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A smart city is an intelligent space, in which large amounts of data are collected and analyzed using low-cost sensors and automatic
algorithms. ,e application of artificial intelligence and Internet of ,ings (IoT) technologies in electronic health (E-health) can
efficiently promote the development of sustainable and smart cities. ,e IoT sensors and intelligent algorithms enable the remote
monitoring and analyzing of the healthcare data of patients, which reduces the medical and travel expenses in cities. Existing deep
learning-based methods for healthcare sensor data classification have made great achievements. However, these methods take
much time and storage space for model training and inference. ,ey are difficult to be deployed in small devices to classify the
physiological signal of patients in real time. To solve the above problems, this paper proposes a micro time series classification
model called the micro neural network (MicroNN). ,e proposed model is micro enough to be deployed on tiny edge devices.
MicroNN can be applied to long-term physiological signal monitoring based on edge computing devices. We conduct com-
prehensive experiments to evaluate the classification accuracy and computation complexity ofMicroNN. Experiment results show
that MicroNN performs better than the state-of-the-art methods.,e accuracies on the two datasets (MIT-BIH-AR and INCART)
are 98.4% and 98.1%, respectively. Finally, we present an application to show how MicroNN can improve the development of
sustainable and smart cities.

1. Introduction

International Telecommunication Union (ITU) and the
United Nations Economic Commission for Europe (UNECE)
jointly put forward the construction scheme of a sustainable
smart city [1, 2]. ,e scheme aims to use information
technology to improve the level of people’s living standards
and increase the efficiency of urban services [3]. Problems,
such as uneven distribution of medical resources and low
efficiency of disease treatment, have gradually become
prominent in urban construction [4, 5]. Many research works
[6, 7] explore advanced Internet of ,ings (IoT) and artificial
intelligence technologies to solve these problems to promote
the development of urban intelligence and sustainability.

,e rapid development of deep learning technology and
the Internet of Medical ,ings (IoMT) has brought new
opportunities and challenges to medical development in the
construction of smart cities [3]. In recent years, some al-
gorithms [6, 8] based on deep learning have been proposed
to classify healthcare sensor data streams to solve the
problem of medical problems in the process of urban de-
velopment. Deep convolution neural network (CNN) [9]
and deep recurrent neural network (RNN) [10] are two
popular methods for classifying healthcare sensor data
streams. ,e former is mainly represented by the one-di-
mensional convolutional neural network, which can extract
the features of one-dimensional time series data [11]. ,e
latter mainly serializes the neurons to process the serialized
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data, so that the neurons among the hidden layers can be
related to each other [10]. Most of the existing healthcare
sensor data classification methods are improved based on
the above twomethods. However, these methods are difficult
to deploy in edge devices because of their large time and
space complexity [12].

To reduce the reasoning time and spatial complexity of
the model, different lightweight neural network models are
proposed in the literature [13, 14]. ,ese methods can be
divided into three scenarios: artificially designed lightweight
neural network, neural network model compression algo-
rithm, and automatic design of neural network structures
[15]. In the first scenario, the model is made lightweight by
reducing the number of parameters, for example, limiting
the number of channels of features [16, 17], using decom-
position convolution operation or 1∗ 1 convolution kernel
[18], etc. However, the design process of this scenario needs
a lot of time [19]. ,e second scenario mainly uses
knowledge distillation [20] and network slimming [21] to
compress the network model. Unfortunately, these methods
often realize the lightweight of the model at the cost of
sacrificing the performance of the model. ,e third scenario
is to automatically design a neural network architecture to
solve a specific task according to a certain search strategy
[15, 22, 23]. When using the methods based on the above
scenarios to classify healthcare sensor data streams, the
accuracy of the models is not very high. It is mainly because
these models do not consider how to distinguish classes with
similar features [24, 25].

In contrast to the above methods, this paper proposes a
novel model that ensures the classification accuracy of each
class while ensuring the lightweight of the model, called
MicroNN. Since RNN has the advantage of memory pres-
ervation for time series data, the architecture based on
multilayered RNN [26] is used as the feature extractor of
MicroNN. In addition, to improve the identification ability
of MicroNN between classes with similar features [27],
Kullback Leibler divergence (KL divergence) is introduced
in this paper. Experiments show that the overall accuracy
and the classification accuracy of each class using MicroNN
exceed other work. Our main contributions are as follows:

(i) MicroNN model is composed of a microfeature
extractor and some miniclassifiers.

