries to link adaptive/maladaptive mechanisms

to health and disease. They help us glimpse new

ways to enrich and enliven our research programs

by viewing the data within the context of integrative

and comparative neuroendocrinology, ecology, and

evolutionary biology.
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