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Abstract: Mining ubiquitous sensing data is important but also challenging, due to many factors,
such as heterogeneous large-scale data that is often at various levels of abstraction. This also relates
particularly to the important aspects of the explainability and interpretability of the applied models
and their results, and thus ultimately to the outcome of the data mining process. With this, in general,
the inclusion of domain knowledge leading towards semantic data mining approaches is an emerging
and important research direction. This article aims to survey relevant works in these areas, focusing
on semantic data mining approaches and methods, but also on selected applications of ubiquitous
sensing in some of the most prominent current application areas. Here, we consider in particular:
(1) environmental sensing; (2) ubiquitous sensing in industrial applications of artificial intelligence;
and (3) social sensing relating to human interactions and the respective individual and collective
behaviors. We discuss these in detail and conclude with a summary of this emerging field of research.
In addition, we provide an outlook on future directions for semantic data mining in ubiquitous
sensing contexts.

Keywords: semantics; data mining; declarative methods; explainability; industrial sensors

1. Introduction

With the advent of ubiquitous sensing driven by, for example, mobile computing, the
Internet of Things and Industry 4.0, many novel research directions and interesting applica-
tions have emerged through the use of large-scale sensor data as well as advanced analysis
and processing methods. While there is a multitude of such powerful processing and
analytics methods in data mining (DM) and machine learning (ML), there are also specific
challenges relating to the characteristics of the data in ubiquitous sensing. These include,
for example, some of the common challenges of Big Data [1,2] such as volume, velocity and
variety of the data. However, most importantly, aspects such as the interpretability and
explainability of the applied data mining models and their results, respectively, motivate,
require, or even enforce the application of domain/background knowledge to data mining
and machine learning approaches.

In the context of ubiquitous sensing and sensor data processing, Big Data, for example,
requires not only the proper selection and curation of potentially relevant data, but also
the use of dimensionality reduction and feature construction and engineering. This also
relates to making Big Data smart, that is, transforming it into Smart Data [3]. In particular,
a number of important questions regarding the understandability and interpretability of
machine learning models used in sensitive applications of DM and artificial intelligence (AI)
(e.g., medicine) have recently been raised [4]. When applying the models for knowledge
discovery and/or decision support, their transparency and explainability is often crucial,
otherwise limiting acceptance and trust in their adoption in such sensitive contexts. Using
background/domain knowledge enables semantic enrichment and ultimately semantic
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interpretation, leading to a knowledge-based analysis approach, which we call semantic
data mining.

This article aims to survey relevant works in these areas, specifically focusing on
different semantic data mining approaches and methods, but also on specific selected—
current, prominent and emerging—application areas of ubiquitous sensing. Here, we
consider in particular: (1) environmental sensing; (2) ubiquitous sensing in industrial
applications of artificial intelligence; and, finally, (3) social sensing relating to human
interactions—observing and capturing the respective individual and collective behaviors.
We discuss these in detail and conclude with a broad outlook on future directions for
semantic data mining approaches in ubiquitous sensing contexts.

There exist several comprehensive surveys on using semantic knowledge in data min-
ing [5–7] or exploring the possibilities of combining data mining with background knowl-
edge [8], and others that tackle the issue of moving from raw data to smart data [9–12].
However, they do not approach the subject holistically, instead focusing on particular
aspects of semantic data mining or narrowing the view on how semantics can be defined
and introduced to the data mining pipeline. We present a broader perspective on the issue
and compare existing practical tools and frameworks that aid data scientists in building
ubiquitous sensing systems.

Our contributions are summarized as follows:

1. We provide a comprehensive perspective on semantic data mining, including different
methods and techniques from related areas to be captured under this common topic.

2. We discuss relevant applications in the context of ubiquitous sensing, exemplifying
the specific implementation of semantic techniques in context.

3. We outline interesting future directions for the development and application of ap-
proaches and methods for semantic data mining in ubiquitous sensing.

The rest of the article is structured as follows: Section 2 provides an overview of
semantic data mining, and in Section 3 we discuss specific application areas in ubiquitous
sensing. Finally, Section 4 concludes with a summary and discusses interesting future
challenges and perspectives for semantic data mining in ubiquitous sensing.

2. Overview of Semantic Data Mining Approaches

In the following, we structure the discussed relevant literature around the topics of
data mining process models, semantic and declarative approaches for data mining, and the
role of interpretability and explainability in DM.

2.1. Data Mining Process

The general goal of data mining is to uncover novel, interesting and ultimately under-
standable patterns [13]—that is, relating to valuable, useful and implicit knowledge. It is
an iterative and often incremental process, such that a partial solution is often refined in
order to arrive at the final one. There exist several approaches for data mining (see [14]),
the most prominent of which is provided by the CRISP-DM process. It can be roughly
divided into three sub-processes: domain focusing (understanding and data preparation);
pattern modeling (the mining step); and model implementation (evaluation and deploy-
ment). CRISP-DM—consisting of six phases in total—is thus split into five iterative phases:
Business Understanding (defining the goals of data mining); Data Understanding (making
sure that data is applicable and clarifies semantics); Data Preparation (which usually needs
about 80% of the total effort of the process for transforming and cleaning the data, including
feature engineering, e.g., [15,16]); Modeling (the central phase: regularities and patterns
are extracted from the data for constructing the data mining model); Evaluation (where
the quality of the mined model needs to be assessed); and finally Deployment (where the
model is applied, e.g., for pattern understanding, prediction, classification or clustering).

It is worth noting that CRISP-DM was proposed in the context of a long-time tradition
of Knowledge Discovery from Databases (KDD) [13]. An overview [14] discusses the
evolution of such approaches for KDD as well as for DM processes. Some of them include
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aspects that CRISP-DM omits, for example, Domain Knowledge Elicitation and Knowledge
Post-processing. While a decade ago, the term “explanation” was rarely explicitly used,
the explanatory aspect of the DM or KDD process was somewhat considered in the latter
phases of related approaches, but still to a limited extent. Later, we will discuss how
explanation is especially important in relation to our scope of much more complex DM
approaches and processes today. This is, in particular, specifically relevant for semantic data
mining in ubiquitous sensing due to the complex, heterogeneous, and typically uncertain
and noisy, data.

