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Purpose: To develop deep learning (DL) models to predict best-corrected visual acuity
(BCVA) from optical coherence tomography (OCT) images from patients with neovascu-
lar age-related macular degeneration (nAMD).

Methods: Retrospective analysis of OCT images and associated BCVA measurements
from the phase 3 HARBOR trial (NCT00891735). DL regression models were developed
to predict BCVA at the concurrent visit and 12 months from baseline using OCT images.
Binary classification models were developed to predict BCVA of Snellen equivalent of
<20/40, <20/60, and ≤20/200 at the concurrent visit and 12 months from baseline.

Results: The regression model to predict BCVA at the concurrent visit had R2 = 0.67
(root-mean-square error [RMSE] = 8.60) in study eyes and R2 = 0.84 (RMSE = 9.01) in
fellow eyes. The best classification model to predict BCVA at the concurrent visit had an
area under the receiver operating characteristic curve (AUC) of 0.92 in study eyes and
0.98 in fellow eyes. The regression model to predict BCVA at month 12 using baseline
OCT had R2 = 0.33 (RMSE= 14.16) in study eyes and R2 = 0.75 (RMSE= 11.27) in fellow
eyes. The best classificationmodel to predict BCVA atmonth 12 had AUC= 0.84 in study
eyes and AUC = 0.96 in fellow eyes.

Conclusions: DL shows promise in predicting BCVA from OCTs in nAMD. Further
research should elucidate the utility of models in clinical settings.

Translational Relevance:DLmodels predicting BCVA could be used to enhance under-
standing of structure–function relationships and develop more efficient clinical trials.

Introduction

Retinal diseases such as neovascular age-related
macular degeneration (nAMD) are characterized by
pathophysiological and anatomical changes that can
interfere with vision and lead to permanent vision loss.
Normalization of the retinal anatomy with effective
treatment, such as intravitreal anti-vascular endothe-
lial growth factor injections, can lead to improvement
in best-corrected visual acuity (BCVA).1–3 Although it
is generally accepted that retinal anatomy determines
visual function in retinal disease, the reported corre-
lation between optical coherence tomography (OCT)
and BCVA has been low, and it has proven difficult

to determine the precise relationship between structure
and function sufficiently to be able to predict visual
outcomes from anatomical changes detected in retinal
images generated by OCT.3–9 One solution for improv-
ing the accuracy of this relationship is the develop-
ment of deep learning (DL) models that predict BCVA
from macular OCTs rather than relying on conven-
tional correlation analyses.

Conventional correlation analyses are limited in
their ability to detect novel relationships between
anatomic and visual parameters by the need to
identify and prespecify a candidate set of features
for analysis,10–15 a process that is limited by the
insight of the human investigator. Moreover, conven-
tional methods that prespecify features, such as
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central subfield thickness and central foveal thickness,
typically yield aggregated measures of retinal health
that may not have a sufficiently specific relationship
to vision outcomes. For example, in the HARBOR
trial data, features derived from intraretinal fluid and
total retinal thickness correlate with baseline BCVA at
R2 = 0.21.14 DL algorithms and, in particular, deep
convolutional neural networks (CNNs), are free of the
limitation of prespecifying features. By evaluating an
entire image, CNNs overcome the need for prespec-
ified candidate features by automatically generating
and learning among millions of possible (anatomical)
structures that may be predictive of the outcome of
interest.16,17 Consequently, DL may provide a possi-
ble solution for improving the ability to predict and/or
classify visual function from OCT images of retinal
anatomy, assuming that there is no other nonretinal
ocular pathology. To date, there have been limited
studies using DL to quantify the relationship between
BCVA and retinal anatomy. A major reason for the
lack of studies is the difficulty in obtaining high-quality
BCVAdata that can be correlated to standardizedOCT
images. In order to address this limitation, we utilized
data from the phase 3HARBORclinical trial in nAMD
(NCT00891735) that coupled monthly OCT data with
Early TreatmentDiabeticRetinopathy Study (ETDRS)
BCVA measurements over 24 months.

Large randomized clinical trials designed to evaluate
new therapies in retinal disease provide a rich source
of OCT images and visual outcome measurements
suitable for training and evaluation of DL algorithms.
In the phase 3 HARBOR clinical trial of the anti-
vascular endothelial growth factor agent ranibizumab
in patients with nAMD, patients were evaluated
monthly for changes in BCVA using standard ETDRS
protocols and changes in retinal thickness using OCT.
The primary objective of the study presented here
was to assess whether DL can automatically predict
concurrent and future BCVA from OCT images from
patients with nAMD in the HARBOR trial. Specif-
ically, we present DL results related to (1) models
that assess the quality of a DL regression model to
predict exact BCVA value from OCTs, and (2) models
that predict BCVA of <69 letters (Snellen equivalent,
20/40), <59 letters (Snellen equivalent, 20/60), or ≤38
letters (Snellen equivalent, 20/200) from OCTs. For all
BCVA outcomes, DL models were evaluated for their
ability to predict BCVA from an OCT taken at the
same (concurrent) visit and for their ability to predict
month 12 BCVA from baseline OCT. Snellen equiva-
lents of 20/40 and 20/60 were chosen because visual
acuity worse than these levels is considered to reflect
visual acuity impairment based on definitions by the
United States and the World Health Organization,

respectively.18 A Snellen equivalent of 20/200 or worse
was used to reflect the definition of legal blindness in
the United States.19

