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A B S T R A C T

Background

Many primary malignancies spread via lymphatic dissemination, and accurate staging
therefore still relies on surgical exploration. The purpose of this study was to explore the
possibility of semiautomated noninvasive nodal cancer staging using a nanoparticle-enhanced
lymphotropic magnetic resonance imaging (LMRI) technique.

Methods and Findings

We measured magnetic tissue parameters of cancer metastases and normal unmatched
lymph nodes by noninvasive LMRI using a learning dataset consisting of 97 histologically
proven nodes. We then prospectively tested the accuracy of these parameters against 216
histologically validated lymph nodes from 34 patients with primary cancers, in semiautomated
fashion. We found unique magnetic tissue parameters that accurately distinguished metastatic
from normal nodes with an overall sensitivity of 98% and specificity of 92%. The parameters
could be applied to datasets in a semiautomated fashion and be used for three-dimensional
reconstruction of complete nodal anatomy for different primary cancers.

Conclusion

These results suggest for the first time the feasibility of semiautomated nodal cancer staging
by noninvasive imaging.
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Introduction

Most primary malignancies spread systemically via lym-
phatic dissemination [1]. For example, the finding of axillary
nodal metastases predicts a much shorter disease-free survival
in breast cancer [2]. The total nodal tumor burden (number
of affected nodes and metastatic tumor volume) affects
prognosis even more severely [3]. Accurate lymph node
staging also remains a cornerstone in choosing the most
appropriate therapy for a given stage. Therapeutic inter-
vention of metastatic lymph nodes [4], prophylactic radiation
of frequently affected drainage routes [5], and systemic
therapies [6] all have been shown to improve survival. Genetic
profiles identifying metastatic tumors [7], serum biomarkers,
and proteomic profiles are currently being developed to
identify patients at risk [8,9]. No direct genetic profile,
however, has been demonstrated to date to accurately predict
the presence of human nodal metastases in a given patient.
Rather, surgical approaches, such as sentinel lymph node
biopsy or lymph node dissection, are still commonly used.
Careful histological analysis includes mapping, bisectioning,
and rapid staining in the frozen tissue laboratory. Higher
diagnostic accuracies can be achieved by serial sectioning (50
lm) and by immunohistochemical staining [10,11].

Noninvasive imaging studies are commonly used during the
workup of primary malignancies. Typically, lymph nodes are
diagnosed by tomographic techniques (computed tomogra-
phy [CT], magnetic resonance imaging [MRI]) as malignant
when their short axis is .10 mm in size [12]. Such size
criteria, however, have been shown to be unreliable [13].
Similarly, the detection of cancer in nonenlarged (occult)
nodes is often quite low by positron-emission tomography
(PET) and single photon emission computed tomography
imaging. For example, small nodal metastases (,5 mm) are
often missed by PET imaging in patients with breast cancer
[14]. More recently, it has become possible to image anatomic
regions at submillimeter resolutions by MRI, with excellent
spatial coverage and reduced motion artifacts. The develop-
ment [15,16] and clinical introduction of lymphotropic
magnetic nanoparticles has been shown to significantly
improve diagnostic accuracies of MRI for nodal staging
(LMRI) in prostate cancer [17]. These nanoparticles serve as
probes for lymphatic anatomy and function and enhance
tumor detection through abnormal distribution patterns in
malignant nodes [17,18].

Despite the advances of LMRI for cancer staging, image
analysis has been challenging and occasionally controversial.
Traditional analysis has been based on a reader’s identifica-
tion of certain structural abnormalities that can be variable,
given differences in acquisition parameters and interpreta-
tion criteria [19,20,21]. Furthermore, it has been challenging
to quickly and accurately analyze large datasets generated by
LMRI.

The goal of the current study was to develop and test
technologies that would vastly improve the accuracy of
current LMRI nodal staging. Specifically we set out to (a)
determine whether unique magnetic parameters existed and
could be used for semiautomated image analysis and (b)
whether the technique could be applied to different primary
cancers. Here we provide the first comprehensive analysis of
tissue parameters validated against histopathology as an end
point.