Connected to this, some additional deficiencies were already identified a long time
ago. First of all, it is a common opinion among DM experts that data understanding
and preparation are typically the most costly and time-consuming (about 80%) phases in
CRISP-DM, before even mentioning proper Business Understanding, for example, [15,16].
Moreover, the lack of feedback loops is emphasized [14].

To improve CRISP-DM, or to offer alternative solutions, more recently several new
approaches have been proposed. The SAS Institute proposed its own SEMMA (Sample,
Explore, Modify, Model and Assess) sequential approach for DM [17]; for a comparison
with CRISP-DM see [18]. IBM proposed its own extension to the original CRISP-DM
process, called ASUM-DM, to focus more on the operations side of implementing DM
projects [19]. However, these two approaches remain sequential and do not consider the
role of the domain knowledge, nor the explanative aspect. Most recently, the so-called
Model Development Process was proposed [20]. It extends the ideas of Rational Unified
Process, and partially considers the need to introduce explanations. However, it does
not support the explicit elicitation of knowledge in any of the phases. In addition, there
have been several proposals for including domain knowledge regarding the data mining
process in general, for example, [21,22]. However, those mainly relate to the (declarative)
specification of the process itself, or the “fine-tuning” of the process, but not to cross-links
between the different steps of the process.

As such, in the next subsection we discuss a variety of approaches that aim to enhance
data mining from a knowledge-oriented perspective.

2.2. Semantic, Knowledge-Based and Declarative Data Mining

Using background knowledge in DM has been proposed in the area of semantic data
mining, where the knowledge is typically represented in a knowledge repository, such as an
ontology or a knowledge base. The main aspect of semantic DM is the explicit integration
of this knowledge into the DM and KDD modeling step, where the algorithms for data
mining/modeling or post-processing make use of the formalized knowledge to improve
the overall results. There has been growing interest in this issue (e.g., [23–28]) in various
domains, for example in the medical domain [24,29–31] but also for industrial applica-
tions [26]. Here, [32] present a collaborative approach for specifying task-configurations
of specific DM methods. Further examples include using ontologies in specific DM tasks
(i.e., subgroup discovery and network analysis) [33,34].

However, in those approaches, domain knowledge is only used in a very specific
setting, that is, modeling, so is not generalized to the whole DM process. The same
observation holds for approaches that stress the importance of contextual knowledge for
data mining, for example, [35,36], which applied context-aware approaches to the process.

Several toolkits allow for embedding declarative knowledge into the learning process.
In [37], the authors proposed a neural network mechanism that allows for the representa-
tion of structured knowledge in the form of n-dimensional vectors. This is an approach
equivalent to word2vec [38]. In [39], the usage of variational autoencoders for graph
structure embedding was presented. Due to the variational nature of an encoder, it not
only allows for embedding graphs, but also supports the generation of such. In particular,
there have been various approaches in the fields of Semantic Web and Linked Open Data
for DM, although their full potential is still to be unlocked [7]. Traditional DM processes
still face major challenges in terms of massive data [40]. In addition, the application of data
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mining still faces serious challenges, one of which is reproducing already known knowl-
edge. At the same time, DM systems typically make very little use of existing corporate
knowledge [41]. Here, existing DM methodologies only provide general directions and
directives, while users ultimately require explanations and recommendations on how to
effectively perform the steps of the DM methodology. This is currently not provided or
enabled by standard DM approaches, cf. [42].

An idea for declarative data analysis is presented in [22], which specifically targets
declarative problem formulation; however, they do not tackle a specific data mining
process, nor augment the specific methods or connect between them explicitly. In the area
of constraint programming there have been approaches (e.g., [43,44]) that re-frame a DM
method using constraint-based programming. These approaches actually specify what the
ML or DM task is about rather than utilizing contextual domain knowledge in a declarative
way. So, this mainly relates to the interpretability of the specification of such approaches,
not to the ultimate understandability/explainability of the process and/or its outcomes,
since the proposed declarative systems mainly transform the declarative specifications in a
kind of black-box manner [44].

2.3. Explainability and Interpretability in Data Mining

According to [45,46], the term ’explanation’ has been widely investigated in different
disciplines. Explanations are in some sense always answers to questions, supporting
humans in their decision-making [47]. In particular, explanations are a central component
for advanced data mining approaches. This becomes especially relevant when considering
complicated black-box models that provide recommendations and predictions in sensitive
application contexts like medicine, Industry 4.0 and so forth. Here, nontransparent methods
and models make it more difficult to spot errors and can thus lead to biased decisions. For
example, this can be based on incorrect training data, or training data that is actually not
suitable for application—for example, relating to its contained data quality. In general,
nontransparent and non-explainable methods stretch the trust humans have (and should
rightfully have) in the respective predictions. Then, the potential competitive advantage
through better predictions for humans, for businesses, and for society as a whole comes
at the cost of reduced explanatory power—which is specifically problematic for sensitive
application areas like those for ubiquitous sensing. This is particularly important in the
light of the European Union’s new General Data Protection Regulation and the “right
to explanation” (providing users the right to obtain an explanation for any algorithmic
decisions that were made about them), cf. [48].

Recently, with these developments and more and more complex models, there has
been growing interest in the development of so-called eXplainable AI (XAI) systems. One
of the triggers was the NASA XAI Challenge [49]. From [50], XAI is described as “one
that produces details or reasons to make its functioning clear or easy to understand.”
That paper also outlines the differences between key concepts such as comprehensibility,
interpretability, explainability, transparency, and the most important one: understandabil-
ity (intelligibility).

