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Mitochondrial dynamics, such as fusion and fission, play a critical role in maintaining cellular metabolic homeostasis. The 
molecular mechanisms underlying these processes include fusion proteins (Mitofusin 1 [MFN1], Mitofusin 2 [MFN2], and 
optic atrophy 1 [OPA1]) and fission mediators (mitochondrial fission 1 [FIS1] and dynamin-related protein 1 [DRP1]), which 
interact with each other to ensure mitochondrial quality control. Interestingly, defects in these proteins can lead to the loss of 
mitochondrial DNA (mtDNA) integrity, impairment of mitochondrial function, a severe alteration of mitochondrial morphol-
ogy, and eventually cell death. Emerging evidence has revealed a causal relationship between dysregulation of mitochondria 
dynamics and age-associated type 2 diabetes, a metabolic disease whose rates have reached an alarming epidemic-like level 
with the majority of cases (59%) recorded in men aged 65 and over. In this sense, fragmentation of mitochondrial networks 
is often associated with defects in cellular energy production and increased apoptosis, leading, in turn, to excessive reac-
tive oxygen species release, mitochondrial dysfunction, and metabolic alterations, which can ultimately contribute to β-cell 
dysfunction and insulin resistance. The present review discusses the processes of mitochondrial fusion and fission and their 
dysfunction in type 2 diabetes, with special attention given to the therapeutic potential of targeting mitochondrial dynamics 
in this complex metabolic disorder.
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INTRODUCTION

Aging is defined as a decrease in the regenerative 
and reparative potential of organs and tissues. This 
reduction leads to a time-dependent failure of several 
molecular mechanisms and a decreased physiological 
reserve in response to stress known as homeostenosis [1]. 
Currently, there are around 703 million persons aged 
at least 65 years worldwide, of which 125 million are 80 
or over, and this number is forecast to double by 2050. 
This unprecedented aging of the world’s population 
is a major contributor to the age-associated diabetes 
epidemic. Interestingly, men show slightly higher rates 
of diabetes than women, representing 59% of cases in 
those aged 65 and over. Type 2 diabetes (T2D) is the 
most common type of diabetes reported in these sub-
jects, accounting for more than 9 in 10 cases (90%) [2,3]. 
In this sense, emerging evidence reveals that aging 
processes are closely related to metabolic disorders such 
as T2D and cardiovascular diseases [4]. An increase 
in visceral adiposity and decline in lean body mass 
that often accompanies aging may contribute to these 
chronic conditions [5]. Aging can also lead to an inad-
equate β-cell functional mass compensation or impaired 
β-cell function, thus inducing a decrease in insulin 
sensitivity and an impairment of metabolic profile [6]. 
Consistent with the reported diabetes prevalence, it has 
been revealed that androgen deficiency during aging 
predisposes men to increased insulin resistance, and, if 
the deficiency is severe, additional β-cell dysfunction 
and diabetes development can occur [7]. Moreover, de-
creased high density lipoprotein cholesterol and high 
triglyceride levels have been associated with reduced 
testosterone levels in male subjects [8,9]. Similarly, a re-
lationship between a decline in testosterone levels and 
an increase in insulin resistance is documented [10].

The aforementioned age-dependent features are 
closely related to oxidative stress. In this regard, chang-
es in cellular homeostasis and redox state and over-
production of reactive oxygen species (ROS) have been 
described in the pathogenesis of T2D and associated 
cardiovascular issues. Particularly, hyperglycaemia-in-
duced mitochondrial superoxide overproduction seems 
to promote various mechanisms, such as increased 
concentration of cytokines and prostanoids, accumula-
tion of nitric oxide (NO), and advanced glycation-end 
products (AGE), increased protein kinase C (PKC), and 
activation of the polyol-sorbitol pathway, diacylglycerol 

(DAG) and xanthine oxidoreductase (XOR), which lead 
to endoplasmic reticulum (ER) stress, mitochondrial 
dysfunction and β-cell apoptosis, thus highlighting even 
further the pivotal role of ROS and oxidant-derived 
tissue injury in the pathogenesis and evolution of T2D 
[11].

Of note, increased plasma XOR activity is more com-
mon among men than among women in the general 
T2D population [12], and leads to a more pronounced 
ROS production and endothelial dysfunction. In line 
with these data, our group has shown that the altered 
mitochondrial function and oxidative stress observed in 
280 T2D male patients was related to low testosterone 
levels, which induced a higher total and mitochondrial 
ROS production, undermined antioxidant defences, and 
altered subclinical atherosclerotic markers measured in 
leukocytes [13].

