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ABSTRACT

Thousands of non-coding SNPs have been linked
to human diseases in the past. The identification of
causal alleles within this pool of disease-associated
non-coding SNPs is largely impossible due to the
inability to accurately quantify the impact of non-
coding variation. To overcome this challenge, we de-
veloped a computational model that uses ChIP-seq
intensity variation in response to non-coding allelic
change as a proxy to the quantification of the bi-
ological role of non-coding SNPs. We applied this
model to HepG2 enhancers and detected 4796 en-
hancer SNPs capable of disrupting enhancer activ-
ity upon allelic change. These SNPs are significantly
over-represented in the binding sites of HNF4 and
FOXA families of liver transcription factors and liver
eQTLs. In addition, these SNPs are strongly associ-
ated with liver GWAS traits, including type I diabetes,
and are linked to the abnormal levels of HDL and LDL
cholesterol. Our model is directly applicable to any
enhancer set for mapping causal regulatory SNPs.

INTRODUCTION

Common phenotypically associated single nucleotide poly-
morphisms (SNPs) map predominantly to the non-coding
DNA regions of the human genome (1–5). More than 90%
of SNPs collected in the National Human Genome Re-
search Institute (NHGRI) Genome-wide Association Study
(GWAS) catalog (6) are located within non-coding re-
gions (7), the majority of which lacks haplotype protein-
coding variants (8), suggesting that the vast majority of
SNPs disrupt gene regulation rather than alter the protein-
coding sequence or protein structure. Many risk-associated
non-coding SNPs (ncSNPs) have been found to affect
the activity of regulatory elements. For example, it has
been reported that rs2670660––a SNP residing in an inter-
genic DNA region (∼30 kb from NLRP1 gene)––is tran-
scribed into a non-coding RNA and exerts regulatory ef-
fect on monocyte/macrophage transdifferentiation (9,10).

The SNPs rs10811656 and rs10757278, located in distal
enhancers, were observed to disrupt chromatin conforma-
tion and STAT1 binding, inhibit expression of neighbor-
ing genes and promote the risk of coronary artery dis-
ease (11). In another example, enhancer SNP rs6983267
has been strongly associated with colorectal cancer (12,13).
Mutations at this SNP position impair binding of TCF7L2
and alter the transcription of MYC proto-oncogene in col-
orectal cancer cells (14,15). In addition, the common SNP
rs4590952, located in a p53 binding site, has been reported
to alter p53 binding activity and significantly influence hu-
man cancer risk (16). Although the evidence of individ-
ual risk-associated ncSNPs is rapidly emerging, a large (or
genome-wide) scale identification of such ncSNPs and the
understanding of the mechanisms of regulatory disruption
have remained challenging because of the lack of func-
tional annotation of non-coding DNA regions. So far, ef-
forts to prioritize ncSNPs have extensively relied on evolu-
tionary conservation (17,18). With the advance of sequenc-
ing techniques, multiple functional genomics lines of evi-
dence became available for more accurate ncSNP classifi-
cation (19). In RegulomeDB (20) and HaploReg (21), for
example, ChIP-seq profiling of histone modifications and
transcription factors (TFs), together with the presence of
characterized binding motifs, is used to predict functional
ncSNPs. Trynka et al. developed a computational model
exploring H3K4me3 ChIP-seq across cells/tissues to iden-
tify potential casual variants (22). ChIP-seq profiling of
FOXA1 and ESR1 in breast cancer cells successfully iden-
tified risk-associated SNPs and revealed that these SNPs
drive allele-specific gene expression through changing the
binding affinity of FOXA1 (23). More recently, Kircher
et al. integrated ChIP-seq data of TFs and histone modi-
fication with other genomic features (such as conservation,
genomic position, the distribution of CpG sites) into a C-
score measuring the deleteriousness of all possible sequence
mutations (24).

Here we propose a computational approach for priori-
tization of SNPs residing in enhancers (dubbed enhSNPs)
and prediction of enhSNPs with deleterious properties
(Supplementary Figure S1; see the Materials and Methods
section). After assembling a set of sequence motifs charac-
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teristic to a group of enhancers, we identified enhSNP vari-
ants that transform an underlying characteristic motif into a
motif uncharacteristic of that enhancer group (dubbed dele-
terious enhancer SNPs or deSNPs for brevity). We specu-
lated that deSNPs are more likely to increase disease risk
or cause a phenotypic change than other enhSNPs, and
this speculation is supported by our analysis of genes flank-
ing deSNPs, expression quantitative trait loci (eQTLs) and
GWAS experimental reports. We also observed that deSNPs
have a substantial impact on the binding affinity of TFs but
only a modest impact on the distribution of histone modi-
fications, suggesting a mechanism by which deSNPs cause
phenotypic changes.

MATERIALS AND METHODS

Identification of deSNPs

We downloaded 45 107 DNA sequences marked as strong
enhancers by ChromHMM in HepG2 cells (25). These se-
quences constituted our input set of HepG2 enhancers. To
analyze sequence signatures of these enhancers, we first
generated a control set of sequences through matching the
length, GC content and repeat content of enhancer se-
quences by randomly sampling the sequence of the human
genome.