As the challenges of XAI are mostly related to ML models and their use in the DM
process, two main cases are considered: different levels of transparent ML models and
post-hoc explainers for black-box ML models. Furthermore, we are interested in the hybrid
approaches combining these two, for example, see [51]. For some authors, it is clear that
the role of knowledge in the process of using proper ML models, and their use in the DM
process, is paramount [52]. Furthermore, it is worth emphasizing that interpretability goes
far beyond the model itself, and needs to be considered in the scope of the whole process
of designing a system [53].
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An overview of so-called interpretable ML techniques can be found in [4]. The
interpretation of the results of ML explanation models, such as LIME [54], SHAP [55] or
Anchor [56], highly depends on expert knowledge and domain knowledge. However,
these frameworks do not provide any means for encoding such knowledge, relying purely
on the manual examination and interpretation of their results. Many attempts have been
made to aid domain experts or data scientists in the interpretation and incorporation of
explanation results into the DM process. Most of them focus on the visual presentation
of such results. This includes saliency maps for Deep Neural Networks [57], task specific
visualisations [58] and more general frameworks [59], which are still narrowed to only one
phase of the DM process and hardly use any domain knowledge to enhance explanations
nor interpretability of the models. For some examples, in [60], the authors demonstrate
how the combination of deep tensor and knowledge graph embedding methods can be
used for generating explanations for a model in intrusion detection and genomic medicine.
In [61], an approach aiming at predicting and explaining interactions between nodes in
a knowledge graph is presented. In [62], an approach for exploiting knowledge graphs
for the purpose of explanation is sketched. A medical ontology and temporal domain
knowledge was successfully incorporated into the prediction model described in [63], for
explaining decisions to the end-user.

In general, nontransparent methods and models make it more difficult to comprehend
the decisions of the methods and models in general; also, it becomes very difficult to
perform validation and to, for example, spot mistakes, since algorithmic methods can learn
“bad habits” from the data. For example, if their training data contains misleading/wrongly
classified examples, then it is highly likely that the resulting model incorporates specific
biases induced by this training data. This can then simply lead to wrong conclusions
and decisions due to, for example, incorrect or biased data capture, insufficient data
preprocessing [64,65], and so forth. All these aspects are also particularly important and
relevant in a ubiquitous sensing context, since we need to provide and ensure representative
training and testing procedures, which can also be supported by the inclusion of semantic
information and domain knowledge. In such cases, in general, the inability to provide an
explanation as justification is a significant drawback of such methods, limiting acceptance
and trust in their adoption in sensitive applications of DM—like those we discuss in the
context of ubiquitous sensing. Therefore, interpretability and explainability are crucial for a
successful DM process. This is enabled by developing computational methods—to “make
sense” of complex information and knowledge processes—in a knowledge augmented DM
approach. Here, the explanation has to be pushed through all the steps of the DM process.

There have been several attempts to provide methodological approaches for the eval-
uation and verification of given explanation results [66,67]. Among many qualitative
approaches, there are also those that allow for quantitative evaluation. In [68], measures
such as fidelity, consistency and stability were coined, which can be used for a numerical
comparison of methods. In [69], the aforementioned measures were used to improve overall
explanations. In [70], a measure that allows the capture of the stability or robustness of ex-
planations was introduced. Context in terms of explanations is mostly considered in terms
of the similarity of training instances within its vector space, not in the broader context of
the domain. In [71], the authors exploit the context of features within a training instance
to improve explanations generated with LIME. In [72], the context of an instance that is
being explained is generated for the purpose of up-sampling and generating explanations.
A more advanced approach was discussed in [73], where an interactive explanation archi-
tecture was presented that allows for interactive verification and ad-hoc personalization of
the explanations.

The overview provided in this section emphasizes the role of knowledge and explana-
tion in the DM process, and different approaches for introducing them. In the next section,
we discuss selected illustrative examples of the applications of semantic data mining in
ubiquitous sensing.
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3. Applications in Ubiquitous Sensing

We distinguish different sensing areas and contexts that are mostly relevant to se-
mantic DM approaches: environmental sensing, sensing in industrial artificial intelligence
and social sensing. Here, we observe large scale and/or complex data, motivating the
application of a semantic approach. Below, for data analysis, data mining and machine
learning, we survey approaches and methods for the inclusion of domain knowledge in
those specific contexts.

3.1. Environmental Sensing

Due to the fact that environmental and industrial (see Section 3.2) data originate from
the sensors of multiple manufacturers, use different measurement methods and return data
in a variety of measurement units, their use in DM requires appropriate semantization [12].
This is understood here as an appropriate formatting of data, enriching it with tags or
labels and combining it with contextual knowledge to create a unified description that can
be easily processed by automatic systems (e.g., DM tools) [10].

The most popular markups for sensory data semantization are [10] the following:

• Resource Description Framework (RDF) [74] and the Web Ontology Language
(OWL) [75]—two Semantic Web standards developed by the World Wide Web Consor-
tium (W3C). On their basis, many detailed models have been developed to describe a
certain type of data or measurement context.

• Sensor Measurement Lists (SenML; in draft versions it was also called Sensor Markup
Language) [76]—a standard aimed at small packets with simple sensor measurements
that are easy to use in constrained networks, proposed by the Internet Engineering
Task Force (IETF).

• Entity Notation (EN) [77]—another standard aimed at providing semantics for low-
resource sensors. It provides the definition of short packets, which are transferred via
communication links, and complete packets, derived from the short ones, useful for
connection with ontologies.

• Observations and Measurements (O&M; https://www.ogc.org/standards/om; ac-
cessed on 13 April 2021) and Sensor Model Language (SensorML; https://www.ogc.
org/standards/sensorml; accessed on 13 April 2021)—two complementary specifi-
cations proposed by the Open Geospatial Consortium (OGC) for observations and
sensors description.

They differ not only in their expressivity, but also in their corresponding processing-
related energy consumption [78]; this is important, as environmental and physiological
sensing often takes place in real-time under resource-constraints in edge computing [79].

What these standards have in common is that they combine sensory data from various
Internet of Things (IoT) devices into some kind of (knowledge) graph. The W3C stack of
standards is the foundation of the Semantic Web. The SenML and EN notations do not
constitute the semantic graph itself, but they can be easily translated into RDF (see [80]
and [77], respectively). The O&M and SensorML standards are part of a broader set of
services and languages developed by OGC for the Semantic Sensor Web [81]. They can
also be integrated with the Semantic Web stack of technologies [82]. As a result, regardless
of the notation used to collect and transmit data, measurements can be described using
Semantic Web methods, creating a so-called Semantic Web of Things (SWoT) [83,84].