It is well known that the main source of ROS is mi-
tochondria, double membrane organelles involved in 
such fundamental cellular functions as redox balance, 
calcium regulation and signalling, as well as the trig-
gering/regulation of apoptosis. Not surprisingly, cells 
have developed multiple quality control mechanisms 
to guarantee that mitochondria function properly [14], 
and fusion and fission cycles are the most relevant. 
These complex dynamical processes include repairing 
transformations of the mitochondrial architecture, 
such as morphological changes, intracellular mitochon-
drial distribution and density, and their movement 
along the cytoskeleton in order to preserve cell integri-
ty, adapt to metabolic changes, and protect against cell 
death [15]. While mitochondrial fusion physically merg-
es the membranes and components of two originally 
distinct mitochondria (one damaged and the other non-
damaged), fission involves separating the mitochondri-
al membranes to reorganize the damaged components 
and meet their requirements. Mitochondrial fusion 
and division dynamics continually counterbalance each 
other [16]. However, alteration of this equilibrium can 
induce mitochondrial morphology. Specifically, excess 
fusion can lead to elongated mitochondrial tubules, 
while increased fission can result in fragmented mito-
chondria. These events can induce oxidative stress and 
halt energy production, as well as triggering abnormal 
signalling pathways that contribute to numerous met-
abolic abnormalities, including enhanced hepatic glu-
coneogenesis, activation of inflammatory proteins and 
further exacerbation of mitochondrial deterioration. 



Teresa Vezza, et al: Mitochondrial Dynamics and Type 2 Diabetes

401www.wjmh.org

Prolonged oxidative status and chronic inflammation 
also cause β-cell dysfunction and apoptosis, thus reduc-
ing insulin sensitivity and glucose tolerance of target 
tissues, which are recognized risk factors for age-asso-
ciated diabetes and its related complications [17,18].

In light of this evidence, the present review explores 
how mitochondrial dynamic dysfunction orchestrates 
metabolic alteration under diabetic conditions and 
places particular attention on the therapeutic potential 
of targeting these processes.

SURVEY METHODS

A literature search was conducted to collect the cur-
rent knowledge about the pathophysiological implica-
tion of mitochondrial dynamics dysfunction in age-
associated T2D. Electronic databases such as Google 
Scholar, PubMed, Scopus, and Web of Science were 
used to collect information regarding the topic. The 
keywords used were: mitochondrial dynamics, T2D, fu-
sion, fission, and oxidative stress.

STUDY SELECTION CRITERIA

All articles fulfilled the following specific eligibility 
criteria: (1) reviews and original articles concerning 
the close relationship between mitochondrial dynamics 
dysfunction in the onset of diabetes and its associated 
complications; (2) reports of in vivo, in vitro, or human 
studies; (3) reviews, articles, and original works written 
in English; and (4) papers published between 2000 and 
2021.

PHYSIOLOGICAL MITOCHONDRIAL 
DYNAMICS: FUSION AND FISSION

As previously mentioned, cellular energy homeostasis 
is controlled by key double-membrane–bound subcel-
lular organelles known as mitochondria, which func-
tion within an interconnected reticulum that branches, 
fragments and fuses. The highly dynamic behaviour 
of mitochondria determines their morphology and in-
tracellular distribution, and allows the cell to adapt to 
physiological conditions and the energy demands of a 
given moment.

Mitochondria regularly undergo essential events 
known as fusion and fission, which are critical in 
maintaining mitochondrial homeostasis in response 

to environmental or metabolic stresses, and are impli-
cated in autophagy, apoptosis and cell division [19,20].

Fusion mitigates stress by mixing the contents of 
partially damaged mitochondria by way of comple-
mentation. For example, in cells with a highly active 
metabolism, like muscle cells, mitochondria fuse and 
form long networks that connect the peripheral areas 
rich in O2 with the interior of the muscle fibre, which 
is poor in O2, thereby transmitting the membrane po-
tential along the mitochondrial filaments, contributing 
to the dissipation of energy and allowing the produc-
tion of adenosine triphosphate (ATP) in different cell 
locations [21]. Concurrently, fission helps to create new 
mitochondria, facilitating cell death during high levels 
of oxidative stress and exerting quality control by en-
abling the removal of damaged mitochondria [20,22].