To capture sequence features of given enhancers, we used
k-mer sequences, i.e. all DNA fragments of k-bps long. We
counted all k-mers in enhancers and controls and ran a se-
ries of Fisher’s exact tests to identify k-mers significantly
enriched in HepG2 enhancers (P < 1.0 × 10−5 after Bon-
ferroni multiple testing correction), and then dubbed these
as signal k-mers. The remaining k-mers were named neutral.
Next, to account for degeneration and displacement of TFs
recognizing their binding sites, we adopted the method of
intragenomic replicates (23). Given an SNP and one of its
allele, we looked into all DNA k-mers carrying the tested
SNPs and sorted out the one(s) that has the highest en-
hancer enrichment. We marked deSNPs as the SNPs in
which all one allele correspond to at least one signal k-mer
while other alleles corresponds to neutral k-mers.

To determine the optimal length of k-mers, we investi-
gated the informative regions of known TF binding mo-
tifs from TRANSFAC and JASPAR (Supplementary ma-
terials), and observed that 80% of these motifs have infor-
mative regions of 8 bps or shorter (Supplementary Figure
S2). Previously, 8-mers have been successfully used to ex-
ploit ChIP-seq data to characterize the binding sequence
of FOXA1 in breast cancer (23). Six-mers were used to
build support vector machine (SVM) models to predict en-
hancers in melanocytes (26). To provide a good trade-off
between computational complexity and the sequence speci-
ficity, we evaluated the selection of 6-mers, 8-mers and 10-
mers and observed that HepG2 deSNP identified using 8-
mers are the most enriched in proximity of liver-specific
genes (i.e. genes highly expressed in the liver as compared
with other tissues; Supplementary Figure S3). As such, we
used 8-mers for modeling TF binding sites, and identified
a total of 549 8-mers significantly enriched in HepG2 en-
hancers (P < 1.0 × 10−5 after Bonferroni multiple testing
correction).

Discovering de novo motifs by clustering signal k-mers

To discover de novo binding motifs, we clustered the 549 sig-
nal 8-mers. Based on the presence/absence of all possible
4-mers along these 8-mers, we clustered all 8-mers using ag-
glomerative hierarchical algorithm, which starts by assign-
ing each 8-mer to an individual cluster and continues by
merging two closest clusters until a convergence criterion is
reached (Supplementary Figure S4). The distance between
two clusters was computed as the average of all inter-cluster
8-mer distances (an inter-cluster distance is the distance be-
tween an 8-mer from one cluster and an 8-mer from the
other cluster). The clustering process was stopped when the
minimal distance between two clusters was greater than 0.6.
As a result, we clustered the 549 8-mers into 13 clusters, con-
sisting of 7 to 124 8-mers each.

Next, we aligned the 8-mers within a cluster using the
dominant 4-mers, i.e. the 4-mers that occur most frequently
in all 8-mer instances of the tested cluster. For each clus-
ter of 8-mers, we started by identifying the 4-mer with the
largest occurrence among the 8-mers as a dominant 4-mer.
After that, we only examined the 8-mers not harboring the
dominant 4-mer(s) and identified the 4-mer occurring most
frequently among these 8-mers. This step was repeated until
all given 8-mers harbored at least one dominant 4-mer. Us-
ing the dominant 4-mers as an anchor, we aligned all given
8-mers together and then derived a position weight ma-
trix (PWM) for the studied 8-mer cluster (Supplementary
Figure S5). For each derived PWM, we ran STAMP (27)
with default setting to identify the best-matching known TF
binding motifs in JASPAR and TRANSFAC (Supplemen-
tary Figure S5).

Identification of heterozygous HepG2 enhSNPs

We used ChIP-seq data of histone marks, TFs, P300 and
HDAC2 to identify heterozygous SNPs in HepG2 cells. We
downloaded ENCODE HepG2 ChIP-seq data from three
directories of ENCODE project (Supplementary Table S1),

(i) http://hgdownload.cse.ucsc.edu/goldenPath/hg19/
encodeDCC/wgEncodeBroadHistone/;

(ii) http://hgdownload.cse.ucsc.edu/goldenPath/hg19/
encodeDCC/wgEncodeHaibTfbs/;

(iii) http://hgdownload.cse.ucsc.edu/goldenPath/hg19/
encodeDCC/wgEncodeSydhTfbs/.

Consistently high polymerase chain reaction bottleneck
coefficient values across different ChIP-seq datasets (0.90 ±
0.12) have been observed, indicating high quality of reads
and sufficient sequencing library complexity in all utilized
ChIP-seq data sets. We only used the uniquely mapped
reads and focused on the enhSNPs having the coverage of
more than 20 reads, and analyzed whether the presence of
two alleles at a SNP position is significantly different from
a random expectation using the binomial distribution:

Pref = binomial.test (nref , nref + nalt, rref ) , (1)

where nref and nalt are the counts of reference and alter-
native alleles in ChIP-seq reads, respectively. rref is the ex-
pected ratio of the reference allele in ChIP-seq reads. At a