Methods

Study Design
The Institutional Review Board approved the current study

and all patients signed informed consent. The study was
divided into a learning (n = 97 lymph nodes with known
histopathology) and a test dataset (n = 216 lymph nodes with
known histopathology; Table 1). Assignment into datasets was
done in temporal fashion. The learning dataset represented
retrospective cases at outset of the study, and the test dataset
represented prospective cases collected during a 1-y interval.
In the learning set, 55% of the nodes were benign, and 45%
of the nodes were malignant. The learning dataset was
obtained from 36 patients (24 male, 12 female, age 28–85 y,
mean 59.7 y) with histologically proven primary genito-
urinary malignancies (prostate, 21; bladder, 9; testes, 5;
ureter, 1). All patients completed the MRI study and then
underwent surgical resection (n = 26) and/or nodal biopsy (n
= 10). The investigated nodes had a mean short axis diameter
of 10.5 mm (range 3–39 mm).
The test dataset was obtained from 34 patients (25 male,

nine female, age 30–82 y, mean 58.9 y) with histologically
proven malignancies from different primaries (Table 1),
including prostate (n = 18), breast (n = 7), penile (n = 4),
bladder (n = 2), testes (n = 2), and colon (n = 1). Seventy-
nine percent of the nodes were benign and 21% of the nodes
were malignant. The nodes in the test dataset had a mean
short axis diameter of 10.0 mm (range 3–39 mm). Both
datasets included the full spectrum of normal nodes to
completely replaced nodes.

MRI
MRI was performed at 1.5 T (System 9X, General Electric

Medical Systems, Milwaukee, Wisconsin, United States) using
phased-array coils. All images were archived on DICOM
PACS servers (MIPortal, CMIR and Siemens Medical Systems,
Erlangen, Germany; and Impax RS 3000, AGFA Technical
Imaging Systems, Richfield Park, New Jersey, United States)
for subsequent analysis. Images of the pelvis (n = 56)
extended from the pubic symphysis to just above the level
of aortic bifurcation. In patients with primary testicular

Table 1. Overview of Patient Datasets

Parameter Learning Dataset Test Dataset

Patients (n) 36 34

Lymph nodes (n) 97 216

Malignant (n/%) 44 (45%) 46 (21%)

Benign (n/%) 53 (55%) 170 (79%)

Short axis (M 6 SD/range mm) 10.5 6 6.2 (3–39) 10.0 6 5.9 (3–39)

Volume (mean, median, range cm3) 2.0, 0.4, 0.24–45.4 1.8, 4.1, 0.14–45.4

Age (mean/range) 59.7 (28–85) 58.9 (30–82)

Sex (M/F) 24/12 25/9

Primary cancer sites

Prostate 21 18

Bladder 9 2

Testes 5 2

Ureter 1

Colon 1

Breast 7

Penile 4

DOI: 10.1371/journal.pmed.0010066.t001
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cancers (n = 7) imaging was extended superiorly to include
the renal hilum and retroperitoneum. In patients with breast
cancer (n = 7) we obtained MR images of the bilateral axillae,
including the internal mammary and supraclavicular regions.
All patients were imaged with identical pulse sequences and
timing parameters. Imaging was performed before and 24 h
after intravenous ferumoxtran-10 administration (Combidex,
Advanced Magnetics, Cambridge, Massachusetts, United
States; 2.6 mg Fe/kg diluted in normal saline and infused
over a 20-min period using a 5-lm filter).

The acquired pulse sequences included (a) axial T2-
weighted fast spin-echo (TR/TE, 4500/80; flip angle, 908; field
of view, 24–28 cm; slice thickness, 3 mm; matrix, 256 3 256;
number of excitations, 2; in-plane resolution, 1.2 mm); (b) a
T1-weighted two-dimensional gradient-echo sequence ob-
tained in different anatomical planes (TR/TE 175/1.8; flip
angle, 808; field of view, 22–30 cm; slice thickness, 4 mm;
matrix, 128 3 256; in-plane resolution, 2.0 mm); (c) an axial
T2-weighted dual TE gradient-echo (TR/TE 2100/14–24; flip
angle, 708; field of view, 26–28 cm; slice thickness, 3 mm;
matrix, 160 3 256; in-plane resolution, 1.7 mm); and (d) a
three-dimensional (3D) T1-weighted gradient echo sequence;
TR/TE 4.5–5.5/1.4; flip angle, 158; field of view, 24–28 cm; slice
thickness, 1.4 mm; matrix, 256 3 256; in-plane resolution, 1.0
mm).