The proteins involved in fusion/fission processes are 
guanosine triphosphatases (GTPases), a large family of 
hydrolase enzymes that bind to the nucleotide guano-
sine triphosphate (GTP) and hydrolyze it into guano-
sine diphosphate (GDP). They also divide and fuse the 
two lipid bilayers that surround mitochondria (Fig. 1). 
Mitochondrial fusion is primarily controlled by three 
GTPases: Mitofusin (MFN1) 1 and 2 [23], and optic atro-
phy 1 (OPA1) [24]. While MNF1 and 2 orchestrates the 
fusion of the outer mitochondrial membrane (OMM), 
the fusion of the inner mitochondrial membrane (IMM) 
is mediated by OPA1 protein [24]. These molecular ac-
tors are capable of interacting intermitochondrially. 
Specifically, the C-terminal coiled-coil region of Mfn1 
and Mfn2 mediates the mutual tethering of mitochon-
dria through homo- or heterotypic complexes formed 
between adjacent mitochondria, while OPA1 helps to 
maintain the mitochondrial cristae morphology [24]. Of 
note, these events induce conformational changes that 
drive GTP hydrolysis by MFN1 molecules, leading to 
the fusion of the two OMMs. Similarly, IMM fusion 
is a result of right-turned helical assemblies of OPA1, 
which seems to be activated somehow by MFN1 [25].

On the other hand, a cytosolic GTPase dynamin-
related protein 1 (DRP1) and fission protein 1 (FIS1) 
mediate fission process [26]. The process begins when 
a number units of the DRP1 (approximately 100) [27] 
are recruited to the sites of fractionation in the OMM, 
where they assemble and form a ring-shaped structure 
that constricts mitochondrial membranes in a GTP-
dependent manner, thus leading to separation of the 
mitochondria. Four receptors have been identified as 
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recruiters of DRP1 to the mitochondrial surface: mito-
chondrial dynamics proteins of 51 and 49 kDa (MiD51 
and MiD49), mitochondrial fission factor (MFF), and 
FIS1 [28,29]. Among these, MFF seems to be the prima-
ry receptor, and its overexpression results in increased 
fission. In contrast, FIS1 plays a minor role in DRP1 
recruitment, while MiD51 and MiD49 recruit inac-
tive forms of DRP1 [30]. Of note, DRP1 activity at the 
OMM is also mediated by interactions with alternative 
mitochondrial effectors and accessory proteins such as 
GDAP1 (ganglioside induced differentiation-associated 
protein 1) and MTP18, a mitochondrial protein of 18 
kDa, which induce fragmentation of the mitochondrial 
network if blocked or overexpressed [31,32]. In addi-
tion, mitochondrial fission may trigger the release of 
cytochrome C, which eventually induces apoptotic cell 
death [33].

Fusion and fission processes serve as quality control 

mechanisms in mitochondrial function and homeosta-
sis. Of note, the fusion process, in addition to trans-
mission of potential membrane from areas with high 
bioavailability of O2 to those poor in O2 with the aim of 
modulating the production of ATP, also favours the ex-
change of material (mitochondrial DNA [mtDNA], me-
tabolites, substrates, lipids, etc.) between mitochondria, 
allowing intact mitochondria to complement damaged 
ones. Concurrently, the fission process facilitates the 
distribution and inheritance of mitochondria during 
cell division, favours the segregation and elimination 
of mitochondrial components damaged by mitophagy, 
and contributes to the apoptosis process by regulating 
the release into the cytosol of components of the inter-
membrane space. In this way, mitochondrial dynamics 
is a complex process that depends on the needs of each 
moment and requires a balance between fission and 
fusion. In fact, the fragmentation of mitochondrial net-

OMM

IMM

ER

Mitochondrial fissionMitochondrial fusion

OMM OMM

IMM IMMMFN2

MFF MiD49/51 FIS1

DRP1

OPA1

Fig. 1. Physiological mitochondrial dynamics: fusion and fission. When mitochondria fuse, their matrix materials intermix, creating elongated 
organelles. Mitofusin (MFN) 1 and 2 orchestrate mitochondrial fusion of the outer mitochondrial membrane (OMM), while fusion of the inner 
mitochondrial membrane (IMM) is mediated by optic atrophy 1 (OPA1) protein. Specifically, the C-terminal coiled-coil region of Mfn1 and Mfn2 
mediates tethering between mitochondria through homo- or heterotypic complexes formed between adjacent mitochondria and OPA1 helps 
to maintain mitochondrial cristae morphology. A cytosolic dynamin-related protein 1 (DRP1) and fission protein 1 (FIS1) mediate mitochondrial 
fission. The process begins when DRP1 molecules are activated and move from the cytosol to the OMM, where they assemble and form a ring-
shaped structure that constricts the mitochondrial tubule in order to mediate fission. Integral mitochondrial dynamics protein 51 kD (MiD51) 
and mitochondrial dynamics protein 49 kD (MiD49), along with MFF and FIS1, act as receptors that recruit DRP1 to the mitochondrial surface. ER: 
endoplasmic reticulum.
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works, either due to lack of fusion or excess fission, is 
often associated with defects in cellular energy produc-
tion or increased apoptosis, so any state that alters the 
fusion/fission equilibrium can culminate in excessive 
ROS release, mitochondrial dysfunction, and altered 
metabolism, which may ultimately contribute to the 
pathogenesis of T2D and obesity. In this sense, several 
studies have revealed that MFN1 or DRP1 deficiency 
in the liver protects mice from insulin resistance and 
high fat diet-induced obesity [34,35]. Moreover, Mfn1 
genetic ablation leads to an enhanced mitochondrial 
respiration capacity and a highly fragmented mito-
chondrial network in the liver and myocardium [34,36] 
in diabetic humans and animals. Interestingly, the liver 
of Mfn1 knockout mice exhibits a more active complex 
I and a preference for using lipids as the main energy 
source in order to protect against insulin resistance [34]. 
In cultured cells, inhibition of mitochondrial fusion has 
been shown to reduce mtDNA, mtDNA-encoded pro-
teins and membrane integrity, consequently altering 
oxidative phosphorylation, since fusion-deficient mito-
chondria cannot exchange their contents [37].