Methods

Source of Dataset

Prospectively collected BCVA measurements and
OCT images taken of 1071 patients from the phase 3
HARBOR clinical trial (NCT00891735) were used.
HARBOR adhered to the tenets of the Declaration of
Helsinki and was compliant with the Health Insurance
Portability and Accountability Act. The protocol was
approved by each institutional review board before the
study began, and all patients providedwritten informed
consent for future medical research and analyses based
on results of the trial.

The study design and results of HARBOR have
been published previously.2,20 In summary, 1097
adult patients with treatment-naïve subfoveal choroidal
neovascularization (CNV) secondary to nAMD were
enrolled if they had BCVA between 20/40 and 20/320
(Snellen equivalent) using standard ETDRS charts
and protocols. Patients (one study eye each) were
randomized 1:1:1:1 to ranibizumab given according
to one of the following treatment regimens: 0.5 mg
monthly, 0.5mg as needed (PRN), 2.0mgmonthly, and
2.0 mg PRN. Patients in the PRN groups received three
monthly injections followed by monthly evaluations,
with re-treatment only if there was any sign of disease
activity on OCT or if there was a ≥5-letter decrease
in BCVA from the previous visit.2 BCVA measure-
ments and OCT images were obtained at baseline and
at monthly intervals for 24 months.20

OCT Images
Images were collected using spectral-domain Cirrus

HD-OCT (Carl Zeiss Meditec, Dublin, CA, USA).2
Resolution was 200 × 200 × 1024 voxels with a size
of 30.0 × 30.0 × 2.0 μm3, covering a volume of 6 × 6
× 2 mm3. The dataset consisted of 50,275 OCT scans
from 1071 patients. For each of the 50,275 OCT scans,
the retina was flattened to the retinal pigment epithe-
lium layer segmentation provided by Zeiss software,
and the volumes were cropped to 384 pixels above and
128 pixels below the flattened retinal pigment epithe-
lium. Thirty slices of 512 × 200 pixels were generated
per scan by rotating about the z-axis at angles of 0,
30, 60, 90, 120, and 150 degrees in reference to the
center of the cropped volume, offset at –8, –4, 0, 4,
and 8 pixels for each of the six angles, resulting in a
total of 1,508,250 slices. The OCT dataset was split at
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Table 1. Characteristics of the Internal Validation Test Set Used to Evaluate the Models to Predict BCVA from OCT

Characteristic Study Eyes Fellow Eyes All Eyes

Patients with OCT, n 147 147 147
OCTs with BCVA, n 3616 3610 7226
Images, n 108,480 108,300 216,780
BCVA, mean (SD)
Baseline 53.93 (13.20) 69.46 (22.92) 61.66 (20.20)
Month 6 64.74 (15.05) 70.60 (22.55) 67.65 (19.33)
Month 12 63.87 (16.96) 69.49 (23.15) 66.69 (20.46)
Month 18 63.19 (17.81) 69.98 (21.73) 66.58 (20.12)
Month 24 65.02 (17.12) 68.56 (22.56) 66.78 (20.06)
All time pointsa 63.24 (15.98) 69.88 (22.40) 66.56 (19.73)
Mean of all visits 62.68 (14.92) 69.49 (22.42) 66.08 (19.31)

BCVA range (min, max)
Baseline 55 (19, 74) 93 (0, 93) 93 (0, 93)
Month 6 83 (10, 93) 98 (0, 98) 98 (0, 98)
Month 12 89 (0, 89) 100 (0, 100) 100 (0, 100)
Month 18 82 (8, 90) 96 (0, 96) 96 (0, 96)
Month 24 78 (12, 90) 98 (0, 98) 98 (0, 98)
All time pointsa 93 (0, 93) 100 (0, 100) 100 (0, 100)
Mean of all visits 72.97 (13.23, 86.20) 95.40 (0.04, 95.44) 95.40 (0.04, 95.44)

Patients with OCT at
baseline and BCVA at
month 12, n

126 125 126

Baseline images from
patients with baseline OCT
and BCVA at month 12, n

3780 3750 7530

aBCVA from screening through month 24.

the patient level into (1) a randomly selected internal
validation test set of 147 patients to be used for evalu-
ation (Table 1), and (2) a set of 924 patients that was
further split into five folds to be used for model devel-
opment via cross-validation (Table 2). The patients in
each fold remained constant for each outcome variable.