The above listed imaging sequences and parameters had
previously been optimized to reduce motion artifacts, max-
imize signal-to-noise ratio (SNR), and provide diagnostically
useful images of the pelvis, abdomen, and chest within
clinically acceptable time limits. The T2-weighted fast spin-
echo sequence, in (a) above, was primarily used for
qualitative nodal detection, and hence a square pixel with
more than one acquisition was obtained. The two-dimen-
sional axial T1-weighted gradient-echo sequence, in (b)
above, was chosen to achieve adequate anatomical coverage
within a short imaging time. The axial dual-echo gradient-
echo sequence, in (c) above, was developed specifically for
this project to provide artifact-free datasets for quantitative
image analysis. A matrix size of 1603 256 was chosen for this
sequence to achieve a balance between the upper limits for
imaging time while reducing image noise. Finally, a 3D T1-
weighted sequence was obtained, in (d) above to provide a
dataset for vascular maximum intensity projection (MIP)
reconstructions.

Quantitative Image Analysis
All image analysis was performed on archived DICOM

images using different software packages (e.g., custom-built
software such as CMIR-Image, MGH, Boston, Massachusetts,
United States; Syngo, Siemens Medical Systems; Advantage
Windows, General Electric Medical Systems). Lymph nodes
were identified by readers who manually placed kernels onto
each node for automated boundary detection and calculation
of nodal dimensions and volumes. The thus identified regions
of interest (ROIs) encompassed the entire lymph node (not
only portions of it) and were used for quantitative signal-
intensity (SI) measurements (see Table 2). Serial measure-
ments of nodal dimensions on different pulse sequences or
time points varied less than 2%.

A number of quantitative tissue parameters were calculated
either as differences between pre- and postcontrast scans (d)
or as single-value analysis on postcontrast scans (see Table 2).

The lymph node/muscle (LNM) ratio was calculated by
dividing signal intensities of an entire lymph node by that
of adjacent muscle using a similar-sized ROI, drawn manually.
The nodal SI change was calculated by obtaining SI before
and after contrast administration. The nodal SNR was
calculated by obtaining SD/SDnoise. The T2* was calculated
in nodal ROIs on dual TE images using CMIR-Image. T2*
maps were constructed by performing fits of a standard
exponential relaxation model (S = Ke–TE/T2*) to the data on a
pixel-by-pixel basis. Only pixels with intensity greater than a
threshold level (2X of noise) were considered during the
fitting process. Pixel variance was obtained from post-MR
images. Comparative visual analysis included short axis
measurements, and identification of heterogeneity, large
focal defects, and central hyperintensity, according to criteria
previously established [12,17].