These results confirm that mitochondrial dynamics 
are key players in insulin signalling and glucose me-
tabolism regulation, and that interruption of fusion/
fission cycles is critical to the pathogenesis of obesity, 
T2D and metabolic abnormalities.

MITOCHONDRIAL DYNAMICS AND 
MITOPHAGY

The maintenance of a healthy mitochondrial popula-
tion is critical for cell energy homeostasis, survival and 
proper functions. Damaged mitochondria are removed 
through a regulated process called mitophagy, a form 
of selective macroautophagy [38]. Macroautophagy is 
a genetically programmed mechanism of degradation 
where a double membrane vesicle called the autopha-
gosome surrounds the damaged cellular components 
and fuses with a lysosome in order to facilitate content 
degradation. Autophagy of damaged mitochondria is 
known as mitophagy [39]. Depending on cell physiologi-
cal conditions, mitophagy can be classified as basal 
mitophagy, programmed mitophagy, or stress-induced 
mitophagy. Normally, basal mitophagy is necessary for 
metabolic requirements, cellular homeostasis and mito-
chondrial turnover; programmed mitophagy is required 
for differentiation and development processes, such 

as allophagy and maturation of cardiomyocytes and 
erythrocytes; and stress-induced mitophagy is directly 
mediated by stimuli such as hypoxia, loss of mitochon-
drial membrane potential (MMP), starvation and oxi-
dative stress, and in order to reduce high amounts of 
mitochondria and the O2 consumption and ROS gener-
ated by damaged mitochondria. One of the most stud-
ied mechanisms of mitophagy is that mediated by the 
ubiquitin ligase PARKIN and phosphatase and tensin 
homologue (PTEN)-induced putative kinase 1 (PINK1) 
[40,41].

In healthy mitochondrial conditions, PINK1 is consti-
tutively transported by TIM/TOM complex to the inner 
membrane, where it is immediately clipped by matrix 
processing peptidases and a series of proteases, includ-
ing the mitochondrial-processing protease (MPP) and 
the inner membrane presenilin-associated rhomboid-
like protease, which rapidly degrades it within the 
cytosol. In aged or damaged mitochondria, loss of MMP 
impedes importation of PINK1 into the inner mem-
brane, thereby promoting intact PINK1 to stabilize on 
the mitochondrial outer membrane where it interacts 
with the TOM complex [42]. Accumulating evidence 
suggests that PINK1 acts as a molecular signal of dam-
aged mitochondria and that its accumulation leads to 
the translocation of PARKIN from the cytosol to the 
organelle [42,43]. As a result, activated PARKIN polyu-
biquitinates specific proteins on the OMM, thus form-
ing ubiquitin chains that act as “eat me signals” and 
are further phosphorylated by PINK1. These events 
lead to the recruitment of five autophagosomal mi-
crotubule-associated protein 1A/1B-light chain 3 (LC3) 
interacting region (LIR)-containing autophagy adapt-
ers: TAX1 binding protein 1 (TAX1BP1), Optineurin 
(OPTN), sequestosome-1 (p62/SQSTM1), neighbour of 
BRCA1 gene 1 (NBR1), and nuclear domain 10 protein 
52 (NDP52), which, in turn, deliver the damaged mito-
chondria to lysosomes for degradation [41].