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibTfbs/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhTfbs/
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heterozygous site, rref is expected to be 0.5. However, map-
ping ChIP-seq reads to the reference genome leads to a
bias toward the reads carrying reference allele. To correct
for this bias, we estimated rref using ENCODE ChIP-seq
reads at the HepG2 heterozygous sites reported in a pre-
vious study (28) where 1 000 000 SNPs were genotyped in
HepG2, of which 222 828 sites were detected as heterozy-
gous in HepG2. Among the studied enhSNPs, 9855 sites
coincide with these genotyped SNPs, of which 2097 sites
were previously reported as heterozygous and others were
marked as homozygous (28). We used these genotyped sites
as a golden standard reference (GSR). We binned enhSNPs
into different categories according to their nucleotide com-
binations of reference and alternative alleles. In each cat-
egory, we averaged the reference allele ratios at the GSR
heterozygous sites within this category, and used it as the
expected reference ratio rref . When less than 500 GSR het-
erozygous sites were available, we used the global estimate,
i.e. the averaged reference allele ratios of all GSR heterozy-
gous sites, as rref . Also, our prediction strategy featured
high accuracy on GRS (the area under the receiver oper-
ating characteristic curve AUC = 0.96, Supplementary Fig-
ure S6), further supporting the reliability of our predictions.
We chose a cutoff of Pref > 0.0001 to detect heterozygous
enhSNPs since this setting leads to an optimal balance be-
tween the false positive and true positive rates of prediction,
i.e. 10% of false positive rate and 95% of true positive rate
(Supplementary Figure S6). To the end, we identified 9828
heterozygous enhSNPs, among which 942 were deSNPs.

Allele preference of TFs and histone marks

Using ChIP-seq data targeting a regulatory factor, we fo-
cused on the identified heterozygous sites and used a bi-
nomial test to evaluate the reference allele preference (i.e.
Pref ) of the tested regulatory factor at these sites (as illus-
trated in Equation (1)). The cutoff Pref < 0.001 was used to
detect significant allele preference (SAP) sites. We applied
this procedure on ENCODE ChIP-seq data of TFs and hi-
stone markers obtained in HepG2. For regulatory factors
with multiple ChIP-seq data sets, we combined all reads to-
gether to obtain the possible largest read set. In summary,
we obtained ChIP-seq read data for 51 data sets, includ-
ing 12 chromatin marks and 37 TFs/P300/HDAC2 (Sup-
plementary Table S1).

Nucleotide divergence

For each SNP, we recorded its ancestor allele from the chim-
panzee genome and its major human allele. For each set of
SNPs, the nucleotide divergence was measured as the frac-
tion of SNPs where the ancestor allele disagrees with the
major allele among all human–chimpanzee alignable SNPs.
Also, to account for the variable selective constraint across
the sequence of human genome, we compared deSNPs with
their neighboring enhSNPs. For each deSNP, we collected
the most proximal 10 enhSNPs, five downstream and five
upstream from the tested deSNPs within the distance up to
1 Mbp.

Neutral reference

To establish a neutral reference, we used pseudogenes, dys-
functional gene homologs (29). Pseudogenes were down-
loaded from the Peseudogene.org database (30).

Mapping TF binding motifs in DNA sequences

We collected 754 vertebrate TF binding motifs from
TRANSFAC (version 2010.3) and JASPAR (31,32)
databases and used FIMO (33) with the default settings to
map these TF binding motifs along the DNA sequences
harboring SNPs.

ChIP-seq TF binding site analysis

The binding sites we used were predicted using ChIP-
seq experiments in HepG2 cells. We downloaded nar-
row peaks generated by the ENCODE Analysis Working
Group (AWG) using a uniform processing pipeline (34).
In total, we downloaded 77 ChIP-seq data sets for 59
TFs/P300/HDAC2 (Supplementary Table S2). To provide
the reliable enrichment estimations, we filtered out the TFs
of with ChIP-seq peaks harboring less than 5% of enhSNPs.
In total, we retained 22 TFs, including HNF4A, P300 and
FOXA1, for the further analysis.

Functional analysis of SNPs based on associated genes

SNPs were associated with genes according to the rule of
proximity. That is, an intronic SNP was linked to the host
gene, and an intergenic SNP was linked to the most prox-
imal gene. We used a binomial test to address the variable
number of the SNPs linked to genes. Given a set of SNPs, we
counted these SNPs associated with a given gene category
and evaluated the significance of the association between
these SNPs and the tested gene category by using

Palt = binomial.test (|S∩G | , |S| , f ) , (2)

where S and G are a SNP set and gene category. |S| repre-
sents the number of SNPs in S, while |S∩G | is the number of
SNPs in S that are linked to at least one gene in G. f is the
fraction of all SNPs that are associated with a gene in G.

We also associated SNPs with genes according to liver
eQTLs consisting of 3834 SNP-gene links (35). We used
linkage disequilibrium (LD) to expand the liver eQTL SNP
set. For a liver eQTL SNP, we identified all SNPs in its tight
LD (r2 > 0.8 based on 1000 Genomes Project), and linked
these SNPs to the genes associated with the lead SNP (i.e.
the tested liver eQTL SNP). After linking genes to eQTL
SNPs, we used a binomial test (Equation (2)) to assess the
eQTL-based correlation between a SNP set and a gene cate-
gory. In this case, |S| represents the number of eQTL SNPs
in S and |S∩G | is the number of eQTL SNPs in S that are
linked to G, and f is the fraction of all eQTL SNPs that are
linked to G.