Proper semantization requires not only choosing the right markup, but also the right
vocabulary. From both the Semantic Web and Data Mining perspectives, it is important
to ensure that multiple datasets use the same set of vocabulary. In the case of weather
data processing, this can allow for, for example, an unambiguous statement that both
the X value from set S1 and the Y value from set S2 represent a measurement of air
temperature 2 m above the ground. Appropriate metadata also allow us to determine that
the X value is expressed in K and the Y value in °C, which will facilitate their conversion
to a common unit.

https://www.ogc.org/standards/om
https://www.ogc.org/standards/sensorml
https://www.ogc.org/standards/sensorml
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To address the latter issue, in [85], the authors introduce Custom Datatypes (CDT) [86]—a
vocabulary based on The Unified Code for Units of Measure (UCUM; https://ucum.org/;
accessed on 14 April 2021) for representing measurements along with their units in data
semantized according to the RDF standard. It includes a general type of measurement
(cdt:ucum) as well as more specific ones (e.g., cdt:temperature, cdt:pressure). The
authors provide a working Java implementation that allows on-the-fly conversions per-
formed during query execution to return results in the desired unit, regardless of the unit
in which the measurement was stored (https://ci.mines-stetienne.fr/lindt/; accessed on
14 April 2021).

To address the need for a standardized vocabulary for measurement representation,
the W3C and OGC joined forces in the Spatial Data on the Web Working Group (for an
overview of other approaches to sensory data semantization see [12]), which led to the
development of the Semantic Sensor Network (SSN) ontology [87]. Its core concepts were
further refined, leading to the creation of a lightweight self-contained Sensor, Observation,
Sample and Actuator (SOSA) ontology [88]. From the ubiquitous sensing point of view,
the key concept is the Observation. It has a Result of a Procedure performed at a specific
time by a Sensor (e.g., thermometer) that observes some object (Observable Property,
e.g., the air at the top of the Eiffel Tower) and measures a particular Feature of Interest
(e.g., temperature), as summarized in Figure 1. The SSN and SOSA ontologies contain
generic high-level terminology and thus can be further refined in more detailed application-
and domain-specific ontologies, for example, expanded for the whole IoT area in an IoT-Lite
ontology [89] or adapted to describe energy consumption related data [90].

Figure 1. Observation and related concepts in SOSA ontology. Reprinted from [88], with permission
from Elsevier.

The practical application and usefulness of data semantization in environmental data
preprocessing may be illustrated using weather data. In this scenario, temperature, humid-
ity, or rainfall data may come from multiple heterogeneous sources that need to be properly
integrated [91,92]: private sensors connected via networks like Weather Underground
(https://www.wunderground.com/; accessed on 14 April 2021), sensors managed by local
authorities (e.g., [93]), data provided by (commercial) internet services (e.g., OpenWeath-
erMap) and data published as (Linked) Open Data.

In order to combine them into a single knowledge graph, it is necessary to first
define an appropriate vocabulary and scheme. Then, a dedicated wrapper should be
developed for each source to tag the data using the pre-defined scheme. In Listing 1, an
example of a semantized data sample adapted from [94] is shown. It uses previously

https://ucum.org/
https://ci.mines-stetienne.fr/lindt/
https://www.wunderground.com/
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mentioned vocabularies: SOSA (sosa:) to represent observations and CDT (cdt:) to
describe measured values. The custom namespace (weather:) is also used for other pieces
of information. Finally, one can see the use of the GeoSPARQL (geo:) ontology [95].
The specification of the geographic coordinates according to this standard (see line 15
in Listing 1) makes it possible to easily search the dataset and find particular points, for
example, those closest to a given location or all the points in a given area. Listing 2
shows a sample query that extracts all temperature data for the area of Kraków, PL. The
filter in line 16 is responsible for selecting points from the indicated area (defined by a
set of coordinates). In line 15, it is specified that the result should be given in Kelvin—
automatic unit conversion will be done where necessary. Data generated in this way
are therefore standardized and ready for further analysis. Depending on the needs, the
semantic description can be more detailed, including, for example, sensor specifications
and more metadata about the measurement site [94].

Listing 1. An example of a semantized data sample taken from OpenWeatherMap reporting air
temperature at Jagiellonian University.

1 @prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#> .
2 @prefix xsd: <http ://www.w3.org /2001/ XMLSchema#> .
3 @prefix cdt: <http :// w3id.org/lindt/custom_datatypes#> .
4 @prefix sosa: <http ://www.w3.org/ns/sosa/> .
5 @prefix geo: <http ://www.opengis.net/ont/geosparql#> .
6 @prefix weather: <https :// geist.re/sdm/weather/> .
7

8 weather:obs_1618483279_19 .933107698819033 _50 .06088286523941 _temp
9 a sosa:Observation ;

10 sosa:madeBySensor weather:openweathermap ;
11 sosa:resultTime "2021 -04 -15 T12 :41:19+02:00"^^xsd:dateTime ;
12 sosa:hasFeatureOfInterest weather:feat_air ;
13 sosa:observedProperty weather:prop_air_temp ;
14 sosa:hasResult [ a sosa:Result ; weather:value "20.45 Cel"^^cdt:

temperature ] ;
15 geo:hasGeometry [ a geo:Point; geo:asWKT "POINT (19.933107698819033

50.06088286523941)"^^geo:wktLiteral ] .

Listing 2. A sample query to extract all temperature measurements for the Kraków, PL area.

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
2 PREFIX cdt: <http :// w3id.org/lindt/custom_datatypes#>
3 PREFIX sosa: <http ://www.w3.org/ns/sosa/>
4 PREFIX geo: <http :// www.opengis.net/ont/geosparql#>
5 PREFIX geof: <http ://www.opengis.net/def/function/geosparql/>
6 PREFIX weather: <https :// geist.re/sdm/weather/>
7

8 SELECT ?time ?temperature
9 WHERE {

10 ?observation a sosa:Observation ;
11 sosa:resultTime ?time ;
12 sosa:observedProperty weather:prop_air_temp ;
13 sosa:hasResult ?raw_temp ;
14 geo:hasGeometry ?position
15 BIND(( "0 K"^^cdt:temperature + ?raw_temp ) AS ?temperature)
16 FILTER geof:sfWithin(?position , "POLYGON ((19.79120 49.99440 , 20.07877

49.99899 , 20.11130 50.12376 , 19.80786 50.10799))"^^geo:wktLiteral)
17 }

There are state-of-the-art frameworks that facilitate the entire process of sensory data
semantization. The Linked Sensor Middleware (LSM) [96] provides both an automatic
tagging mechanism by applying custom wrappers to data sources, and a web interface
for manual annotation. The whole is complemented by a web service that allows for
data extraction using the SPARQL query language. SWoT4CPS (Semantic Web of Things
for Cyber-Physical Systems) [84], in turn, provides a more sophisticated ontology, which
includes, for example, cause–effect relationships, that can be used not only for data seman-
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tization, but also for further processing and mining on a “semantic” layer of the system.
For an overview of other sensing semantization frameworks, see [84].