Several studies have highlighted the fact that altera-
tion of fission and fusion protein expression can mod-
ify mitophagy. Overexpression of a dominant negative 
isoform of DRP1 (DRP1K38A) or knockdown of FIS1 (by 
siRNA) in INS1 cells was shown to induce reduction of 
ER mass inside the autophagosome, undermining, in 
turn, mitochondrial autophagy [44]. Similarly, studies 
performed in the same cultured cells provided evidence 
that overexpression of DRP1 and the subsequent stim-
ulation of mitochondrial fission facilitate mitochondri-
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al fragmentation and elimination under various pro-
apoptotic stimuli, including high fat and high glucose 
treatments [45]. On the other hand, knockdown of Drp1 
prevented ROS formation under increased glucose lev-
els and markedly decreased hyperglycaemia-induced 
apoptosis in HL-1 [46] and H2c9 [47] cardiac cells. Sev-
eral interesting studies performed in INS1 and HeLa 
cells also indicated that elevated expression of Fis1 
causes mitochondrial fragmentation by reducing the 
organelle’s mass [48,49]. As a result, impaired glucose-
stimulated insulin secretion and cellular ATP levels 
were observed. Furthermore, inhibition of fission and 
overexpression of Opa1 have been related with a reduc-
tion of mitophagy rate by ~65% to 75% in INS1 cells [44]. 
In line with these findings, posttranslational modifica-
tions of fusion and fission proteins have been shown to 
directly modulate the activity, localization and stabil-
ity of molecules. These posttranslational modifications 
include conjugation of small ubiquitin-like modifier 
proteins, proteolysis, acetylation, phosphorylation, O-
linked-N-acetyl-glucosamine glycosylation and ubiq-
uitination [26,50-53]. Interestingly, studies performed 
in transgenic mice revealed that ablation of MFN2 
prevented depolarization-induced translocation of 
PARKIN to the mitochondria and impaired mitophagy 
[50], thus promoting the accumulation of damaged mi-
tochondria and cardiomyopathy [54]. Future research 
needs to clarify the underlying mechanisms of mito-
chondrial dynamics and how their dysfunction can 
provoke alteration of cellular metabolic homeostasis.

MITOCHONDRIAL DYNAMICS 
DYSFUNCTION IN TYPE 2 DIABETES

As mentioned previously, fusion and fission processes 
are essential in ensuring the functional efficiency of 
mitochondria and maintaining quality control. Disrup-
tion of mitochondrial dynamics can undermine func-
tion and leads to aging and several human diseases, 
including T2D and associated cardiovascular complica-
tions.

Growing evidence suggests that hyperglycaemia in-
duces mitochondrial fragmentation in T2D, along with 
increased mitochondrial fission and reduced fusion 
[55]. A recent study by our group, performed in leuko-
cytes from T2D patients [56], confirmed these findings. 
Indeed, we demonstrated that leukocyte-endothelial 
interaction in diabetic patients was associated with 

elevated fission-protein levels and lower fusion-protein 
levels, thus suggesting that mitochondrial dynamics 
are influenced by glycaemic control in T2D subjects [56].

In vivo studies performed in the skeletal muscle 
of  leptin-deficient (ob/ob) mice, diet-induced obese 
C57BL/6 mice, and obese Zucker rats [57,58] have 
revealed an imbalance in mitochondrial fusion and 
fission events. Specifically, mitochondrial fission inhi-
bition was found to regulate the insulin pathway in 
obese mice, while Drp1-dependent mitochondrial fission 
in both obese C57BL/6 and ob/ob mice was related to 
IR [57,58].

The reduction in mitochondria size often seen in 
skeletal muscle cells of T2D humans and animals has 
been linked to a lower activity of mitochondrial com-
plex I and, in turn, an alteration in bioenergetic capaci-
ty [59]. Interestingly, two studies related changes in the 
mitochondrial morphology of diabetic muscle cells to a 
decrease in the expression of MFN2 [60,61]. In addition 
to helping to maintain the mitochondrial network, this 
fusion protein is involved in the regulation of metabo-
lism, since it stimulates substrate oxidation and mito-
chondrial respiration [62].

On the other hand, MFN2 overexpression in Wistar 
diabetic rats has been shown to reduce lipid inter-
mediates and neutralize the inhibition of the insulin 
pathway in the liver and muscle [63,64]. In this sense, 
expression levels of glucose transporter type 2 (GLUT2), 
phosphoinositide-3-kinase (PI3K), insulin receptor sub-
strate 2 (IRS2) and insulin receptor (INSR) were found 
to increase after the recovery of MFN2 expression 
[64]. Similarly, MFN2-liver expression was related to 
increased expression of the INSR and activation of the 
PI3K/AKT2 pathway [64].

In light of the above-mentioned evidence, MFN2 has 
been proposed as a main player in diabetic mitochon-
drial dysfunction and in the progression of insulin re-
sistance [58,65].