Functional analysis of SNPs based on GWAS SNP

We downloaded the NHGRI GWAS Catalog in February
2014 (6). From this catalog, we identified 541 traits as-
sociated with at least five SNPs each. Next, we extended
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Figure 1. Nucleotide divergence of enhSNPs. Nucleotide divergence is the
fraction of enhSNPs where the ancestor alleles disagree with the major al-
leles among all alignable enhSNPs. The finding that enhSNPs neighboring
deSNPs are more conserved than other enhSNPs may be explained by the
observation that enhSNPs neighboring deSNPs tend to reside at cytosine
nucleotide in CpG sites (Supplementary Figure S8) and that the substitu-
tion rate of C to T in CpG has been reported to be significantly higher than
other nucleotide substitutions along human genome. Neutral reference are
the common SNPs that are located pseudogenes. The values between bars
are the significance P values of binomial tests.

GWAS SNP sets by identifying all SNPs in a tight LD with
a GWAS SNP (r2 > 0.8 based on at one population of 1000
Genomes Project CEU, YRI and CHBJPN) and associated
these SNPs with the corresponding traits.

Given a set of SNPs and a GWAS trait, we counted the
number of SNPs coinciding with a tested trait. To evalu-
ate the significance of this association, we established a null
distribution by randomly generating 1000 independent SNP
sets, each being in the same size as the tested SNP set. For
each randomly generated SNP set, we counted the number
of SNPs associated with the studied trait and used the Pois-
son distribution to compute significance P-value of the ob-
served association.

Enhancers in different cells

We applied our model to other cell lines, including H1-
hESC, GM12878, K562, HUVEC, HSMM, NHEK, HeLa-
S3 and NHLF (Supplementary Table S3). In all these cell
lines except HeLa-S3, the active enhancers have been pre-
dicted using ChromHMM (25). In HeLa-S3, we marked
H3K27ac ChIP-seq peaks as enhancers. To evaluate the pre-
diction of deSNPs, we also downloaded RNA-seq data pub-
lished by ENCODE project, and compared cell specificity
of deSNPs and enhSNPs using Equation (2).

RESULTS

DeSNPs in HepG2 cells

We started our analysis with the human HepG2 cell line de-
rived from the hepatocellular carcinoma liver tissue. First,
we collected all 45 107 DNA sequences marked as strong en-
hancers by ChromHMM (25)––a computational approach
that segments human genome based on the distributions of
ChIP-seq histone modification marks––in HepG2 (named
HepG2 enhancers for brevity). We analyzed the abundance
of all possible 8-mers (8-bp DNA sequences) in HepG2

enhancers and identified 549 8-mers significantly over-
represented in these sequences compared to randomly gen-
erated controls with matching GC-content, repeat density
and length (Fisher’s exact test P < 1.0 × 10−5 after account-
ing for multiple testing) and 31 862 8-mers with insignificant
enrichment (P > 0.01), which were named signal and neu-
tral k-mers, respectively.

Our framework used these two categories of 8-mers to
identify SNPs that disrupt one of the signal k-mers and
transform it into a neutral 8-mer (deSNPs; see the Materials
and Methods section). Using common SNPs from the 1000
Genomes Project we extracted 78 183 HepG2 enhSNPs. Out
of these enhSNPs, 4797 were identified as deSNPs (Sup-
plementary Table S4). Among the identified deSNPs, 1408
deSNPs (30%) feature at least one other deSNP located in
the same enhancer, which is significantly higher than ex-
pected (student t-test P = 5.0 × 10−9; Supplementary Fig-
ure S7). This finding is in line with the ‘multiple enhancer
variant’ hypothesis, which postulates that multiple vari-
ants located within the same locus cooperatively affect gene
expression associated with a common trait/disease (36).
By measuring human–chimpanzee nucleotide divergence at
enhSNP sites, we observed that enhSNP and deSNP sites
show lower nucleotide divergence than the neutral reference
(composed of SNPs residing within pseudogenes, binomial
test P < 0.002, see the Materials and Methods section; Fig-
ure 1). Also, considering the fact that the human genome
evolves under non-uniform selective pressure (37), we de-
signed a localization strategy to compare deSNPs with their
neighboring enhSNPs (see the Materials and Methods sec-
tion), which demonstrated that deSNP sites exhibit signifi-
cantly lower nucleotide divergence than their local enhSNP
counterparts (P = 0.003; Figure 1 and Supplementary Fig-
ure S8).

De novo motifs of top 8-mers represent binding sites of liver
TFs

Although evolutionary constraint has been widely used to
prioritize candidate variants, its statistical power was re-
ported to be marginal at the single-nucleotide level (17,37).
We therefore decided to investigate directly if the strong evo-
lutionary conservation of deSNPs is indicative of their co-
localization with active TF binding sites.