Outcome Variables for DL Modeling

BCVA
The BCVA outcomes of interest were (1) BCVA in

ETDRS letters at each study visit, and (2) whether a
specific BCVA value was <69 letters (Snellen equiva-
lent, 20/40), <59 letters (Snellen equivalent, 20/60), or
≤38 letters (Snellen equivalent, 20/200). Snellen equiv-
alents of 20/40 and 20/60 were chosen because they are
considered to reflect functionally meaningful levels of
visual acuity impairment,18 and a Snellen equivalent of
20/200 or worse was used to reflect the definition of
legal blindness in the United States.19

The mean (±SD) BCVA of the study eyes in the
internal validation test set was 53.93 (±13.20) letters
at baseline and 65.02 (±17.12) letters at month 24;
the mean (±SD) BCVA of the fellow eyes was 69.46
(±22.92) letters at baseline and 68.56 (±22.56) letters
at month 24 (Table 1). Visual acuity in the study eyes at
baseline, month 6, month 12, month 18, and month 24
was 55, 83, 89, 82, and 78 letters, respectively (Table 1).
Visual acuity in the fellow eyes at baseline, month 6,
month 12, month 18, and month 24 was 93, 98, 100,
96, and 98 letters, respectively (Table 1).

DL Algorithms

DLmodels were evaluated for their ability to predict
(1) exact BCVA value in ETDRS letters from OCT
images obtained on the same visit; (2) exact BCVA at
month 12 from baseline OCT; (3) BCVA of <69 letters
(Snellen equivalent, 20/40),<59 letters (Snellen equiva-
lent, 20/60), or ≤38 letters (Snellen equivalent, 20/200)
from OCT images obtained on the same visit; and (4)
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Table 2. Characteristics of the OCT Dataset to Develop the DL Models to Predict BCVA from OCT

Characteristic Study Eyes Fellow Eyes All Eyes

Patients with OCT, n 924 919 924
OCTs with BCVA, n 21,623 21,426 43,049
Images, n 648,690 642,780 1,291,470
BCVA, mean (SD)
Baseline 54.18 (12.73) 67.22 (23.33) 60.65 (19.85)
Month 6 62.89 (15.92) 70.26 (21.30) 66.55 (19.14)
Month 12 63.92 (16.87) 69.72 (22.30) 66.81 (19.97)
Month 18 63.49 (17.31) 69.85 (21.68) 66.66 (19.86)
Month 24 63.12 (17.97) 68.93 (22.18) 66.01 (20.38)
All time pointsa 62.39 (16.29) 69.49 (22.01) 65.92 (19.68)
Mean of all visits 61.68 (15.00) 68.34 (22.35) 65.00 (19.31)

BCVA range (min, max)
Baseline 75 (3, 78) 97 (0, 97) 97 (0, 97)
Month 6 88 (6, 94) 99 (0, 99) 99 (0, 99)
Month 12 93 (2, 95) 100 (0, 100) 100 (0, 100)
Month 18 89 (6, 95) 100 (0, 100) 100 (0, 100)
Month 24 96 (0, 96) 100 (0, 100) 100 (0, 100)
All time pointsa 99 (0, 99) 100 (0, 100) 100 (0, 100)
Mean of all visits 81.03 (9.93, 90.96) 97.59 (0, 97.59) 97.59 (0, 97.59)

Patients with OCT at
baseline and BCVA at
month 12, n

720 708 722

Baseline images from
patients with baseline OCT
and BCVA at month 12, n

21,600 21,240 42,840

aBCVA from screening through month 24.

Figure 1. DL pipeline. Predicting BCVA by using three-dimensional OCT volume represented as 30 two-dimensional images input to a
ResNet-50 v2 CNN.

BCVA of <69, <59, or ≤38 letters at month 12 from
baseline OCT.

Predicting BCVA at the Concurrent Visit
All DL modeling was performed using Tensor-

Flow 1.14.0 with Keras 2.2.5 on a NVIDIA V100
GPU (NVIDIA, Santa Clara, CA, USA) and the
ResNet-50 v2 CNN architecture.21,22 Individual slices
of 512 × 200 pixels were randomly shuffled from the
training set and fed into the CNN using a batch

size of 64 images. The model was trained to
predict BCVA at the same visit as the OCT scan
(Fig. 1). For regression, layers of global average
pooling and dropout (0.85) were added using
L2 regularization (0.05) on the final dense layer
with a linear activation function.23,24 The loss
function was mean squared error, and the optimizer
was Rectified Adam (RAdam).25 The model was
trained for only one epoch for each cross-validation
fold. For classification, the architecture remained the
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Table 3. Performance of the DL Model for Regression of BCVA on OCT

Regression of BCVA on OCT

Study Eyes Fellow Eyes All Eyes

R2 95% CI RMSE No. R2 95% CI RMSE No. R2 95% CI RMSE No.