(ii) MicroNN uses a method based on KL divergence to
eliminate shared knowledge among classes.

(iii) We conduct comprehensive experiments based on
time complexity and space complexity.

,e rest of this paper is organized as follows: section 2
presents the related work, section 3 introduces the proposed
model, section 4 shows the experiment, section 5 describes
an application scenario of MicroNN, and section 6 sum-
marizes this work.

2. Related Work

E-health has become a part of the development of sustainable
and smart cities [2, 32]. With the mature development of

deep learning and IoMT, healthcare sensor data stream
classification based on edge computing has become possible
[1, 33, 34]. It will effectively alleviate the uneven distribution
of urban medical resources and further accelerate the in-
telligence development of cities.

According to the survey [6], different diseases are
botheringmankind, which seriously threaten human life and
quality of life. Nowadays, how to detect and avoid related
diseases as soon as possible has become a major issue in
urban development [1, 35]. ,erefore, disease diagnosis
based on healthcare sensor data stream classification has
become a hot research topic. Many pieces of research use
traditional machine learning methods to classify healthcare
sensor data streams, which rely heavily on the characteristics
of manual design. Behadada and Chikh [36] proposed a
method based on the fuzzy decision tree to improve the
detection of arrhythmias. Nasiri et al. [37] designed a model
based on the support vector machine and genetic algorithms
to diagnose cardiac arrhythmia with relatively high accuracy.
Bensujin and Hubert [38] raised a method by combining the
K-means clustering algorithm and bacterial foraging opti-
mization algorithm to examine the heart situation of a
person. Sharipov [39] used principal component analysis to
improve the cardiac diagnosis via ECG. Jadhav et al. [40]
proposed static backpropagation algorithms and the mo-
mentum learning rule for diagnosing heart diseases.

At present, because of the excellent performance of deep
learning technology in the fields of image classification and
text recognition, more research works are trying to apply the
deep learning model in the field of disease diagnosis. Liu et al.
[26] developed a model based on a multiple-feature-branch
convolutional neural network for checking the patient’s ab-
normal heartbeat. Chen et al. [28] proposed a new end-to-end
scheme using a convolutional neural network (CNN) for
automated ECG analysis. Saadatnejad et al. [30] proposed
multiple long-short termmemory (LSTM)models tomonitor
the status of heart activity. Faust et al. [31] proposed a bidi-
rectional LSTM for beat detection. Jun et al. [29] used a CNN
model withmore layers by transforming the healthcare sensor
data into a two-dimensional gray image.

Our work is different from the above work. In Table 1, we
compare MicroNN with the discussed methods in terms of
space complexity. It can be found that the space complexity
of the models discussed is relatively larger than MicroNN. It
makes some models not widely used in portable devices or
edge devices. ,erefore, this paper not only considers the
accuracy of the model but also further considers the space
complexity of the model (Table 2).

Table 1: ,e space complexity comparison between MicroNN and
state-of-the-art methods.

Work Methods Model size (MB)
Liu et al. [26] CNN 39.5
Chen et al. [28] CNN 32.9
Jun et al. [29] LSTM 16.2
Saadatnejad et al. [30] LSTM 15.4
Faust et al. [31] Bi-LSTM 27.6
Ours MicroNN 13.7
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3. Our Proposed Model

3.1. SystemOverview. MicroNNmainly includes three parts:
preprocessing model, microfeature extractor, and mini-
classifiers. Figure 1 shows the overall architecture of
MicroNN. Table 2 is an explanation of the notations used in
the paper. ,e workflow of MicroNN is as follows: a
physiological information record X � x1, x2, . . . , xn . ,e
preprocessing model splits the record into slices with equal
length n, and each slice refers to Si � v1, v2, . . . , vr .