First, we noticed that the top five ranking 8-mers corre-
spond to the core region (i.e. the region with the highest
information content) of the binding motifs of well-known
liver TFs HNF4A and FOXO1 [Figure 2a; (38–40)].

Next, to comprehensively investigate all identified 549
signal 8-mers, we clustered these 8-mers based on their se-
quence similarity. For this purpose, each 8-mer was repre-
sented as a collection of all possible 4-mers, and a hierarchi-
cal agglomerative algorithm has been applied to bin these 8-
mers into 13 clusters, consisting of 7 to 124 8-mer instances
each (Supplementary Figures S4 and S5; see the Materials
and Methods section). Position weight matrices (PWMs)
were then derived to model sequence specificity of each clus-
ter. These PWMs were then aligned with TB binding motif
PWMs from the JASPAR and TRANSFAC databases (41)
to identify the best matching TF PWM using STAMP (27)
(see the Materials and Methods section). We first observed
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Figure 2. The identified signal 8-mers. (a) Top five 8-mers with the strongest enrichment in enhancer sequences and their best matching TF binding motifs
reported in TRANSFAC and JASPAR data sets. The aligned positions are underlined in purple. Enrichment is the over-representation of an 8-mer in
enhancer sequences as compared to background, measured as –log10(Fisher’s test P value). (b) Selected three signal 8-mer clusters. For each de novo motif,
the best-matching known motif was detected using STAMP with the default setting. The values next to motif names are STAMP E-values. A small STAMP
E-value indicates a significant similarity between tested motifs. (c) Distribution of E-values between de novo motifs and their best-matching known motifs.
The label by a node presents the TF corresponding to the known motif, and the number of 8-mers in the cluster (which is also indicated by the size of the
node). The red nodes mark known liver-specific TFs, while blue nodes indicate generic TFs active in the liver.

that the binding motifs of FOXA1 and HNF4A were al-
most identical to two PWMs retrieved by our clustering ap-
proach (STAMP E-value <1.0 × 10−9; Figure 2b and Sup-
plementary Figure S4). A motif of another cluster matched
one arm of the 19-bps palindromic binding sequence of
ESR1 (Figure 2b and Supplementary Figure S4), suggest-
ing that the identified 8-mers are capable of characteriz-
ing long palindromic TF binding motifs. In addition, the
binding motifs of AP2, NFE2 and SP2 matched three other
clusters sufficiently well (STAMP E-value <5 × 10−5; Sup-
plementary Figure S5). Overall, 41% (222/549) of signal 8-
mers were in the clusters highly correlated with known liver
TF motifs (STAMP E-value < 1 × 10−7; Figure 2c and Sup-
plementary Figure S9––see the Materials and Methods sec-
tion), indicating that the identified signal 8-mers largely cor-
respond to liver TF binding sites in HepG2 enhancers.

We further observed that deSNPs are significantly more
over-represented in liver TF binding motifs than enhSNPs
(Table 1 and Supplementary Table S5). For example, the
binding motifs of nuclear receptors HNF4, PRARA and
NUR77 (42–44) are enriched in deSNPs (binomial test P <
1 × 10−16).

While our analysis of signal 8-mer sequence specifici-
ties suggested that mutations at deSNPs will likely result
in disruption of liver TF binding, we were interested in
validating the association of deSNPs with liver TF bind-
ing sites directly. For that purpose, we used 59 available
HepG2 ChIP-seq data sets (see the Materials and Methods
section). Compared to enhSNPs, deSNPs were significantly
over-represented in ChIP-seq peaks of 10 TFs (P < 1 ×
10−5; Table 2 and Supplementary Table S6). Among these
TFs are well-known liver TFs HNF4A, HNF4G, FOXA1
and RXRA, as well as the ubiquitous transcriptional co-
activator P300. Also, as compared to enhSNPs, deSNPs
were more enriched within ChIP-seq peaks for the epigentic
regulator HDAC2 that has been reported to play a critical
role in the development of liver cancer (45). The significant
over-representation of deSNPs in ChIP-seq peaks of liver
TFs, coupled with the motif analysis described above, indi-
cates that deSNP mutations are likely located in the binding
sites of liver TFs, providing significant chance that deSNP
mutations change the binding affinity of liver TFs, and thus
disrupted liver TF binding.
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Figure 3. Function analysis of enhSNP based on their associated genes. (a) Enrichment of enhSNPs in proximity of tissue-specific genes across 79
tissues/cells. See Supplementary Table S7 for details. (b) Enrichment of enhSNPs in proximity of liver-specific genes identified using different criteria.
Genes are ranked in a descending order of their expression levels in the liver with respect to other tissues. Top 2%, 5% and 10% of genes in this list were
used as liver-specific genes in separate evaluations. The values between bars are binomial test significance P values. (c) Enrichment of SNPs for eQTLs in
the liver and the brain. See Supplementary Table S8 for detailed results.