Baseline 0.24 0.12, 0.37 11.55 126 0.80 0.72, 0.85 10.35 125 0.66 0.59, 0.73 11.75 251
Month 6 0.54 0.42, 0.65 10.22 136 0.80 0.73, 0.85 10.14 134 0.72 0.66, 0.78 10.18 270
Month 12 0.62 0.51, 0.71 10.46 142 0.82 0.75, 0.86 9.95 143 0.75 0.70, 0.80 10.18 285
Month 18 0.63 0.52, 0.72 10.85 138 0.80 0.74, 0.86 9.67 138 0.74 0.68, 0.79 10.25 276
Month 24 0.62 0.51, 0.72 10.54 133 0.79 0.72, 0.85 10.38 132 0.73 0.67, 0.78 10.42 265
All time points 0.55 0.53, 0.57 10.70 3616 0.79 0.77, 0.80 10.37 3610 0.71 0.70, 0.73 10.55 7226
Mean of all visits 0.67 0.57, 0.75 8.60 147 0.84 0.78, 0.88 9.01 147 0.79 0.75, 0.83 8.78 294

CI, confidence interval.

same, except the final layer used a softmax activation
function with a sparse categorical cross-entropy loss
function.Models were initialized with the weights from
the regressionmodel for each fold.Models were trained
for two epochs with the base model layers untrainable
using the Adam optimizer, then an additional one
epoch with the base model layers trainable using a
stochastic gradient descent (SGD) optimizer.

Predicting BCVA at 12 Months from Baseline
For the regression task predicting BCVA at

month 12 from baseline OCT images, the architecture
was the same as the regression architecture described
above, except dropout was increased to 0.995. For each
fold, models were initialized with the weights from
the regression model trained to predict BCVA at the
concurrent visit. The first three epochs were trained
using the SGD optimizer with the base model layers
untrainable and then were trained for an additional
1000 epochs with the base model layers trainable using
the SGD optimizer. For classification, the architec-
ture was the same as the classification architecture
described above. For each fold, models were initialized
with the weights from the regression model trained
to predict BCVA at 12 months from baseline. Models
were trained for 20 epochs with the base model layers
untrainable using the RAdam optimizer. The weights
used to predict were chosen from the epoch with the
lowest validation loss in each fold.

Evaluation of the DL Models
The metrics to evaluate the model fits at a particu-

lar visit were calculated at the eye level by the average
of the predictions per eye generated for the 30 slices
from each of the five development models on the out-
of-sample internal validation test set. In other words,
each of the five cross-validation models that saw 80%
of the data from the training set were used to gener-

ate a prediction for each of the 30 slices per eye in
the test set, resulting in 150 predictions per eye, of
which the mean of the 150 predictions was taken.
Furthermore, to evaluate model performance at the
concurrent visit across all of the visits while account-
ing for the potential bias of repeated measurements
of the same eye, we took the mean of all visits for
the regression task and randomly selected a visit for
each patient in the classification task. The R2 value,
root-mean-square error (RMSE), and mean difference
(MD) and 95% limits of agreement (LOA) fromBland–
Altman plots were used to evaluate the DL regression
models, whereas the area under the receiver operat-
ing characteristic curve (AUC) and the area under the
precision-recall curve (AUPRC) were used to assess the
performance of the DL models for classification. To
understand if the DL prediction of month 12 BCVA
from baseline OCT contributed additional informa-
tion compared with using baseline BCVA alone, linear
models were fit using the R statistical programming
language (R Foundation for Statistical Computing,
Vienna, Austria) to predict BCVA atmonth 12 from (1)
a univariable input of the DL prediction of month 12
BCVA from baseline OCT, (2) a univariable input of
baseline BCVA, and (3) a multivariable input of both
the DL prediction of month 12 BCVA from baseline
OCT and baseline BCVA. Additionally, results from
the five-fold cross-validation tuning set are reported
using the mean of the 30 tuning predictions per eye per
visit (Supplementary Tables S1–S4).

Results

Predicting BCVA at the Concurrent Visit

Regression Results
In the study eyes, the DL model to predict BCVA

at the concurrent visit had R2 = 0.24, RMSE = 11.55,
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Figure 2. Actual versus predicted BCVA at the concurrent visit and performance of DL algorithms that analyze OCT images to predict BCVA
for the concurrent visit. (A) Study eye mean over all visits: R2 = 0.67, RMSE = 8.60, MD = 0.04 letters, 95% LOA = −16.96 to 17.04 letters. (B)
Fellow eye mean over at all visits: R2 = 0.84, RMSE = 9.01, MD = 0.51 letters, 95% LOA = −17.58 to 18.61 letters. (C) Both study and fellow
eye mean over all visits: R2 = 0.79, RMSE = 8.78, MD = 0.28 letters, 95% LOA = −17.26 to 17.81 letters.