,en, the microfeature extractor is used to extract the
features of Si, Fi � e1, e2, . . . , em . Finally, the feature Fi of
Si is input into each miniclassifier fi to obtain the corre-
sponding score. Hence, the label of heartbeat Si is y, as shown
in (1).

y � argmaxi f1, f2, . . . , fn( . (1)

3.2. Preprocessing Model. Physiological signals are mainly
measured by some mobile edge devices. However, as
physiological signals have the characteristics of low ampli-
tude and low frequency, it is easy to be disturbed by noise in
the acquisition process [39]. ,ese noises mainly come from
internal or external interference [36]. ,erefore, the wavelet
transform [41] is used to denoise the original signal in this
paper. Firstly, the original data is decomposed into nine
scales. ,en, the wavelet coefficients of nine scales will be
processed by threshold operation [41]. Finally, we recon-
struct the original data by inverse wavelet transform. Fig-
ure 2 shows the changes in physiological signal records (such

as ECG) before and after denoising. Secondly, each physio-
logical signal record is segmented into slices based on the
annotations provided by the standard file [42]. Each slice Si

was normalized, Si,j � Si,j/‖Si‖2, where Si,j represents the j th
point of Si and ‖Si‖2 refers to the 2-norm of a heartbeat slice Si.

3.3. Microfeature Extractor and Miniclassifiers. In the past,
many research works used the convolutional neural network
(CNN) as a feature extraction model. However, as CNN
needs more computing and storage resources [26], it is
difficult to deploy it in edge devices. Consider that the re-
current neural network (RNN) has a memory function in the
processing of medical time series data and that its volume is
smaller than that of the convolutional neural network [28].
Inspired by ShaRNN [43], this paper mainly adopts the
collection of multilevel RNNs as the feature extractor (see
Figure 1).

Firstly, it should be noted that we set the RNN collection
with two levels. We set the slice data after preprocessing as
Si � v1, v2, . . . , vr , andwewilldivide it intosomesliceswhose
size isω. Si will generate n/ω slices, and we useAk to represent
each slice. ,en, we set up an RNN model for each slice:

β[1]
k � RNN[1]

Ak( , k ∈ 1,
n

ω
 . (2)

Here, RNN[1] represents the RNN model of the first level,
and β[1]

k refers to the output of kth slice by RNN[1].,erefore,
we can get the result [β[1]

1 , β[1]
2 , . . . , β[1]

n/ω] after the training of
RNNs collection of the first level.

Table 2: Meaning of the main notations.

Notation Meaning
X � x1, x2, . . . , xn  ,e raw physiological information record, n is the length of the record.
Si � v1, v2, . . . , vr  Si refers to the ith slice after being segmented.
Si,j Si,j represents the jth point of ith slice.
Fi � e1, e2, . . . , em  ,e features after feature extractor.

RNN[1] , RNN[2] RNN[1] represents the collection of the RNN model at the first level, RNN[2] represents the collection of the RNN
model at the second level.

X ∼ P
classi

X It refers to the data distribution of each class.
W1, W2, andW3 ,ey are the weights of a miniclassifier.
f1, f2, . . . , fn ,ey are the output of the miniclassifier.
η , c , and π ,ey are all hyperparameters in the paper.

ECG record Preprocess

Feature Extractor

Features

Classification
mini-classifier

mini-classifier

mini-classifier

RNN

RNN

β1
[1]

ω ω ω ω ω

β2
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Figure 1: ,e workflow of MicroNN.
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In the next step, we feed the result into the RNN of the
second level, and the output is

β[2]
� RNN[2] β[1]

1 , β[1]
2 , . . . , β[1]

n/ω , y � F β[2]
 , (3)

where RNN[2] represents the RNNmodel of the second level,
F refers to the activation function, and y is the extracted
feature. It should be noted that RNN[1] or RNN[2] can be any
RNN model, such as RNN, LSTM, Bi-LSTM, GRU, and so
on.

In the selection of a classifier for MicroNN, we adopt a
per-class classification model. ,e model will establish a
separate miniclassifier for each class of the task (see the part
of classification in Figure 1). All miniclassifiers are con-
nected with the feature extractor. In addition, to improve the
performance of the classifier, we employ a loss function
called one-class [24] in the training process:

loss� E
X∼P

classi
X

−log σ fi(X)( (  +η ·E
X∼P

classi
X

zfi(X)

zX









c

2

+π · θi −μ∗1: i−1






2
2,

(4)

where X ∼ P
classi

X refers to the data distribution of each class,
σ is the activation function, and η, c, and π are all
hyperparameters.

,e first term in the loss function is negative log like-
lihood. Its purpose is to maximize the score of classi during
training. However, if there is no constraint to the negative
log likelihood, it will lead to an unlimited increase in the
score. ,erefore, the second term, which is called H-reg, is
applied in the loss function. It can reach a balance with the
negative log likelihood. ,e structure of per-class classifi-
cation is a multilayer perceptron with three layers, as shown
in (5).