Table 2. Frequency of Imaging Parameters in Learning Dataset

Analysis Parameter MR Sequence Benign
Nodes
Percent

Malignant
Nodes
Percent

Visual analysis Short axis . 10 mm Any 18.9 60.0

Round . 8 mm Any 26.0 43.0

Heterogeneous T2*post 3.8 52.3

Large focal defect T2*post 0 15.9

Central hyperintensity T2*post 18.8 2.3

Semiautomated dSI , 30% T2*pre–T2*post 1.9 38.6

difference dSNR , 4.2 T2*pre–T2*post 5.7 52.3

(pre/post) dLNM , 0.031 T2*pre–T2*post 73.6 0

dT2* , 34.9 ms T2*pre–T2*post 7.5 84.1

Semiautomated SNR . 2.1 T2*post 15.0 95.0

(post only) LNM ratio . 0.013 T2*post 26.4 97.7

T2* . 17.3 ms T2*post 5.6 93.2

Pixel variance . 113.1 T2*post 11.3 97.7

DOI: 10.1371/journal.pmed.0010066.t002

Table 3. Discriminatory Power of Imaging Parameters in Learning Dataset

Analysis Parameter Sensitivity Specificity PPV NPV

Visual analysis Short axis . 10 mm 59.0 81.1 72.2 70.4

Round . 8 mm 43.1 73.5 57.5 60.9

Heterogeneous 52.2 96.2 92.0 70.8

Focal defect 15.9 100.0 100.0 58.8

Central hyperintensity 2.2 81.1 9.0 50.0

Semiautomated dSI , 30% 38.6 98.1 94.4 65.8

difference dSNR , 4.2 52.2 94.3 88.4 70.4

(pre/post) dLNM , 0.031 79.1 83.0 79.1 83.0

dT2* , 34.9 ms 86.4 92.5 90.5 89.1

Semiautomated SNR . 2.1 95.5 84.9 84.0 95.7

(post only) LNM ratio . 0.013 97.7 73.6 75.4 97.5

T2* . 17.3 ms 93.2 94.3 93.2 94.3

Pixel variance . 113.1 97.7 90.6 89.6 98.0

T2* and variance 97.7 94.3 93.5 98.0

PPV, positive predictive value; NPV, negative predictive value.

DOI: 10.1371/journal.pmed.0010066.t003
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To determine the diagnostic accuracy of the different tissue
parameters in the learning dataset, we determined sensitivity,
specificity, and predictive values for each parameter alone
and in combination (Table 3). The most discriminatory
parameters were then applied to the test dataset (Table 4).
In the final set of semiautomated image analysis, 3D

reconstructions were obtained for nodal mapping onto
vascular anatomy using MIP projections. While the MIP
projections do not aid in the differentiation between
malignant and benign lymph nodes, they are invaluable in
providing anatomic content to the dozens of lymph nodes
identified. In particular, MIP images were generated inter-
actively from postcontrast, fat-saturated, volumetric interpo-
lated breath-hold images to outline vascular anatomy. The
evaluated lymph nodes characterized as benign or malignant
(by T2*/variance analysis) were then superimposed on the
volumetric 3D images, using customized software (Advantage
Windows, General Electric Medical Systems).

Table 4. Application of Quantitative Parameters to Test Dataset (n = 216)

Parameter Sensitivity Specificity PPV NPV Accuracy
(Az)

Size criteriaa 65.9 77.4 70.7 73.2 79.5

Post-SNR . 2.1 93.5 55.9 36.1 96.9 86.0

Post-LNM

ratio . 0.013

95.7 71.2 47.3 98.4 88.9

Post-T2* . 17.3 ms 93.5 90.6 72.9 98.1 93.7

Postpixel

variance .113.1

97.8 82.4 60.0 99.3 96.6

Post-T2* and

pixel variance

combined

97.8 92.4 77.6 99.4 98.6

a Includes short axis . 10 mm or round . 8 mm.

PPV, positive predictive value; NPV, negative predictive value.

DOI: 10.1371/journal.pmed.0010066.t004

Figure 1. Tissue Parameters in Learning Dataset

Nodal tissue parameters for benign and malignant nodes are shown before (A and B) and after (C–E) intravenous administration of magnetic
nanoparticles. Note the insensitivity of conventional MRI (A and B), better separation using single-value analysis (C and D) and excellent
separation using two-value analysis (E).
DOI: 10.1371/journal.pmed.0010066.g001
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Statistical Analysis
Data were expressed as mean 6 standard deviations (SD)

and medians. All statistical testing was performed using
GraphPad Prism (GraphPad Software, San Diego, California,
United States). The significance between two individual
groups was determined using the nonpaired Student’s t-test
(e.g., benign and malignant datasets in Figure 1). For the more
discriminatory datasets alternative-free-response receiver
operating characteristic curves were plotted. Ratios for cut-
off single-value parameters were defined to yield highest
sensitivity and specificity. Accuracy for a given parameter was
expressed as the area under the curve (Az), and values are
summarized in Table 4.