MD = –1.81 letters, and 95% LOA = −26.57 to 22.95
letters at baseline, andR2 = 0.67, RMSE= 8.60,MD=
0.04 letters, and 95% LOA = −16.96 to 17.04 letters
for the mean over all of the visits (Table 3; Fig. 2A).
In the fellow eyes, R2 = 0.80, RMSE = 10.35, MD =
–1.86 letters, and 95% LOA = −23.03 to 19.31 letters
at baseline, and R2 = 0.84, RMSE = 9.01, MD = 0.51
letters, and 95% LOA = −17.58 to 18.61 letters for the
mean over all of the visits (Table 3; Fig. 2B). In all eyes,
R2 = 0.66, RMSE = 11.75, MD = –1.84 letters, and

95% LOA = −24.83 to 21.16 letters at baseline, and R2

= 0.79, RMSE = 8.78, MD = 0.28 letters, and 95%
LOA = −17.26 to 17.81 letters for the mean over all of
the visits (Table 3; Fig. 2C).

Binary Classifications
BCVA of <69 letters (Snellen equivalent, 20/40).

In the study eyes, the DL model to predict BCVA of
<69 letters (Snellen equivalent, 20/40) had AUC= 0.89
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Table 4. Performance of the DL Models for Binary Classification of BCVA of <69 Letters (Snellen
Equivalent, 20/40), <59 Letters (Snellen Equivalent, 20/60), and ≤38 Letters (Snellen Equivalent, 20/200) at the
Concurrent Visit from Associated OCT

Study Eyes Fellow Eyes All EyesPredicted BCVA from
Concurrent OCT AUC 95% CI No. AUC 95% CI No. AUC 95% CI No.

<69 letters 0.89 0.83, 0.94 147 0.93 0.89, 0.98 147 0.92 0.89, 0.95 294
<59 letters 0.92 0.87, 0.97 147 0.97 0.94, 1.00 147 0.95 0.92, 0.97 294
≤38 letters 0.92 0.87, 0.96 147 0.98 0.96, 1.00 147 0.96 0.93, 0.98 294

CI, confidence interval.

for one concurrent visit randomly taken per eye and
AUPRC = 0.88 with a class balance of 72 positive eyes
and 75 negative eyes (Table 4; Fig. 3A). In the fellow
eyes, the DL model to predict BCVA of <69 letters
(Snellen equivalent, 20/40) had AUC = 0.93 for one
concurrent visit randomly taken per eye and AUPRC
= 0.97 with a class balance of 103 positive eyes and
44 negative eyes (Table 4; Fig. 3B). In all eyes, the DL
model to predict BCVA of <69 letters (Snellen equiva-
lent, 20/40) had AUC = 0.92 for one concurrent visit
randomly taken per eye and AUPRC = 0.94 with a
class balance of 175 positive eyes and 119 negative eyes
(Table 4; Fig. 3C).

BCVA of <59 letters (Snellen equivalent, 20/60).
In the study eyes, the DL model to predict BCVA
of <59 letters had AUC = 0.92 for one concur-
rent visit randomly taken per eye and AUPRC =
0.95 with a class balance of 100 positive eyes and
47 negative eyes (Table 4). In the fellow eyes, the
DL model to predict BCVA of <59 letters had AUC
= 0.97 for one concurrent visit randomly taken per
eye and AUPRC = 0.99 with a class balance of
114 positive eyes and 33 negative eyes (Table 4). In
all eyes, the DL model to predict BCVA of <59
letters had AUC = 0.95 for one concurrent visit
randomly taken per eye and AUPRC = 0.98 with a
class balance of 214 positive eyes and 80 negative eyes
(Table 4).

BCVA of ≤38 letters (Snellen equivalent, 20/200).
In the study eyes, the DL model to predict BCVA of
≤38 letters had AUC = 0.92 for one concurrent visit
randomly taken per eye and AUPRC = 0.99 with a
class balance of 113 positive eyes and 14 negative eyes
(Table 4). In the fellow eyes, the DL model to predict
BCVA of ≤38 letters had AUC = 0.98 for one concur-
rent visit randomly taken per eye and AUPRC = 1.00
with a class balance of 129 positive eyes and 18 negative
eyes (Table 4). In all eyes, the DL model to predict
BCVA of ≤38 letters had AUC = 0.96 for one concur-
rent visit randomly taken per eye and AUPRC = 0.99
with a class balance of 262 positive eyes and 32 negative
eyes (Table 4).

Predicting BCVA at 12 Months from
Baseline OCT

Regression Results
The characteristics of the dataset used to evaluate

the ability of the model to predict month 12 BCVA
from baseline OCT are shown in Table 1. The DL
model to predict BCVA at 12 months from baseline
OCThadR2 = 0.33, 0.75, and 0.58 andRMSE= 14.16,
11.27, and 13.25 for study eyes, fellow eyes, and all eyes,
respectively (Table 5; Figs. 4A–4C). The DL model to
predict BCVA at 12 months from baseline OCT had
MD = –1.63 letters and 95% LOA = −29.48 to 26.22
letters for study eyes,MD= –2.31 letters and 95%LOA
= −29.96 to 25.33 letters for fellow eyes, and MD =
–1.97 letters and 95% LOA = −29.67 to 25.73 letters
for all eyes (Figs. 4A–4C). The multivariable linear
model to predict BCVA at 12 months from both DL
predictions of month 12 BCVA frombaseline OCT and
baseline BCVA had R2 = 0.40, 0.88, and 0.68 for study
eyes, fellow eyes, and all eyes, respectively (Table 5).