DeSNPs are located close to liver-specific genes and enriched
in liver eQTLs

To evaluate the biological function of deSNP mutations,
we turned to the genes associated with these SNPs. We
adopted the rule of genomic proximity and linked intronic
SNPs to their host genes and intergenic SNPs to the most
proximal gene (46). We started with the top 10% of genes
highly expressed in each of the 79 human tissues/cell lines
(47) and noticed that both enhSNPs and deSNPs demon-
strate the highest enrichment in the neighborhood of liver-
specific genes (enrichment-fold > 2.5, binomial test P <
1 × 10−116; Figure 3a and Supplementary Table S7). In ad-
dition, deSNPs are more enriched in the proximity of liver-
specific genes than enhSNPs (enrichment fold = 1.12, hy-
pergeometric test P = 3.8 × 10−4; Figure 3a and Supple-
mentary Table S7). This trend is further escalated with the
increasing stringency of selecting liver-specific genes (Fig-
ure 3b). As compared to enhSNPs, deSNPs are 1.2 times
more frequent in the proximity of the top 5% genes highly

expressed in the liver (P = 1.5 × 10−5), and 1.3 times more
frequent in the proximity of the top 2% liver genes (P =
2.3 × 10−3). While liver enhSNPs are expected to be lo-
cated close to liver genes, our results suggest that HepG2
enhancers harboring deSNPs are more likely to be involved
in liver regulation than the set of HepG2 enhancers overall.

Since the genomic proximity is not always a reliable in-
dicator of enhancer–gene relationships (48–50), we also
studied eQTLs, in which the changes in gene expression
are directly associated with genetic variants. Genome-wide
eQTL data sets are available for several tissues, including
liver and brain (35,51), from the Genotype-Tissue Expres-
sion database (52). Relative to all SNPs, both deSNPs and
enhSNPs are significantly enriched in liver eQTLs (enrich-
ment fold > 2.1 and hypergeometric test P < 5 × 10−3; Fig-
ure 3c and Supplementary Table S8) while deSNPs show
stronger liver eQTL association than enhSNPs (enrichment
= 1.5, P = 0.1). By contrast, the identified deSNPs are
significantly depleted of brain eQTLs (P = 0.003), while
enhSNPs show slight depletion of brain eQTL, as compared
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Figure 4. eQTL-based functional analysis of enhSNPs. (a) Ratio between deSNP enrichment and enhSNP enrichment across GO biological processes. (b)
Enrichment fold of deSNPs and enhSNP as compared to expected values. Solid dots suggest a significant enrichment (P < 0.05). See Supplementary Table
S9 for detailed results.

Table 1. Enrichment of the genome sequences harboring enhSNPs for the known binding motifs collected in TRANSFAC and JASPAR

Enrichment Fraction of SNPs located in motif (%)

Rank TF motif deSNP P deNP enhSNP

1 FOXP3 01 3.23 <1E-16 8.28 2.56
2 FOXO1 Q5 2.49 <1E-16 7.4 2.97
3 HNF4 Q6 03 2.49 <1E-16 3.67 1.47
4 HNF4 Q6 2.38 <1E-16 4.88 2.05
5 AP2ALPHA 01 2.29 <1E-16 5.82 2.54
6 Zfx-MA0146.2 2.24 <1E-16 6.57 2.93
7 PPARA Q6 2.22 <1E-16 5.98 2.7
8 NUR77 Q5 2.19 <1E-16 6.71 3.06
9 AP2 Q6 01 2.16 <1E-16 9.94 4.6
10 AREB6 04 2.16 3.33E−16 2.84 1.32
11 HNF3A 01 2.08 <1E-16 5.32 2.55
12 LEF1 Q2 01 2.07 <1E-16 4.09 1.98
13 HNF4 Q6 01 2.04 <1E-16 9.13 4.49
14 PPARG Q6 2 <1E-16 4.19 2.1
15 SP1 Q4 01 1.97 <1E-16 6.96 3.53
16 E2F1 Q6 01 1.97 1.97E−13 2.86 1.45
17 SOX 01 1.94 <1E-16 4.23 2.18
18 HNF3 Q6 1.9 <1E-16 6.46 3.4
19 Rrxa-MA0512.1 1.87 2.46E−12 2.98 1.59
20 TFAP2C-MA0524.1 1.85 <1E-16 5.17 2.8
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Table 2. Enrichment of SNPs in ChIP-seq peaks of TFs/P300/HDAC2

Enrichment Fraction of SNPs located in ChIP-seq peak (%)

Rank TF deSNP P deSNP enhSNP

1 HNF4A 1.3 6.72E−11 12.31 9.49
2 HDAC2 1.29 9.48E−11 12.62 9.79
3 RXRA 1.25 1.63E−07 10.45 8.35
4 HNF4G 1.25 1.19E−07 10.74 8.59
5 MXI1 1.24 3.86E−06 8.97 7.25
6 RAD21 1.23 9.36E−05 6.57 5.33
7 FOSL2 1.23 9.45E−06 8.59 6.98
8 SP1 1.23 4.52E−09 15.21 12.40
9 SIN3 1.2 4.53E−04 6.61 5.50
10 TBP 1.2 9.48E−04 5.84 4.86
11 CEBPB 1.2 1.52E−04 7.82 6.51
12 POL2 1.2 9.85E−09 17.42 14.50
13 BHLHE40 1.16 7.24E−03 5.19 4.46
14 FOXA2 1.15 1.35E−04 12.37 10.72
15 FOXA1 1.15 9.85E−06 16.5 14.31
16 P300 1.15 9.56E−06 17.58 15.33
17 NFIC 1.14 1.80E−04 14.43 12.70
18 TEAD4 1.13 2.47E−03 10.85 9.64
19 MBD4 1.12 1.65E−02 6.45 5.73
20 JUND 1.12 3.07E−03 10.81 9.63
21 ARID3 1.09 2.88E−02 9.32 8.56
22 MYBL2 1.09 6.33E−03 15.81 14.54
23 DnaseI 1.26 3.22E−15 20.5 16.23

to expected. All of these indicate a potential role deSNPs
play in changing of liver-specific gene expression pattern.