Environmental sensing is not limited to the observation of changing weather condi-
tions. Other applications include, but are not limited to, automatic temperature and hu-
midity control with anomaly detection in smart buildings [84], early detection of collisions
between pedestrians, cyclists and drivers to generate timely alerts on mobile devices [97],
data collection from in-car sensors to predict generated noise, travel time and fuel con-
sumption [98], and overseeing the food production process in the agri-food sector to reduce
CO2 emission levels and energy consumption levels [99]. The applications discussed are
summarised in Table 1.

Table 1. Semantic Web of Things (SWoT) for Environmental Sensing [10,12,83,84].

Ref. Sensing Framework Semantic Formalism Explainability Domain

[91] Custom Simple taxonomy Visual interface Smart City
[92] Custom Ontology No Smart City
[94] Custom Ontology (SOSA, SSN) Visual interface Smart City
[97] Custom Relational database Visual interface Traffic
[98] Custom Ontology (O&M) Visual interface Traffic
[99] None Out of the scope Visual interface Agri-food

[100] None Out of the scope No Emotions
[101] None Out of the scope No Education
[102] Custom Relational database Visual interface e-Health
[103] None Out of the scope No Fatigue detection
[96] LSM Ontology (SSN) Visual interface cross-domain
[84] SWoT4CPS Ontology (SSN), rules No cross-domain

An interesting area of environmental sensing is physiological sensing, which aims
to measure various characteristics originating from the body. A diverse set of sensors,
including smart bands, smartwatches [102], sensors embedded in phones [104], portable
EEGs [103] and smart textiles [105,106], are used to measure temperature, heart action,
respiration, galvanic-skin reaction, electroencephalography and other signals. Among the
most common applications, there are stress levels and changes in emotions detection [100],
assessment of involvement in education [101], health monitoring [102] and various cogni-
tive enhancement tasks, including driver fatigue detection and the assessment of air traffic
controllers’ mental fatigue [103].

3.2. Sensing in Industrial AI

Environmental sensing is nowadays most extensively developed in the area of Indus-
try 4.0 applications. Industry 4.0 (I4.0) defines an ongoing transformation of traditional
business processes by the adaptation of new technologies and automation systems. Al-
though the term originally referred only to manufacturing, currently it can be extended
to almost every sector where technology plays an important role. Figure 2 depicts the
advanced technology uptake in different sectors as of 2019. This can be considered as the
expansion of I4.0 among enterprises, which is growing rapidly in almost all sectors, for
example (discrete) manufacturing [107,108], especially in the context of the adaptation of
Artificial intelligence as presented in Figure 3.
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Figure 2. Percentage of advanced technology uptake in Industry 4.0 and AI in this uptake. Generated
with https://ati.ec.europa.eu/data-dashboard (accessed on 8 April 2021).
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Figure 3. Trend in percentage uptake of advanced technology in 2019 and 2020. Generated with https:
//ati.ec.europa.eu/data-dashboard (accessed on 8 April 2021).

This allows us to extend the definition of I4.0, after [109], to a complex technological
system that embraces a plethora of technologies, the implementation of which allows the
development of intelligent manufacturing processes, composed by devices that are able to
exchange information, perform actions and control each other. These technologies include,
but are not limited to, Cyber–Physical Systems, Internet of Things, Robotics, Big Data,
Artificial intelligence and so forth. The adaptation of such technologies in all of the cases is
performed on many different levels of abstraction. Such levels can be generalised to three
stages of process/data/control flow, as shown in Figure 4.

https://ati.ec.europa.eu/data-dashboard
https://ati.ec.europa.eu/data-dashboard
https://ati.ec.europa.eu/data-dashboard
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Figure 4. Three levels of the Cyber–Physical system in Industry 4.0 [110].

These three layers represent different levels of interaction of humans with the sys-
tem, and hence different levels of knowledge and semantics’ exploitation by automated
algorithms (including data mining and machine learning systems). At the Physical layer,
humans directly interact with machines and other equipment. This is usually supported by
built-in interfaces and does not require any additional layers to be fully operational. The
control layer serves as a middleware between the Physical layer and the Cyber layer. It
can be considered as a technical layer for exchanging and storing data from the machines
and other system components, but also extends the control over the larger parts of the
system, such as SCADA. The Cyber layer mirrors the physical environment that is formed
by the concatenation of the Control system and Physical objects. This layer is mostly re-
sponsible for tasks related to the analysis of the data, modelling, learning, decision support,
predictive maintenance and other high-level tasks [111].

Despite the automation of the system, humans still play an important role in each of
the aforementioned levels and are mostly present in Physical and Cyber layers presented
in Figure 4. Such a system, where a human operator is actively involved in the automated
Cyber–Physical process is called a Human Cyber–Physical System [112]. In this work, we
focus on the level where data acquisition, processing and utilization takes place; therefore,
we reach in our discussion the moment where such systems are designed and built up to the
deployment phase. Due to the broad nature of the problem, we narrowed the discussion to
the areas in the process that are data-driven and, yet, the interaction with humans exists.
This coexistence of the semantic world and the data driven world is especially difficult to
embrace in the industrial process. Due to the fact that the knowledge that is possessed by
human operators is rich in semantics but most often lacks formalism, the integration of
such knowledge into the system is a challenging task.

This coexistence is achieved with many different methods, depicted in Figure 5. In the
following sections, a description of particular applications of selected methods in the area
of I4.0 will be presented. They are also summarized in Table 2.
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Figure 5. Knowledge source, its formalization and application to different ML/DM stages [8].