Histology
All lymph nodes were sampled histologically within 2 wk of

the MRI (mean: 6 d; range: 2–14 d). The analysis was done in
surgically resected lymph nodes (n = 55; both benign and
malignant nodes) or in fine needle aspirates and core biopsies
(n = 15; malignant nodes only), implementing careful
mapping procedures to correlate nodes. Surgically excised
nodes were sectioned at 10–20 lm intervals after bihalving
and were stained with hematoxylin-eosin.

Results

Learning Dataset
The learning dataset consisted of 97 histologically validated

lymph nodes from 36 patients with different primary
malignancies (see Table 1). The mean short axis diameter
was 10.5 mm (range 3–39 mm) with 56 of the 97 nodes (58.3%)

measuring less than 10 mm, that is, below the traditional
imaging cutoff for malignancy (‘‘occult nodes’’). Table 2
summarizes the incidence of different visual, comparative
(before and after contrast administration), and semiauto-
mated (postcontrast administration only) parameters in the
two different groups. Figure 1 is a graphical representation of
overlaps between malignant and benign groups for different
parameters listed in Table 2. Table 3 summarizes sensitivities,
specificities, and predictive values for the different quantita-
tive imaging parameters. Sensitivities of metastasis detection
by visual image analysis ranged from 50%–94%, however,
often with lower specificities. Volumetric measurements, in
particular, were insensitive markers of malignancy in non-
enlarged nodes (see Table 3).
In contradistinction, image analysis of pre- and postcon-

trast image sequences resulted in higher specificities and
sensitivities (see Table 3). Comparative differences between
benign and malignant nodal groups were highest for T2* and
pixel variance measurements (see Table 3). Of all the
semiautomated parameters tested alone, T2* measurements
showed the highest sensitivity (93%; 95% confidence interval:
82%–98%) and specificity (94%; 95% confidence interval:
84%–99%) in the learning dataset (see Figure 1 and Table 3).
Of all the semiautomated parameters tested in combina-

tion, T2* measurements combined with pixel variance
analyses postcontrast showed the highest sensitivity (98%;
95% confidence interval: 88%–99%) and specificity (94%;
95% confidence interval: 82%–98%) in the learning dataset
(Figure 1E). Using the dual-value analysis, there was one
malignant outlier in the benign dataset (the lymph node was 3

Figure 2. Steps in Semiautomated Image Analysis

Semiautomated image analysis involves recognition and automated segmentation of each lymph node (A), quantitation of magnetic tissue
parameters (T2*, variance of pixel values; [B]), comparison of extracted tissue parameter to a database (C), and 3D reconstruction of nodal
anatomy onto vascular anatomy (D).
DOI: 10.1371/journal.pmed.0010066.g002
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mm in overall size, with few malignant cells seen on histology,
and probably too small for analysis) and two benign outliers
in the malignant dataset (both these nodes showed hyalinosis
replacing more than 50% of the nodal architecture).

Test Dataset
To determine whether feature extraction would be

accurate for prospective nodal staging, we utilized the above
criteria against a larger test dataset encompassing 216
validated lymph nodes from 34 patients, including different
primaries (see Table 1). The sensitivity, specificity, and
predictive values of the most discriminatory parameters of
this prospective analysis are summarized in Table 4. We
primarily focused on semiautomated image analysis of
postcontrast scans because of the high sensitivity and
specificity determined in the learning dataset. T2* measure-
ments showed a sensitivity of (93%; 95% confidence interval:
82%–99%) and a specificity of (91%; 95% confidence
interval: 85%–96%). Combined T2* and pixel variance
analysis achieved a sensitivity of 98% (95% confidence
interval: 88%–99%) and a specificity of 92% (95% confidence
interval: 87%–96%) comparable to that of the learning set
and much superior to currently used size criteria.

Using the dual-value analysis, there were two malignant
outliers in the benign dataset (both of these nodes were less
than 3 mm in overall size and probably too small for
analysis—similar to the learning dataset) and three benign
outliers in the malignant dataset (two of these nodes had
hyalinosis replacing more than 50% of the nodal architec-

ture and one had macrocalcifications). More important, all
the misclassified nodes occurred in individual patients rather
than in the same patient and, hence, did not affect the
overall nodal staging on a patient-by-patient basis in this
dataset.