Next, we used liver eQTL–gene associations to estimate
the function of studied enhSNPs (see the Materials and
Methods section) and observed that several liver-related
Gene Ontology (GO) categories (53) display significantly
higher eQTL-based association with deSNPs than with ei-
ther all SNP or enhSNPs (Figure 4 and Supplementary Ta-
ble S9). These GO categories include fatty acid catabolism,
ADP-ribosylation factor (ARF), GTPase activity (54) and
amino acid biosynthetic process (enrichment fold > 3 and
binomial test P < 3.2 × 10−4 as compared to all SNPs; en-
richment fold > 2.4 and hypergeometric test P < 2 × 10−2

as compared to enhSNPs; Figure 4 and Supplementary Ta-
ble S9). Also, stronger association with liver development
was observed when comparing deSNPs to all SNPs (en-
richment fold = 11.0 and P = 3.7 × 10−5) and compar-
ing deSNPs to enhSNPs (enrichment fold = 1.7 and P =
7 × 10−2).

Taken together, our results show that deSNP mutations
likely cause the change in liver-specific gene expression and
are subsequently altering liver-related biological processes.

DeSNPs are a contributing factor to liver-related GWAS
traits

We used the NHGRI GWAS Catalog (6) to assess if HepG2
deSNPs are associated with liver disorders and traits. Given
a set of SNPs, we calculated the fraction of these SNPs
annotated to a GWAS trait and compared this fraction
to a random expectation (see the Materials and Meth-
ods section). As compared to all SNPs, deSNPs are sig-
nificantly over-represented in GWAS traits related to liver
metabolism, HDL cholesterol level, fasting glucose level,
type 1 diabetes and several other liver traits (Figure 5a

and Supplementary Table S10). Moreover, as compared to
enhSNPs, deSNPs are significantly overrepresented in a to-
tal of 7 GWAS traits (hypergeometric test P ≤ 0.05), in-
cluding four liver traits (fasting glucose level, serum albu-
min level, HDL and liver enzyme level) and myocardial in-
farction, which is known to be strongly associated with liver
metabolism and cholesterol production (55). Also, liver or
liver-related GWAS traits exhibited significantly higher en-
richment ratios of deSNPs versus enhSNPs than other traits
(P = 5 × 10−6; Supplementary Figure S10).

As an example, one of deSNPs, rs17744121, overlaps
ChIP-seq peaks of HNF4A and FOXA1 (Figure 5b) and re-
sides upstream of NT5E, a gene over-expressed in HepG2
cells, which is under-expressed in liver disease (56). NT5E
harbors no intronic enhSNPs, indicative of the intergenic
nature of its regulatory variants. As such, we suspected
that the genetic variation at rs17744121 might be causal of
the expressional change of NT5E. This speculation is fur-
ther supported by rs17744121 being in a strong LD with
rs4954562, an SNP associated with a metabolic GWAS
trait. Also, the deSNP rs6726639, located within the binding
site of HNFa in HepG2, is in close LD with rs4374383 that
has been associated with hepatitis C-induced liver fibrosis
by a GWAS study (57). Our results indicate that rs6726639,
rather than rs4374383, is likely to be the causal SNP in
this locus. In seeking additional evidence for the role of
rs6726639 in gene regulation in the liver, we found a pre-
vious study that directly linked this SNP to fasting insulin-
related disorder, further supporting our deSNP prediction
(58).

In addition, rs3756066, one of the identified deSNPs,
is located within an LD block with liver eQTL SNP
rs10020432 (r 2 = 0.84) that has been significantly associ-
ated with the transcription regulation of AFP in a liver
eQTL study (35) (Supplementary Figure S11). AFP is a
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Figure 5. Function analysis of enhSNP based on NHGRI GWAS Catalog. (a) Enrichment of deSNPs and enhSNPs for GWAS SNPs as compared with
random expectation. A white cell indicates an insignificant enrichment (P > 10−5). Full results are presented in Supplementary Table S10. Enrichment
ratio is the ratio of enrichment fold of deSNPs versus enhSNPs. (b) rs17744121 is demonstrated as an example of deSNPs. The DNA sequences carrying
this SNP are presented with its alleles. The color sequences harbor a signal 8-mer as underlined in purple, while the gray sequences harbor neutral 8-mers.
Additional examples are presented in Supplementary Figure S11.

gene highly expressed in adult and fetal liver (59), and is a
well-known marker of liver cancer (60). Additional deSNP
example (rs1109166) is provided in Supplementary Figure
S11. These GWAS-based analyses and examples further
suggest a strong association between deSNPs and liver-
related diseases and phenotypes.