E
X∼P

classi
X

zfi(X)

zX









c

2
� E

X∼P
classi
X

zW3 · σ W2 ·σ W1 ·X( (  

zX









c

2
.

(5)
We can see that the derivation result of H-reg in the

training process is related to the weight (W1, W2 andW3).

,erefore, H-reg can restrict the phenomenon of the un-
limited growth of weight, which the negative log likelihood
brings.

To make the parameters of classifiers between different
classes in the same parameter space, the method uses the
parameters from 1 to i − 1 miniclassifiers to initialize the
parameters of the ith miniclassifier. Considering the ex-
istence of similar features between different classes, deep
learning models have difficulty distinguishing classes in
the process of training. During the testing stage, a method
based on KL-divergence [44] is used to reduce the shared
knowledge between classes, as described in the third term
of the loss function. Assuming that there are T mini-
classifiers in MicroNN, the calculation of shared knowl-
edge among T miniclassifiers is as shown in (6).

ρ∗1: T � argmin
T

i�1
φi KL Pi‖P1: T( , (6)

where φi is the mixing ratio with 
T
i�1 φi � 1, and Pi refers

to the posterior parameter distribution of the ith mini-
classifier. ,e parameters of the ith miniclassifier are
updated by (7).

ϑ∗i � ϑi − τ · ρ∗1: T, (7)

where τ is a hyperparameter.

4. Performance Analysis

,e experiments are conducted on a computer with a GPU
of Intel (R) Core (TM) i9-11900K and 64.00 GB memory.
Experiments are done on two different ECG datasets to
evaluate the performance of MicroNN. In the experiment,
we divide each dataset into training sets, validation sets,
and test sets, and their proportions are 6 : 2 : 2, respec-
tively. To better evaluate the performance of the model, we
mainly use precision (Pre), recall (Rec), and F1-score (F1)
in the paper. ,eir relationship is as follows:

F1 �
2 · Pre · Rec
Pre + Rec

. (8)
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Figure 2: ,e changes in a physiological signal record represented by ECG before and after denoising. (a) ECG record before denoising. (b)
ECG record after denoising.
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4.1.DatasetsDescription. ,e details of the two datasets used
in the experiment are as follows:

(1) MIT-BIH arrhythmia database (MIT-BIH-AR) in-
cludes the ECG record of 47 subjects studied by the BIH
arrhythmia laboratory, and the sampling rate is 360Hz.
It contains 48 half-hour excerpts of two-channel am-
bulatory ECG recordings. In the experiment, we use the
ECG record based on the MLII lead of MIT-BIH-AR.
,e full name of MIT-BIH is Massachusetts Institute of
Technology, Beth Israel Hospital [42].

(2) St Petersburg INCART 12-lead arrhythmia database
(INCART) consists of 75 annotated records from 32
humans, and the sampling rate is 257Hz. Each re-
cord lasts for a half-hour and has the data of 12
standard leads. In the experiment, we use the ECG
record based on the II lead of INCART.

4.2. Performance of MicroNN. At first, we compared the
performance of MicroNN with existing methods at MIT-BIH-
AR and INCART (see Tables 3 and 4).Micro has achieved good
performance in ACC and F1. As can be seen from Table 3, the
low accuracy of other methods is mainly because of the low F1
of class S. It is because class N and class S have many similar
characteristics. ,e model is prone to recognition errors.
However, MicroNN ′s F1 in class S is much higher than other
methods, which shows that MicroNN effectively reduces the
shared knowledge among classes during training. Similarly, we
can see from Table 4 that although the performance of
MicroNN in classes N and V is not as good as partial work,
MicroNN far exceeds other work in the classification of class S.
It is mainly because that MicroNN can effectively solve the
problem of the fuzzy boundary.

4.3. Measuring Time and Space Complexity of MicroNN.
Table 2 compares the space complexity of MicroNN with
other work, which shows that MicroNN is lightweight in
terms of space complexity. In addition, we also measure the
trend of training time and accuracy of MicroNN based on
the change in the number of sample numbers in MIT-BIH-
AR and INCART.