Moreover, mitochondrial dynamics play a central role 
in the regulation of β-cell insulin secretion function. 
In this regard, Schultz et al [66] confirmed that the 
fission protein FIS1 acts as a regulator in these cells 
and showed that FIS1 expression levels are related to 
insulin secretion stimulated by glucose. In addition, a 
possible role for mitochondrial fission in β-cell apopto-
sis has been pointed to. Molina et al [67] demonstrated 
that exposure to high levels of glucose and fatty ac-
ids promoted the fragmentation of mitochondria in 
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β-pancreatic cells. When mitochondrial fission was in-
hibited, morphology and mitochondrial dynamics were 
conserved, and apoptosis of β-cells prevented.

Notably, a causal relationship has been highlighted 
between alteration of mitochondrial dynamics and 
ROS production under hyperglycaemic conditions [47]. 
Yu et al [47] observed that exposure to high glucose 
levels promoted rapid fragmentation of mitochondria, a 
critical step in the increase in ROS production induced 
by hyperglycaemia. However, imbalances in glucose 
homeostasis are not always a cause of the alteration 
of mitochondrial dynamics, but instead can be a conse-
quence. In line with these findings, Sebastián et al [68] 
demonstrated impaired insulin signalling, glucose in-
tolerance and an increase in hepatic gluconeogenesis in 
liver-specific Mfn2 KO mice. These results were corrob-
orated when Mfn2 gene silencing resulted in increased 
expression of cAMP-response element-binding (CREB), 
a ubiquitous transcription factor that facilitates gluco-
neogenic molecule expression through the peroxisome 
proliferator-activated receptor gamma coactivator 
(PGC)-1 [69].

Accumulating evidence also indicates the involve-
ment of OPA1 in diabetes [70]. Studies performed in 
mouse pancreatic β-cells revealed that Opa1 ablation, 
obtained through the Cre-loxP system, develops into 
hyperglycaemia by impairing insulin secretion and 
glucose-stimulated ATP production [71], which was 
associated with defects in the amount and activity 
of electron transport chain complex IV. The close re-
lationship between Opa1 and mitochondrial insulin-
stimulated energy metabolism was also highlighted by 
Parra et al [72], who demonstrated that Opa1 silencing 
blocks insulin-stimulated ATP synthesis, while insulin 
enhances OXPHOS and promotes mitochondrial fusion 
by increasing Opa1 and modulating the mTOR-NFκB 
signaling pathway in L6 skeletal muscle cells and car-
diomyocyte cultures.

Although further investigation is necessary, the 
substantial existing evidence confirms mitochondrial 
dynamics dysfunction as the main triggering factor for 
T2D. In this context, knockout/knockdown of fusion 
and fission mediators as a therapeutic approach may 
have a strong impact on metabolic profiling.

TARGETING MITOCHONDRIAL 
DYNAMICS DYSFUNCTION IN TYPE 2 
DIABETES

The direct targeting of mitochondrial fusion, fis-
sion and mitophagy has gained increasing attention 
among researchers interested in diabetes healthcare 
management. For example, growing evidence suggests 
that dynasore, a non-competitive inhibitor of dynamin 
GTPase activity, can prevent mitochondrial fission and 
oxidative stress and decrease myocardial infarct size, 
since DRP1, which is responsible for mitochondrial fis-
sion, is a dynamin-like protein. In this sense, Gao et al 
[73] showed that it limits cell damage and protects car-
diac lusitropy in Langendorff-perfused mouse heart, a 
widely used model of myocardial function and respons-
es to injury. Specifically, dynasore positively influences 
the energetics of diastolic dysfunction by maintaining 
intracellular ATP and mitochondrial morphology in 
stressed cells [73].

GTPase activity of  DRP1 can also be selectively 
blocked by the mitochondrial division inhibitor-1 (mdi-
vi-1), a cell-permeable quinazolinone compound known 
to attenuate mitochondrial division in mammalian cells 
and yeast [74]. In this regard, HeLa cells and cell-free 
murine liver mitochondrial preparations treated with 
mdivi-1 exhibit a decreased rate of phosphatidylserine 
exposure on their surface and decreased cytochrome C 
release following apoptosis induction [74], which is con-
sistent with previous research employing other strate-
gies to compromise DRP1 activity.

Interestingly, Jheng et al [57] demonstrated that 
mdivi-1 also attenuates palmitic acid-induced mitochon-
drial depolarization and fragmentation, reduction of 
insulin-stimulated glucose uptake, and ROS generation 
in mouse C2C12 myoblasts, in which positive effects 
were obtained in a time- and dose-dependent manner. 
In line with these results, other authors have con-
firmed that mdivi-1 rescues adult rat hippocampal neu-
ral stem cells from palmitate-induced lipotoxicity by 
stabilizing mitochondrial transmembrane potential and 
inhibiting mitochondrial intracellular ROS production 
[75]. Mdivi-1-treated cells also exhibited an inhibition of 
caspase-3 activation, absence of cytochrome c release, a 
reduction in pro-apoptotic protein Bax expression, and 
an increase in anti-apoptotic Bcl-2 expression.