Table 2. Sensing platforms in Industrial AI.

Reference Sensing Framework Semantic Formalism Explainability Domain

[113] SANSA stack Semantic Web Visual interface domain-specific (electronic mounting)
[114,115] I40KG framework Ontologies No cross-domain

[116] SWeTI framework Semantic Web No cross-domain
[117–119] None Physics equations No domain-specific

[120] None Physics approximation model No domain-specific
[121–123] Custom Constraints visualization dashboard, knowledge mediation cross-domain
[124–126] Custom knowledge graph No cross-domain
[127–130] None knowledge graph knowledge-graph extensions cross-domain
[131,132] None Rules Shapely values domain-specific
[133–135] None knowledge graph visual, symbolic, statistical cross-domain

3.2.1. Formalization of Semantics for Industrial AI Sensing

In Figure 5, different levels of formalization of knowledge are presented. Depending
on the level of formalization, different methods for the knowledge transfer to machine
learning pipeline can be chosen. In this section, we present how such knowledge can
be used in practical applications. We will focus mostly on ontologies as one of the most
expressive mechanisms for encoding and processing domain knowledge in many fields.

In [113], the integration of Semantic Web techniques in a large Industry 4.0 context
was presented. The authors deployed the SANSA Stack to enable uniform access to Surface-
Mount Technology (SMT) data. An ergonomic visual user interface was proposed to
help non-technical users coping with the various concepts underlying the process and
conveniently interacting with the data. In [114], the authors propose a framework for
constructing a semantically annotated knowledge graph for Industry 4.0 related standards
called I40KG. The graph provides a Linked Data-conform collection of annotated, classified
reference guidelines, supporting newcomers and experts alike in understanding how to
implement Industry 4.0 systems. The authors illustrate the suitability of the graph for
various use cases, its already existing applications, and present the maintenance process
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and evaluate its quality. In [115], the authors provide a practical example and evaluation of
the Bosh implementation of I40KG. In [116], the authors present a Semantic Web of Things
for Industry 4.0 (SWeTI) platform, which is a cross domain, cross platform solution. In their
approach, they extend the hierarchy of I4.0 layers by adding on top of the cyber layer the
data analytic and application layers, which are supposed to be the main components for
knowledge exchange. It serves as an intelligent interface with all of the knowledge hidden
within the bottom layers. As this is only a framework, it does not provide any specific
ontology but allows integration with domain knowledge formalized in such a way at the
level of the cyber layer.

The remaining components for knowledge transformation and encoding are presented
in Figure 5 and do not require complex frameworks such as knowledge graphs; however,
they may lack the expressive power of the former in many cases. In the following section,
we discuss the application of selected knowledge embedding methods to different phases
in the ML/DM pipeline.

3.2.2. Knowledge Embedding Methods

Knowledge embedding within the ML/DM pipeline can be conducted at many dif-
ferent stages, as depicted in Figure 5. Depending on the stage of the ML/DM workflow,
different methods are more applicable. This natural consequence yields serious difficulties
in communication and knowledge transfer between ML/DM phases. Below, we discuss
methods that allow the integration of specific knowledge into the ML/DM pipeline.

Simulations, equations, statistical relations similarity measures or symmetries are
mostly used in the first two phases of the DM/ML process. They usually do not use
any formal knowledge representation that is utilised by data mining algorithms, as they
are implemented within the pipeline or algorithm by data analysts and experts. In [117],
the authors present a differentiable physics engine that can be integrated as a module
into a deep neural network as a layer in its architecture to improve overall performance.
Similar exploitation of physics equations is presented in [118], where the authors embed
Gaussian process regression with stochastic equations that model the well-defined physics
of the power grid dynamics. In [120], the authors approach the problem from a different
perspective and embed domain knowledge that can be generated with simulations within
a surrogate neural network that produces the approximation of simulations, which can
later be used at further stages of the ML/DM pipeline.

In [121], the authors present a framework for ML/DM tasks configuration, which is
based on the profiling that is generated through interactions with users. The knowledge
representation and inference was not specified, while more emphasis was placed on the
aspect of knowledge mediation involving the user/data scientist. They extended their work
in [122] by showing how the profiles and user needs and expectations can be modelled and
used in the ML/DM pipeline, for example, in a form of constraints. The same knowledge
representation technique was presented in [123], where constraints were applied to the
output space of classification neural network architecture to minimize the need to label the
data, which might be costly. In [119], the authors approached a similar problem of using
machine learning models and statistical learning on datasets that are relatively small. They
demonstrate how embedding domain knowledge for the machine learning of complex
material systems can improve its performance in the case of small datasets.

A comprehensive review on usage knowledge graphs in Industry 4.0 was presented
in [136]. In [124,125], the authors present an approach for knowledge fusion in manufac-
turing operations with the use of knowledge graph embedding methods. Such knowledge
can later be used by an arbitrary ML model for further training and decision making. A
similar approach was presented in [126], where the system for predicting the geographic
centers of fuel cells is enhanced with knowledge gathered form heterogeneous sources
and unified in a form of RDF-based knowledge graph. The knowledge is used to generate
training data for machine learning models that implement predictive maintenance tasks.
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Human interactions are considered informal knowledge transfer methods that can be
used to infer new knowledge by an algorithm, or to translate them into more formalized
queries that can be processed by a machine. Such systems are usually built on top of
one of the aforementioned formalisms. A comprehensive review of methods that allow
the combination of virtual reality and augmented reality visualization techniques with
machine learning and knowledge graphs was provided in [137].

3.2.3. Decision Explanation Methods

An emerging field of science in recent years is eXplainable Artificial Intelligence (XAI).
As stated in Section 2.3, one of the most important roles of these methods is to reverse
the process of knowledge transfer. While the majority of the methods described in the
previous section focus on incorporating domain knowledge into the ML/DM tasks, the
goal of XAI methods is to translate the decision making process performed by an ML
algorithm in a way that can be understood by the data scientist or domain expert. This can
either be accomplished by augmenting and/or contextualizing the provided decision with
additional information, such as background knowledge or similar/historic applied cases, or
with domain knowledge providing an extended context, for example including declarative
knowledge [138]. Ultimately, this bridges the gap between knowledge discovery and data
mining to decision support, and its contextualization, ultimately enabling computational
sensemaking, for example, see [138].