Image Reconstruction
Utilizing semiautomated feature extraction to identify

lymph nodes and image analysis (based on T2* and pixel
variance), we subsequently proceeded to map individual
lymph nodes onto vascular anatomy in the different anatomic
drainage patterns. Figure 2 summarizes the different steps in
image analysis. Figure 3 and Video1 shows an example of a
45-y-old patient with colorectal cancer undergoing semi-
automated nodal staging. In this particular patient, MRI
identified six positive lymph nodes (,10 mm each), recon-
structed as a 3D dataset, whereas all positive lymph nodes
were missed by PET scans. Figure 4 and Video 2 show
reconstructions and analyses from a patient with a breast
cancer primary with bilateral nodal metastases. Note the high
spatial resolution allowing the detection of a 3-mm nodal
metastasis.

Discussion

We show that it is feasible to extract various quantitative
tissue parameters to predict the likelihood of nodal meta-
stases in vivo. These results are highly relevant in cancer
staging because they provide evidence that (a) quantitative

Figure 3. Pelvic Nodal Staging

Nodal staging in patient with colorectal cancer. A PET scan using
18FDG as a tracer (A) and a CT scan (B) were interpreted as negative
for nodal metastases. LMRI identified six small pelvic lymph nodes
([C] and [D]; red arrowheads), which had magnetic parameters of
malignancy. Semiautomated reconstruction (E) identifies multiseg-
mental metastases, subsequently proven histologically (F). For 3D
reconstruction of pelvic nodal anatomy see Video 1.
DOI: 10.1371/journal.pmed.0010066.g003

Figure 4. Breast Cancer Mapping

Patient with breast cancer prior to sentinel lymph node biopsy.
(A) Conventional axillary MRI shows nonenlarged lymph nodes that
do not meet the size criteria of malignancy (white bar = 5 mm).
(B) Following intravenous administration of nanoparticles, a single 3-
mm intranodal metastasis was correctly identified.
(C) Ex vivo MRI of sentinel node specimen confirms metastasis.
(D) Semiautomated nodal analysis and reconstruction correctly
juxtaposed solitary lymph node metastases adjacent to two normal
lymph nodes.
(E) Correlative histopathology confirms the diagnosis. For 3D
reconstruction of axillary nodal anatomy see Video 2.
DOI: 10.1371/journal.pmed.0010066.g004
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tissue parameters enable diagnosis of lymph node metastases
while reducing interobserver variability and (b) that semi-
automated reconstructions allow spatially more extensive
mapping than is currently possible.

Metastases to lymph nodes occur during growth of most
primary malignancies, and their presence mandates the need
for more extensive and systemic therapy. Nodal cancer
staging currently relies on invasive procedures (surgical
lymph node dissection, sentinel lymph node resection,
biopsy) with significant morbidity and cost [22,23], or
insensitive tomographic imaging methods [24]. For example,
detection sensitivities using size criteria with state-of-the-art
multislice CT are as low as 50%, whereas PET imaging of
nonenlarged nodes has equally low sensitivities [14]. Based on
the observation that nanoparticulate solutions accumulate in
nodal macrophages upon systemic injections [25,26], lympho-
tropic superparamagnetic preparations have been developed
[16]. In earlier clinical trials (using lower spatial resolution
sequences), metastases of 1–2 mm have been detected [17],
whereas as few as 1,000 tumor cells have been detected in
nodes in experimental mouse models [18]. Despite these
advances, it has been difficult to acquire images of sufficiently
high resolution and to derive parameters to automate
diagnosis. The data presented here indicate that unique
magnetic parameters allow identification of nodal metastases
and accurate 3D reconstructions, including surgically in-
accessible lymph nodes.