Binary Classifications
BCVA of <69 letters (Snellen equivalent, 20/40).

The DL model to predict month 12 BCVA of <69
letters from baseline OCT had AUC = 0.80, 0.92, and
0.87 for study eyes, fellow eyes, and all eyes, respectively
(Table 6; Figs. 5A–5C). In study eyes, the DL model to
predict month 12 BCVA of <69 letters from baseline
OCT had AUPRC = 0.74 with a class balance of 58
positive eyes and 68 negative eyes. In fellow eyes, the
DL model to predict month 12 BCVA of <69 letters
from baseline OCT had AUPRC = 0.97 with a class
balance of 88 positive eyes and 37 negative eyes. In all
eyes, the DL model to predict month 12 BCVA of <69
letters from baseline OCT had AUPRC = 0.91 with a
class balance of 146 positive eyes and 105 negative eyes.

BCVA of <59 letters (Snellen equivalent, 20/60).
The DL model to predict month 12 BCVA of <59
letters from baseline OCT had AUC = 0.84, 0.93,
and 0.89 for study eyes, fellow eyes, and all eyes,
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Figure 3. Performance of DL algorithms that predict BCVA of <69 letters at the concurrent visit from associated OCT. (A) BCVA of <69
letters, study eye at random visit: AUC= 0.89, AUPRC= 0.88. (B) BCVA of <69 letters, fellow eye at random visit: AUC= 0.93, AUPRC = 0.97.
(C) BCVA of<69 letters, both study and fellow eye at random visit: AUC= 0.92, AUPRC= 0.94. CI, confidence interval; N, negative cases (<69
letters); P, positive cases (≥69 letters).

respectively (Table 6). In study eyes, the DL
model to predict month 12 BCVA of <59 letters
from baseline OCT had AUPRC = 0.90 with a
class balance of 83 positive eyes and 43 negative
eyes. In fellow eyes, the DL model to predict
month 12 BCVA of <59 letters from baseline
OCT had AUPRC = 0.98 with a class balance of

101 positive eyes and 24 negative eyes. In all eyes, the
DL model to predict month 12 BCVA of <59 letters
from baseline OCT had AUPRC = 0.95 with a class
balance of 184 positive eyes and 67 negative eyes.

BCVA of ≤38 letters (Snellen equivalent, 20/200).
The DL model to predict month 12 BCVA of ≤38
letters from baseline OCT had AUC = 0.77, 0.96, and
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Table 5. Performance of LinearModel for Regression of BCVA atMonth 12 fromBaseline OCT and Baseline Letters

Linear Regression of Month 12 BCVA from Baseline OCT and Baseline BCVA

Study Eyes Fellow Eyes All Eyes

R2 95% CI RMSE No. R2 95% CI RMSE No. R2 95% CI RMSE No.

Baseline OCT 0.33a 0.20, 0.47 14.16 126 0.75a 0.62, 0.82 11.27 125 0.58a 0.49, 0.65 13.25 251
Baseline BCVA 0.25a 0.13, 0.39 14.98 126 0.87a 0.82, 0.91 8.04 125 0.62a 0.54, 0.69 12.49 251
Baseline OCT +
baseline BCVA

0.40b 0.24, 0.54 13.45 126 0.88b 0.81, 0.93 7.70 125 0.68b 0.57, 0.75 11.61 251

CI, confidence interval.
aP < 0.001 for univariable model compared with the null hypothesis.
bP < 0.001 for each coefficient in the multivariable model.

Table 6. Performance of the DL Models for Binary Classification of Month 12 BCVA of<69 Letters (Snellen Equiv-
alent, 20/40), <59 Letters (Snellen Equivalent, 20/60), and ≤38 Letters (Snellen Equivalent, 20/200) from Baseline
OCT

Study Eyes Fellow Eyes All EyesPredicted BCVA at Month 12
from Baseline OCT AUC 95% CI No. AUC 95% CI No. AUC 95% CI No.

<69 letters 0.80 0.72, 0.87 126 0.92 0.88, 0.97 125 0.87 0.83, 0.91 251
<59 letters 0.84 0.76, 0.92 126 0.93 0.88, 0.99 125 0.89 0.85, 0.94 251
≤38 letters 0.77 0.66, 0.88 126 0.96 0.92, 1.00 125 0.89 0.84, 0.95 251

CI, confidence interval.