In many cases, this requires the embedding of the raw decision with additional
semantics that will be aligned with the expectations of the addressee. In many task-specific
solutions, such explanations are delivered partially with the use of formalism for the
ML model, for example, knowledge graphs. In [127], the utilisation of the knowledge
graph was expanded. It not only serves as an input for the ML model, but can also be
extended by statistical learning methods, enriching knowledge about the domain or ML
decisions. Similar approaches for application in the Cyber–Physical system were also
provided in [128–130]. In [131,132], the authors provide a method that aims to bring more
semantics to clusters discovered by automated methods in an Industry 4.0 setting. Such
semantic information can then be represented, for example in the form of rules, and can be
used to extend the knowledge about the machinery states in the Cyber–Physical setting. In
addition, [139] presented a method for visualizing interesting parts of the decision space of
a model in order to make the respective modeling and ultimate decisions interpretable for
humans. Further directions include the application of interpretable methods for obtaining
explanatory patterns—for contextualization and explanation, for example, see [133–135].

3.3. Social Sensing

Social sensing [140–143] relates to observing human interactions and capturing the
respective individual and/or collective behaviors by way of sensors, which can, for exam-
ple, relate to both offline as well as online sensors, for example, [144–151] In the following,
we first outline the general area of social sensing, before discussing two specific subar-
eas: First, we consider semantic social sensing relating to the use of strongly formalized
knowledge structures for integrating semantic information, such as ontologies, into the
respective mining and analysis approaches; second, we discuss semantic social network anal-
ysis, focusing on the analysis methodology of social network analysis applied to rich social
sensing data. Here, we also revisit semantics given light-weight knowledge structures,
that is, collaborative tagging leading to folksonomies for integrating (semantic) informa-
tion. Table 3 summarizes the discussed semantic social sensing and social network-based
frameworks/platforms.
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Table 3. Semantic Social Sensing and Social Network-Based Frameworks/Platforms.

Ref. Sensing Framework Semantic Formalism Domain/Sensing

[91] Custom Ontology Smart City
[152,153] Custom Ontology Smart City

[154] Custom Ontology (SOSA, SSN) IoT/Heterogeneous Sensors
[155] Custom Ontology IoT/Heterogeneous Sensors

[156,157] None Ontology Social Networks
[150] Custom Folksonomy-Based Social Network/Human Sensors
[151] Custom Folksonomy-Based Social/Human Sensors/IoT

[144,158] Custom Folksonomy-Based Social/Human Sensors
[159] None Network-Based Social/Textual/User-Generated Content
[160] Custom Ontology Healthcare

3.3.1. Social Sensing in Ubiquitous and Social Environments

For social sensing in ubiquitous and social environments, a variety of heterogeneous
sensor data can be observed and analyzed, for example, considering specific sensors, social
media and the ubiquitous social web, and so forth, cf. [147,161–163]. This specifically
relates to observing human interactions, that is, social and physical activities [140,144,
145,148,151,164]. While [161,162], for example, describe social sensing on the ubiquitous
social web, [165] discusses social sensing in the context of social media and human face-
to-face interactions, using the OpenBeacon badges of the SocioPatterns consortium [144].
Other prominent sensors for social sensing in similar contexts include the Sociometric
badges [145] and successors such as the Rhythm badge [164]. Besides data mining on
social interaction networks [166], social sensing is also relevant for (computational) social
science and digital epidemiology [149,167], as well as for applications in human sensing in
industrial contexts, such as manufacturing [168].

Regarding the issues of data modeling, mining and analysis in social sensing, we
follow the presentation in [166] and focus on social interaction networks [169–172]. These
enable a wide range of modeling and analysis options, cf. [166,171,173], that is, user-
related social networks capturing social relations inherent in social interactions, social
activities and other social phenomena which either directly connect users or act as proxies
for social user relatedness. This then also includes interaction data from sensors and
mobile devices, as long as the data are created by real users. In this way, social sensing
transcends offline scenarios using hardware sensors (only) such as in mobile and ubiquitous
computing, and can be linked to virtual sensor data as well—that is, data captured in online
contexts. For social sensing in such broadly defined contexts, we can thus consider, for
example, users who connect their mobile phones via Bluetooth, interact similarly with
online applications such as Flickr, communicate in a similar way (or about similar topics)
on Twitter or Facebook, or explicitly establish “contacts” within certain social applications,
for example, [173,174]. Furthermore, we consider real-world contacts as determined by
other ubiquitous computing applications [175,176], the ubiquitous web [161,177,178], and
the principle of object-centric sociality [179], where objects of a specific actor—for example,
resources—mediate connections to other actors.

3.3.2. Semantic Social Sensing

Depending on the respective types of social sensing data, in particular when different
representations are integrated in a multi-modal strategy, different representations can be
derived. This is possible, for example, when including sequential/time series sensor data
together with unstructured information from web pages and structured information from
ontologies. For example, [180] proposes such an approach called semantic social sensing,
making use of ontologies and semantic augmentation together with textual analysis on user
generated information such as comments. Such data representations are necessary in order
to prepare the analysis, drive explanations, or guide exploratory approaches. Tabular (struc-
tured) data can usually be mapped and normalized in a straight-forward way, whereas
unstructured (e.g., text) and semi-structured data need further processing. Here, informa-
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tion first needs to be extracted or abstracted. In this respect, including background and/or
domain knowledge in such approaches becomes more and more important; to improve the
models, to drive explanations and, ultimately, to allow computational sensemaking.

Regarding formalized knowledge, providing this in the context of sensing with respect
to smart cities—ontological requirements and useful semantic information as an ontolog-
ical representation of urban data—has been discussed in [152,153]. Furthermore, [154]
presents the modeling of smart sensors on top of the SOSA/SSN ontologies [87,88] (as
already introduced above), also with the semantic smart sensor network (S3N) modular
ontology. In [181], the authors present semantic social sensing applications in the form of
a semantic sensing middleware for the Web of Things. In [155], the authors introduce an
ontology for hybrid semantic sensor networks (HSSN) which extends the Semantic Sensor
Network (SSN) ontology described above for, for example, more heterogeneous sensors
and platforms in order to enable extended analysis and mining. Furthermore, [156,157,182]
specifically discuss semantic social network analysis for modeling social interaction net-
works in order to create richer (semantic) models given the social sensing data, which
can also be used for detailed analysis. Basically, a network between humans, ontologies
and their interlinks is provided and analyzed, also taking semantic information on the
respective graph structure into account.