The significance of the above findings is 3-fold. First, the
ability to directly and noninvasively monitor nodal tumor
involvement represents a powerful diagnostic tool for
cancer. Accurate staging represents the cornerstone for
triaging patients to either localized or to more aggressive
and systemic therapies. Second, the method described here
was sensitive for the limited subsets of primary cancers
tested. It is reasonable to hypothesize that such analysis
could be applied to staging of other common primaries. In
particular, lung, colorectal, genitourinary, and head and
neck cancers could benefit from this staging procedure. In
addition to nodal staging, the nanoparticle-enhanced MRI
can also be used to measure microvascularity in primary
tumors [27] and to improve the detection of liver metastases

[28]. Third, our results are significant because the semi-
automated staging method is highly accurate and reduces
variability in visual image analyses between different
observers.
The LMRI staging technique is believed to be clinically

relevant in several key areas. First, LMRI may play a
significant role in avoiding unnecessary surgeries, that is,
those in node-positive patients. Second, since LMRI can
detect lymph nodes outside traditional surgical fields, this
information may influence surgical approaches. In color-
ectal cancer, LMRI may provide a ‘‘sentinel-node-like’’
guide to staging. Third, it is likely that LMRI would be
useful to identify appropriate patients to receive neo-
adjuvant chemotherapy prior to surgery. Currently, neo-
adjuvant therapy is often reserved for postoperative
patients, once the nodal status has been determined.
Fourth, LMRI may be particularly useful to guide radiation
therapy by mapping the complete nodal status onto bony
and vascular landmarks. Finally, LMRI could be used to
avoid invasive diagnostic procedures, which are not part of
therapy. For example, LMRI could replace lymphangiogra-
phy, mediastinoscopy, or endoscopic ultrasound for nodal
staging.
Our findings have a number of direct implications for

technology development and in clinical care. Accurate
measurements of T2* relies on motion artifact-free multi-
echo pulse sequences that are not routinely available on
clinical scanners at spatial resolutions required for nodal
staging. Such sequences will have to be implemented and
combined with postprocessing tools to simplify and semi-
automate analysis. Similar software approaches are already
used routinely in lung nodule characterization [29] or
screening for breast cancers [30]. We predict that in the case
of LMRI, such automation routines will be highly specific,
given the unique mechanism of image contrast. As a proof-of-
principle, we implemented approaches to identify, segment,
analyze, and display nodal information. While the current
technology is already highly accurate, we anticipate further
improvements with hardware and software advances. We
hope that this will ultimately translate into clinical practice
and replace unnecessary intervention.

Video 1. Automated 3D Reconstruction of Pelvic Nodal Anatomy

DOI: 10.1371/journal.pmed.0010066.v001
Video 2. Automated 3D Reconstruction of Axillary Nodal Anatomy

DOI: 10.1371/journal.pmed.0010066.v002
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Patient Summary

Background When deciding on treatment for patients with cancer, it is
very important to assess whether the cancer has spread to lymph
nodes—both to help decide what treatment a patient should have and
what the eventual outcome might be. Previous ways of finding involved
lymph nodes included taking out the nodes by surgery, ultrasound, and
CT and MRI scans.

What Does This Study Show? A solution of magnetic nanoparticles that
tend to go to lymphoid organs was injected and then tracked by MRI.
The pattern of the particles was abnormal when there was metastasis in
the nodes, and it was possible to train a computer to recognize this
abnormality. The authors developed the program in one group of
patients and then tested it in another group, in which they were able to
correctly predict whether the nodes were involved in about nine of ten
nodes. In addition, they could use the information to display a virtual
picture of the involved nodes.

What Does This Study Mean for Patients? The technique will need to
be validated in a larger group of patients, and by other investigators.
However, it means that it is potentially possible to work out much more
precisely, and with less chance of error, whether lymph nodes are
involved in cancer. Hence, treatment can be better planned, and if
surgery is needed to remove nodes for analysis, then this technique
could ensure that the surgery is as minimal as possible.

Where Can I Get More Information? RadiologyInfo, a public
information site developed by the American College of Radiology and
the Radiological Society of North America: http://www.radiologyinfo.org/
Medline Plus, which has health information from the National Library of
Medicine: http://www.nlm.nih.gov/medlineplus/cancer.html
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