Meanwhile, studies performed in streptozotocin 
(STZ)-induced diabetic ApoE-/- mice have shown that 



https://doi.org/10.5534/wjmh.210146

406 www.wjmh.org

mdivi-1 (10 mg/kg, intraperitoneal, twice per week, 8 
weeks) can improve endothelial function, an effect 
that was associated with decreased ROS production 
and mitochondrial fragmentation in aortic endothelial 
cells [57,76]. Results of the same experiment also dem-
onstrated that mdivi-1 treatment attenuates diabetes-
enhanced expression of vascular cell adhesion molecule 
(VCAM)-1 and intercellular adhesion molecule (ICAM)-
1, two key players in all stages of atherosclerosis [57,76].

Although numerous studies have reported the short-
term beneficial effects of mdivi-1 and, thus, its thera-
peutic potential to combat mitochondrial dynamics dys-
function in diabetes, there is other evidence that long-
term treatment with mdivi-1 can inhibit mitochondrial 
function. Specifically, mdivi-1-treated myotubes display 
decreased mitochondrial mass, mtDNA content and 
membrane potential in a dose-dependent manner, 
showing altered mitochondrial biogenesis during myo-
genic differentiation [77].

Likewise, studies in vascular smooth muscle cells 
(VSMCs) exposed to platelet-derived growth factor-BB 
(PDGF)-induced mitochondrial fragmentation were 
performed to further investigate the beneficial effects 
of mdivi-1 [78]. In this case, the compound was able to 
prevent PDGF-induced cell proliferation through the 
downregulation of cyclin D1 and proliferating cell nu-
clear antigen (PCNA), two proteins that are crucial in 
cell cycle processes [79]. Cells treated for 24 hours with 
mdivi-1 revealed a largely preserved filamentous mi-
tochondrial morphology when compared with control 
cells. In this way, the abilities of this compound has 
made it the focus of attention as a potential therapy 
for different pathologies [80,81].

Over the last few years, another novel compound has 
been shown to inhibit DRP1 GTPase activity. P110, a 
7-amino acid peptide presenting a homology sequence 
between Fis1 and Drp1 [82], is capable of preserving 
mitochondrial integrity, improve cell viability and 
reduce programmed cell death. Particularly, studies 
performed in three different rat models of ischaemia-
reperfusion injury (in vivo myocardial infarction model, 
ex vivo heart model and primary cardiomyocytes) have 
demonstrated that P110 treatment selectively inhibits 
FIS1/DRP1 interaction, improves bioenergetics and re-
duces mitochondrial fission [83,84].

It is widely accepted that neurodegenerative diseases, 
such as Huntington’s and Parkinson’s disease, are 
closely associated with excessive mitochondrial fission. 

Therefore, selective inhibitors of aberrant mitochon-
drial fission could constitute an interesting therapeutic 
approach to the management of these pathologies. In 
this regard, data reported by Qi et al [82] showed that 
P110 has a neuroprotective effect in a model of Parkin-
son’s disease in culture. It was able to reduce neurite 
loss of primary dopaminergic neurons, apoptosis and 
autophagic cell death, which led to an increase in neu-
ronal cell viability. Similarly, P110 appears to inhibit 
mitochondrial fragmentation, improve MMP, and, sub-
sequently, reduce ROS production [82]. Recent research 
in transgenic mice has also revealed a potential use of 
P110 in the prevention and treatment of Huntington’s 
disease, since it has been found to reduce neuropathol-
ogy, motor deficits and mitochondrial dysfunction [85]. 
Immunochemistry and Western blot data analysis of 
the spinal cords of these animals harvested at 16 and 
29 days demonstrated that inhibition of DRP1 reduces 
mitochondrial fission and raises the ratio of healthy 
oligodendrocytes [86]. Similarly, Joshi et al [87] ob-
served altered mitochondrial dynamics in mice with 
amyotrophic lateral sclerosis (ALS) expressing the 
G93A SOD1 mutation, resulting in an accumulation of 
fragmented mitochondria and a marked decrease in 
mitochondrial length. Administration of P110 to these 
mice inhibited DRP1 translocation to mitochondria 
and prevented the interaction between DRP1 and FIS1, 
thus reducing mitochondrial fragmentation and slow-
ing the progression of ALS pathology [87].