Applications of such approaches include the analysis of organizational social net-
works [159] or data mining for recommender systems, for example, see [183]. Specifically,
in [184], a data mining method for generating recommendations in the context of software
development is provided. Given social sensing data, as well as additional domain knowl-
edge and information extracted from CVS logs, the performance of the recommendations
could be significantly improved, combining both sources of information and knowledge.

Altogether, using semantic social sensing, for example, unusual social activities can be
detected using geo-tagged microblogs [185], or human activity and interesting patterns can
be analyzed using ubiquitous social data in social [186,187] or urban contexts [188,189].
Here, as mentioned in [142], it is particularly important to include rich information, such
as place and space semantics, about the respective social and spatial interactions. Semantic
signatures/labels can also be applied [189]; example applications include the health care
domain considering the detection/monitoring activities of daily living (ADL) [160,190–192].
Here, rule-based approaches are also relevant [193,194].

3.3.3. Semantic Social Network Analysis

Overall, the analysis of online social network data has received significant attention
for analyzing large and complex systems, such as large-scale social network systems or
the internet infrastructure, and so forth cf. [195–197]. While there has been foundational
work on social network analysis and mining on social sensing data, such as the analysis
of face-to-face contact networks, for example in [144], semantic data mining on those
networks is still a rather new field of research. When integrating semantic information into
social network analysis approaches, this leads to semantic social network analysis [198].

Regarding the semantic information to be included in data mining, we distinguish
different types, for example, formalized in ontologies, taxonomies, or folksonomies. Se-
mantic structures emerge from collaborative tagging, which can be used at the level of
the respective tagged objects, such as images or locations on a map. These structures
are called folksonsomies [199,200]. In the scope of social sensing, a folksonomy is also
called a sensonomy [201,202], for example, for urban sensing. Then, we can apply this on
the level of maps and data mining to the interactions, spatial structures and so forth. An
example is the analysis of social interaction networks integrating multi-modal sensing in-
formation, for example from the WideNoise and Airprobe systems, implemented using the
Ubicon system [151,203], for observing and analyzing social and physical activities. Here,
semantics are applied in the form of subjective information, in addition to folksonomies, as
collaborative tag vocabularies.
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4. Summary, Challenges and Future Directions

Today’s sensing technology often utilizes diverse hardware sensors that generate huge
volumes of heterogeneous data—Big Data. Therefore, the processing of these data is mostly
performed by the use of data mining methods and tools. However, proper interpretation
of these data often requires the inclusion of certain knowledge regarding the operational
context of data acquisition or requirements of a specific domain in which the sensory
system is used. The objective of this survey was to provide a concise overview of a range
of approaches that aim to extend the typical data mining process with the use of semantic
information, the introduction of knowledge and declarative representations. We refer to
these approaches using the general term semantic data mining. We also emphasized the role
of interpretability and explainability in data mining, which can be achieved with the use of
semantic data mining.

Furthermore, we discussed selected applications of data mining for ubiquitous sensing,
where—in our opinion—semantic interpretation of data can be particularly useful. We
selected three specific areas of interest for which we described a number of approaches
categorized based on the sensing framework used, semantic formalism, explainability and
domain. The first area is environmental sensing, for which we mentioned standardized
protocols and discussed their use for weather data and physiological sensing. The second
important area is industrial AI, for which we considered how different knowledge sources
can be formalized and applied for data mining. The third area is social sensing, including
semantic social sensing, and semantic social network analysis.

It is worth noting that the adoption of the semantic data mining approaches we
discussed may face different challenges, which we identified—from the surveyed papers,
as well as from our discussion. Thereby, we deduce the following challenges, which we
present in order to inspire future research in these areas:

1. The first challenge is related to the availability of domain knowledge, its form and
representation. Semantic data mining approaches differ with respect to the knowledge
representation used, for example, from simple annotations to formalized knowledge
models. This selection also has an impact on the possible cognitive load of human
experts participating in the knowledge acquisition process. Furthermore, in certain
domains, formalized knowledge is in fact present in the form of rules, constraints, struc-
tures and vocabularies. The introduction of such knowledge into the DM process—if
successful—can allow for the alignment of the results of the process with the do-
main requirements.

2. The second important challenge is the proper selection of the phase of the DM where
the knowledge is introduced. As we discussed, it is often the case that preliminary
stages of the process are very time consuming, so a proper understanding of the data
can be achieved. This is why the use of domain knowledge in this stage could be
beneficial, for example, as a part of the feature engineering activity. However, in
practice, such an approach—while possible—is often overlooked.

3. The third challenge is related to the provision of explainability methods. The use of
complex black-box machine learning models that offer superior accuracy can result
in certain risks in terms of their interpretability. The need to formulate explanations
instrumental for understanding the results of the DM process and for putting it
in the context of specific domains, is an important requirement. As such, the use
of semantic data mining methods can be of particular interest and value for inter-
pretability and explainability, as we have also discussed throughout the methods and
application sections.

To summarize, we expect in the near future a growing interest in semantic data mining
approaches, especially in ubiquitous sensing. Specific future directions of the introduction
of semantic methods in data mining could include, for example: semantic interoperability
in sensing for limiting data pre-processing; semi-automated methods for data annotation
in the early phases of the data mining process; domain knowledge modelling during
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data acquisition (possibly as part of the feature engineering); emphasis on explanations
regarding both the data and the output of the data mining process, and so forth.

In addition, since both symbolic and sub-symbolic data mining and machine learning
methods can be applied in the context of ubiquitous sensing, domain knowledge—enabling
semantic data mining—can be added as a third dimension in order to allow for a fruitful
combination of those different methods, and also potentially to serve as a strong promoter
of their combination and application in sensing scenarios. With the above mentioned
observations in mind, we envisage the increasing adoption of semantic data mining in
research as well as in the wide range of fields of application.
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