0.89 for study eyes, fellow eyes, and all eyes, respec-
tively (Table 6). In study eyes, the DL model to predict
month 12 BCVA of ≤38 letters from baseline OCT had
AUPRC= 0.97with a class balance of 114 positive eyes
and 12 negative eyes. In fellow eyes, the DL model to
predict month 12 BCVA of ≤38 letters from baseline
OCT had AUPRC = 0.99 with a class balance of 109
positive eyes and 16 negative eyes. In all eyes, the DL
model to predict month 12 BCVA of ≤38 letters from
baseline OCT had AUPRC = 0.98 with a class balance
of 223 positive eyes and 28 negative eyes.

Discussion

As shown by our results, DL models show promise
for predicting BCVA from OCT images in patients
with nAMD. The predictive accuracy of the derived
model was greatest in the fellow eyes, reaching a corre-
lation between mean predicted and mean observed
BCVA of ∼0.92 (R2 = 0.84, RMSE = 9.01) (Table 3).
A moderate to strong correlation was also seen for
BCVA outcomes in the study eyes, with correlations of
∼0.49 (R2 = 0.24, RMSE = 11.55) at baseline (before
treatment) and ∼0.79 (R2 = 0.62, RMSE = 10.54) at
month 24 (after treatment) (Table 3).

To benchmark the presented model results (RMSE
of ∼10-letter error), we have generated predictions
based on the screening BCVA to the baseline BCVA
in HARBOR using simple linear regression (Supple-
mentary Fig. S1). The average number of days
between screening and baseline visits was 8.3 days,
with a mean change of 0.6 letters; for this BCVA-to-
BCVA prediction, the RMSE (from the regression) is
6.1 letters. This average error of 6.1 letters likely repre-
sents an information limit inherent to BCVA obser-
vations in HARBOR. Previous work on intersession
repeatability of visual acuity scores in nAMD has
reported an error of ∼12 letters.26 We also note that the
average BCVA improvement to anti-vascular endothe-
lial growth factor treatment in HARBORwas reported
to be 7.6 to 9.1 letters. The quality of ourDLprediction
model, which makes predictions from OCT to BCVA,
should be compared relative to the above (information)
limits.

The results suggest the existence of a mapping
(defined by the DL models) between retinal structures
and visual function in nAMD. Consequently, OCT
images could provide a means of indirectly measuring
visual function in clinical trials, as well as in evolving
clinical practice settings, such as telemedicine or home
monitoring. Further research is required to elucidate
the utility of DL models in clinical research and clini-
cal care.
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Figure 4. Actual versus predicted BCVA at month 12. Performance of DL algorithms that analyze baseline OCT images to predict
BCVA at month 12. (A) Study eyes: R2 = 0.33, RMSE = 14.16, MD = –1.63 letters, 95% LOA = −29.48 to 26.22 letters. (B) Fellow eyes:
R2 = 0.75, RMSE = 11.27, MD = –2.31 letters, 95% LOA = −29.96 to 25.33 letters. (C) Both study and fellow eyes: R2 = 0.58, RMSE = 13.25,
MD = –1.97 letters, 95% LOA = −29.67 to 25.73 letters.

The difference in model performance between
predicting visual function in the study eyes versus the
fellow eyes was expected due to the restricted range
in BCVA at baseline in the study eyes. Specifically,
the eligibility criteria for HARBOR required that the
study eyes have some vision loss and subfoveal CNV at
baseline, with BCVAbetween 20/40 and 20/320 (Snellen
equivalent).2 These criteria were not required for the
fellow eyes. Hence, the restricted range of BCVA in the
study eyes at baseline (SD= 13.2) (Table 1) reduced the

dynamic range and led to a more challenging regres-
sion task compared with the task of predicting BCVA
in the fellow eyes, which had greater variability in
BCVA at baseline (baseline SD = 22.9) (Table 1). This
observation is supported by the fact that the predic-
tive accuracy of concurrent prediction of BCVA from
OCT increases in the study eyes over the course of
the trial, along with an increase in the variability of
BCVA (Tables 1–3; Supplementary Table S1). This
increase in range after treatment is consistent with an
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Figure 5. Performance of DL algorithms that predict BCVA of <69 letters at month 12 from baseline OCT. (A) Month 12 BCVA of <69
letters, study eyes: AUC = 0.80, AUPRC = 0.74. (B) Month 12 BCVA of <69 letters, fellow eyes: AUC = 0.92, AUPRC = 0.97. (C) Month 12
BCVA of <69 letters, both study and fellow eyes: AUC = 0.87, AUPRC = 0.91. CI, confidence interval; N, negative cases (<69 letters);
P, positive cases (≥69 letters).

effective treatment producing visual improvements in
many patients. If, by simulation, we (artificially) restrict
the variance of BCVA in the fellow eyes to that of the
study eyes at baseline (i.e., SD = 13.2), R2 decreases
from 0.80 to 0.33 (Supplementary Fig. S2). Similarly,
if we plot log(var(BCVA)) versus log(1 – R2) for study
and fellow eyes at baseline and months 6, 12, 18, and