Another compound with positive effects on mito-
chondrial dynamics is 15-Oxospiramilactone (S3), a 
small natural molecule derived from spiramine A of 
Spiraea japonica [88]. As reported in an intriguing pa-
per by Yue et al [88], S3 can induce oxidative respira-
tion and mitochondrial re-networking in cells deficient 
in either Mfn1 or Mfn2 by promoting mitochondrial 
fusion [88]. Specifically, studies performed in HeLa 
cells overexpressing c-Myc-tagged Ubiquitination Pro-
teasome System (USP) demonstrated that S3 targets 
a mitochondria-localized deubiquitinase USP30, which 
mediates deubiquitination of MFN1 and MFN2 and 
regulates mitochondrial morphology. Consequently, 
this effect can induce mitochondrial fusion by enhanc-
ing the non-degradative deubiquitination of MFN1/2 
and increasing MFN1/2 activity [88].

Last but not least, 15 deoxy prostaglandin J2 (15d-
PGJ2) has attracted considerable attention in the 
field of mitochondrial plasticity modulators. A cyclo-
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pentenone prostaglandin produced in vivo during the 
resolution phase of inflammation, it has been shown to 
convert normal mitochondria into large interconnected 
and elongated mitochondria through covalent modifica-
tion of Drp1 [89]. Treatment of HeLa cells and rat kid-
ney proximal tubule cells (RPTC) with 15d-PGJ2 has 
been shown to induce mitochondrial elongation. Indeed, 
the number of fused and interconnected or moderately 
long mitochondria rose from <20% in untreated HeLa 
cells to ~60% and ~90% in cells treated with 1 µM and 
2 µM of 15d-PGJ2, respectively [89]. These changes to 
mitochondrial morphology were specific to 15d-PGJ2, 
as they were not observed with the other prostaglan-
dins tested. Of note, prolonged incubation of RPTC 
with 15d-PGJ2 resulted in increased degradation of the 
fusion protein OPA1, as well as ubiquitination and ag-
gregation of newly synthesized OPA1. Concurrently, a 
reduction in Mfn1 and Mfn2 expression occurred, thus 
contributing to the formation of large swollen mito-
chondria with irregular cristae structure and reduced 
tubular rigidity [90]. The above mentioned com pounds 
and their underlying mechanisms are shown in Fig. 2.

Despite novel and exciting advances made in iden-
tifying and designing potent compounds that target 
mitochondrial dynamics, future investigation is vital to 
better understand the basis of such alterations and to 
target them more efficiently.

CONCLUDING REMARKS AND 
FUTURE PERSPECTIVES

The pace of population ageing is increasing dramati-
cally worldwide, as is the incidence of age-associated 
diseases. Aging is a complex and multifactorial process 
that reduces the regenerative and reparative potential 
of organs and tissues. This reduction has been related 
to insulin resistance and alteration or insufficient com-
pensation of β-cell mass and function. Consequently, 
T2D has emerged as one of the leading global health 
problems related to aging, mainly in the male popula-
tion, among which lipid abnormalities, oxidative stress 
and endothelial dysfunction are more pronounced. Ac-
cumulating evidence connects mitochondrial fission 
and fusion dynamics with diabetes and its related com-
plications. In this sense, fragmentation of mitochon-
drial networks is often related to defects in cellular 
energy production and increased apoptosis, leading, in 
turn, to excessive ROS release, mitochondrial dysfunc-
tion, and metabolism alterations, which ultimately 
contribute to β-cell dysfunction and insulin resistance. 
This review has provided an overview of the function-
al and mechanistic aspects of mitochondrial dynamic 
dysfunction in T2D. Moreover, we have discussed how 
these processes have been identified as promising tar-
gets for therapy. Undoubtedly, other proteins impli-
cated in mitochondrial dynamics need to be identified, 
and further in-depth experiments are crucial to clarify 
certain unresolved questions: “What are the cytotoxic-
ity and pharmacokinetic profiles of DRP1 inhibitors?”; 
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Fig. 2. Mitochondrial dynamics, fission 
and fusion is critical for maintaining 
several cellular mechanisms such as cell 
apoptosis, reactive oxygen species (ROS) 
generation and energy production. Hy-
perglycaemia has been shown to induce 
mitochondrial fragmentation in type 2 di-
abetes (T2D), along with increased mito-
chondrial fission and reduced fusion. This 
figure shows some potential compounds 
that target mitochondrial dynamics, and 
the underlying mechanisms by which 
they may be an effective strategy to pre-
vent the development and progression 
of T2D. FA: fatty acids, mdivi-1: mitochon-
drial division inhibitor-1, DRP1: dynamin-
related protein 1, FIS1: fission protein 1, 
MFN: Mitofusin, OPA1: optic atrophy 1.
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“How can we improve the poor solubility of mdivi-1 in 
water?”; “Can prolonged in vivo inhibition of mitochon-
drial fission critically affect other cellular processes?”
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