Allele-specific TF binding associated with deSNPs

We used allele-specific distribution of ChIP-seq reads to
identify heterozygous enhSNP nucleotides in HepG2 cells.
We collected all TF and histone modification ChIP-seq
data sets available and predicted that 9828 of 78 183
ChromHMM enhSNPs are heterogeneous in HepG2 (see
the Materials and Methods section).

Next, we used these heterozygous sites to explore whether
TF binding and histone modification significantly prefer
one allele over all other alleles. A high allele preference
indicates a regulatory factor selectively recognizing alleles

for action. We evaluated the allele-specific preference of TF
binding and histone modification at heterogeneous enhSNP
positions using HepG2 ChIP-seq data (see the Materials
and Methods section). Based on the allele-specific prefer-
ence profiles, we calculated the fraction of heterozygous
enhSNPs showing significant allele preference (SAP, see the
Materials and Methods section). We observed that deSNPs
are more likely to be SAPs than enhSNPs for liver TFs
(FOXA2: 26% deSNPs versus 21% enhSNPs, P = 0.05;
HNF4A: 21% versus 14%, P = 0.009; Figure 6 and Sup-
plementary Table S11). This indicates that a substantial
fraction of deSNP mutations result in differential TF bind-
ing. We also observed that deSNP variations alter activity
of H3K27ac, the histone mark associated with active en-
hancers (Figure 6 and Supplementary Table S11). However
histone modifications show lower allele specificity than liver
TFs, which is consistent with the report that histone modi-
fications are less sequence-dependent than TF binding (61–
63).
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Figure 6. Fraction of SAP sites in deSNPs and enhSNPs across different regulatory factors. A high fraction indicates a strong impact of genetic mutations
on regulatory activity. Here, a heterozygous site is predicted as SAP when its reference allele preference Pref < 0.001. The solid dots correspond to significant
enrichment of deSNPs as compared to enhSNPs (P ≤ 0.05).

DISCUSSION

In this study, we modeled sequence composition of HepG2
enhancers and identified deSNPs––enhancer SNPs with
likely deleterious impact on the biological function of the
enhancers. We demonstrated that deSNPs exhibit lower nu-
cleotide divergence than enhSNPs and commonly reside in
active TF binding sites. After associating deSNPs with their
target genes using either the rule of proximity or the re-
ported liver eQTLs, we observed that the deSNPs display
significant association with liver-specific genes and liver-
related biological processes. In addition, the deSNPs are
significantly associated with liver-related GWAS traits and
commonly exhibit allele-specificity of TF binding. All these
observations support the hypothesis of a strong connection
between deSNPs and disrupted regulation of genes. The de-
veloped computational framework can be applied to other
tissues/cell lines if the corresponding data of TFs and epi-
genetic marks is available.

We characterized the allele-specific impact of SNPs,
which enables us to discriminate deleterious enhSNPs from
the enhSNPs that are located in TF binding sites but have no
disruptive impact on TF binding. This is the major differ-
ence between our framework and the related methods (20–
22,24), which led us to prioritize causal regulatory SNPs
in an effective way. For example, the previously published
method Cscore combines various informative data (includ-
ing ChIP-seq-based genome annotations) to estimate dam-
aging extent of all possible sequence mutations (24). While
Cscore has not been tailored to identify mutations dele-
terious to enhancer function, it could be used as an in-
dependent validation of the deleterious effects of deSNPs.
The identified deSNPs exhibit a significantly higher Cscore
than all enhSNPs (student t-test P = 2.1 × 10−3; Supple-
mentary Figure S12), indicating a general agreement be-
tween our prediction and Cscore. However, enhSNPs in

which all the alleles correspond to at least one signal 8-mer
also correspond to high Cscores (P = 1.7 × 10−9, versus
all enhSNPs), which are even slightly greater than deSNPs
(P = 8 × 10−2). This indicates a lack of specificity in Cscore
assignments as compared to our method. Therefore, our
model, in which allelic specificity of enhSNPs is quantified,
is better suited for the identification of disease-causal en-
hancer SNPs.

To check how generalizable our approach is, we identi-
fied deSNPs in other cell types, in which enhancer maps
have been established previously (25), including GM12878,
H1-hESC, K562, HSMM, HeLa-S3, HUVEC, NHEK and
NHLF (Supplementary Table S3). The identified deSNPs
are significantly enriched in the neighborhood of the genes
highly expressed in the corresponding cells using 8-mers
(P < 1 × 10−5, deSNP versus enhSNPs; Supplementary
Figure S14). These results indicate that our approach can
be directly applied to a different cell type. Also the enrich-
ment of the identified deSNPs over enhSNPs varied across
different cell lines (Supplementary Figure S14). It is pos-
sible that different k-mers might be an optimal choice for
different cells.

With the increasing amount of genomic and epige-
nomic data, we anticipate to expand our framework to
model allele-specific regulatory activity and then to iden-
tify disease-associated SNPs and to reveal how they impact
gene regulation.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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