It can be seen from Figures 3 and 4 that the accuracy and
training time of MicroNN increase with the increase of the
number of instances of different datasets on the whole. In
MIT-BIH-AR, when the number of instances reaches about
4000, the accuracy reaches 98.4% and tends to be stable. ,e
training time is 23 seconds. For INCART, the number of
instances reaches up to 4300 approximately, corresponding to
the highest accuracy (98.1%), and the time of training is
27 seconds.

4.4.Creats toValidity. In the paper, threats to the validity of
our proposed method are discussed from two perspectives:
external validity and internal validity [14].

(1) ,reats to internal validity: To prevent the occur-
rence of overfitting, we divide each dataset into a
training set, validation set, and test set. We observed
the change in classification accuracy based on dif-
ferent validation sets to check whether the classifi-
cation model has overfitting.

(2) ,reats to external validity: To verify the general-
ization of the model, we compared MicroNN on two
different datasets.,e experimental results show that
the performance of MicroNN is better than other
models.

Table 3: ,e performance comparison between MicroNN and state-of-the-art methods based on MIT-BIH-AR.

Work Overall ACC(%)
N (%) S (%) V (%)

PRE REC F1 PRE REC F1 PRE REC F1
MicroNN 98.4 99.0 99.2 99.1 95.1 93.3 94.2 96.5 97.3 96.8
Llamedo and Martinez [45] 78.0 99.1 78.0 87.3 41.0 76.0 53.3 88.0 83.0 85.4
De Chazal et al. [46] 81.9 99.2 86.9 92.6 38.5 75.9 51.1 81.9 77.7 80.0
He et al. [47] 95.1 97.6 97.5 97.6 59.4 83.8 69.5 90.2 80.4 85.0
Zhai and Tin [48] 97.6 98.5 97.6 98.0 74.0 76.8 75.4 92.4 93.8 93.1
Lee et al. [49] 98.1 99.6 97.4 98.5 77.6 91.5 84.0 86.0 89.2 87.6
Li et al. [50] 98.1 98.0 99.8 98.9 94.7 68.7 79.6 91.1 95.5 93.2
Niu et al. [51] 97.5 97.4 98.9 98.1 76.6 76.5 76.5 94.1 85.7 89.7

Table 4: ,e performance comparison between MicroNN and state-of-the-art methods based on INCART.

Work Overall ACC(%)
N (%) S (%) V (%)

PRE REC F1 PRE REC F1 PRE REC F1
MicroNN 98.1 99.0 99.0 99.0 88.3 91.1 85.6 95.5 95.0 95.2
Merdjanovska and Rashkovska [52] 94.3 97.7 93.8 95.7 69.3 75.0 72.0 95.7 86.1 90.6
Bidias àMougoufan et al. [53] 81.9 97.7 95.9 96.8 61.8 80.8 70.0 60.9 69.1 64.7
Sun et al. [42] 99.7 99.7 100 99.8 60.8 90.2 72.7 99.0 94.2 96.5
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5. An Engineering Application of MicroNN

Deep learning research on healthcare sensor data stream
classification has attracted extensive attention [33, 54, 55].
However, we still face many challenges in the process of
development. For example, the current urban medical re-
sources are insufficient compared with the soaring urban
population. ,e treatment efficiency cannot meet the needs
of patients in time [4].

In this paper, we deploy MicroNN in edge devices to
effectively improve the efficiency of medical treatment.
Figure 5 shows an application example of MicroNN based
on edge computing. Different healthcare devices have the
function of classifying healthcare sensor data streams. ,e
healthcare devices will classify the collected physiological
signals of patients. ,en, the results will be used to assist
doctors in judging the condition of patients. Finally, the
doctor will inform the patient of the specific situation.
,erefore, MicroNN plays a certain role in promoting the
development of sustainable and smart cities.

6. Conclusion and Future Work

In this paper, we propose a lightweight neural network
model called MicroNN for classifying healthcare sensor data
streams. It is composed of a microfeature extractor based on
multiple recurrent neural networks (RNNs) and multiple
miniclassifiers based on a full connection layer with three
layers. At the same time, the method based on KL divergence
is used to remove the shared knowledge among different
classes to improve the performance of the model. In the
experiment, we compared the accuracy, time complexity,
and space complexity of the model with other models based
on two different ECG datasets. MicroNN shows better
performance than other works. In a word, MicroNN is a
lightweight and efficient model. We will further improve the
accuracy of MicroNN while ensuring the lightweight of the
model and extend experiments on other healthcare sensor
datasets.
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