24, the resulting (best-fitting) pattern is linear (with
slope = –1.22) and is in agreement with the theory
regarding R2 for regression and correlation models
(Supplementary Fig. S3).27 Further, as noted from the
estimated residual errors (RMSE), the models seem to
have similar performance at each time point (Table 3;
Supplementary Table S1).
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Although it is clear that the functional deficits in
retinal disease are due to structural damage in the
retina, determining the precise relationship between
specific and measurable anatomical changes and vision
is challenging.3–6,8,9 As mentioned previously, the
conventional approach to investigating this relation-
ship is to pick one or more anatomic features and
then to perform multivariable statistical and machine
learning analyses to determine if any association with
vision can be quantified.11,12,14 As such, this approach
is limited by the ability of the investigator to predeter-
mine a potentially large set of retinal structures and
features with the greatest likelihood of a meaning-
ful relationship with visual function. In contrast, DL-
based algorithms (and in particular CNNs) do not
require any anatomic feature to be identified before the
quantitative investigation. Instead, the DL algorithm
evaluates the OCT image as a whole and learns directly
from the images to identify features that enable the
most accurate prediction of the outcome of interest.
Compared with previously reported cross-validation
results on a subset of 614 patients from HARBOR
reporting R2 = 0.34 when using known imaging
features along with baseline BCVA to predict BCVA
at month 12, our model achieved R2 = 0.45 on the
924 patients in the tuning set and R2 = 0.40 on the
126 patients in the internal validation test set.14 In
principle, this could lead to the identification of previ-
ously unappreciated anatomic features, or combina-
tions of features, critical to visual function. However,
one potential drawback of the DL approach is that
the most predictive features of BCVAmay be complex,
nonlinear combinations of local and distal retinal
structures. We performed saliency-based visualization,
but these features did not lend themselves to easy
interpretation. The identification of specific features
remains an important area of future research. Here,
our focus was to demonstrate the existence of a
relationship between retinal OCT images and BCVA in
patients with nAMD.

Separate DL models were able to predict BCVA
value in the study eyes 12 months from the time of
the baselineOCTmeasurement, with amoderate corre-
lation of ∼0.57 (R2 = 0.33) (Table 5). It is interest-
ing to note that, when added into a regression model
that already contained baseline BCVA (P < 0.001),
the OCT-based prediction (from baseline) remained
highly statistically significant (P< 0.001). In this multi-
variable model, both predictors provide approximately
equal information of future visual function, with a
model R2 = 0.40 (Table 5). If used as a stratification
factor at baseline, this prediction model would trans-
late into smaller/shorter trials at the same statistical
power. Initially, we tried separate models for study and

fellow eyes, but, surprisingly, the results were not signif-
icantly different in terms of predictive performance
from themodel trained on study and fellow eyes pooled
together.

If verified and optimized for greater accuracy across
both treated and untreated patients, this DL approach
could have meaningful clinical utility. Measurement
of BCVA is frequently cumbersome, requiring special-
ized resources for accurate refractive testing. Indeed,
in the evaluation of retinal health outside of the clinic
setting, the ability to augment visual function measure-
ments with computer vision-based analysis of OCT
images will likely prove valuable for screening and
monitoring patients. For example, such an approach
could aid remote consultations via telemedicine, where
physicians could use DL data on the patient’s current
and future visual potential to support their clinical
decisions. Furthermore, in clinical research,DLmodels
that help predict future BCVA response could be used
to support trial enrollment or trial stratification by
focusing on individuals that are likely to benefit from
treatment.

A limitation of this study was that the training of
the algorithms was done on data from a single clini-
cal trial, and it is unclear whether or not the results
are generalizable to the overall populationwith nAMD.
Additionally, our results may not be generalizable to
macular changes secondary to other causes, such as
myopic CNV, diabetic macular edema, or retinal vein
occlusions. Our work is to be considered proof of feasi-
bility, and future research will be needed to validate
this DL model against data from other clinical trials,
real-world data, and OCT images based on remote-
monitoring technology. With further efforts, it could
be possible to create more accurate and generalizable
models capable of predicting visual function measures
in the clinical setting.

This study demonstrated that DL algorithms could
potentially help predict concurrent and future BCVA
from OCT images in patients with nAMD. Further
optimization of the presented models could help
expand both our understanding of, and ability to
effectively manage, this sight-threatening disease. In
the future, the capability to quickly and accurately
predict BCVA from OCT images could enable more
efficient screening and detection of patients with early
or progressive vision loss. Future research is needed
to understand the utility of such DL algorithms in
supporting clinicians and researchers in their clinical
care and clinical research, respectively. Importantly,
future research should also assess whether approaches
founded on DL may provide insight into the biological
bases that drive both structural and functional changes
in nAMD.
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