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Abstract

Background: The coral reefs of Zanzibar Island (Unguja, Tanzania) encompass a considerable proportion of the global coral-
reef diversity and are representative of the western Indian Ocean region. Unfortunately, these reefs have been recently
subjected to local and regional disturbances. The objectives of this study were to determine whether there are potentially
non-random processes forcing the observed coral diversity patterns, and highlight where and at which spatial scales these
processes might be most influential.

Methodology/Principal Findings: A hierarchical (nested) sampling design was employed across three spatial scales, ranging
from transects (#20 m), stations (,100 m), to sites (,1000 m), to examine coral diversity patterns. Two of the four sites,
Chumbe and Mnemba, were located within Marine Protected Areas (MPAs), while the other two sites, Changuu and Bawe,
were not protected. Additive partitioning of coral diversity was used to separate regional (total) diversity (c) into local a
diversity and among-sample b diversity components. Individual-based null models were used to identify deviations from
random distribution across the three spatial scales. We found that Chumbe and Mnemba had similar diversity components
to those predicted by the null models. However, the diversity at Changuu and Bawe was lower than expected at all three
spatial scales tested. Consequently, the relative contribution of the among-site diversity component was significantly
greater than expected. Applying partitioning analysis for each site separately revealed that the within-transect diversity
component in Changuu was significantly lower than the null expectation.

Conclusions/Significance: The non-random outcome of the partitioning analyses helped to identify the among-sites scale
(i.e., 10’s of kilometers) and the within-transects scale (i.e., a few meters; especially at Changuu) as spatial boundaries within
which to examine the processes that may interact and disproportionately differentiate coral diversity. In light of coral
community compositions and diversity patterns we strongly recommend that Bawe be declared a MPA.
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Introduction

Biodiversity is not homogeneously distributed across the planet.

Understanding how and why diversity changes across multiple-

spatial scales is still one of the most challenging tasks facing

contemporary ecology in general [1], and tropical-marine ecology

in particular [2–3]. Elucidating diversity patterns has wide-ranging

applications, from identification of appropriate spatial boundaries

for studying mechanisms that generate and maintain biodiversity,

to predictions of how local and regional environmental changes

will affect diversity at different levels of organization. These

predictions may involve evolutionary, environmental, and ecolog-

ical processes interacting at a variety of scales [4–5]. In marine

ecosystems, while regional diversity allows some insight into local

patterns [3], local diversity might be very different from those

found over broader scales.

Theoretically, the assembly of local communities can be

visualized as the result of species passing through a series of

‘‘filters’’ ([4]; Fig. 1). Indeed, these filters may represent diverse

processes interacting on multiple spatial scales, which may have

direct influences on the arrival and survival of organisms [6–7].

There will be some transmission of process signals from one scale

to the next, but different processes emerge at different scales [8].

For example, at broad scales (e.g., 10s–100s km) these filters may

represent historical and oceanographic constraints (e.g., migration,

emigration, regional-scale speciation and gene flow), all of which

are intertwined with climate oscillations and glaciation events that

change regional-current patterns and population connectivity [9].

At smaller scales these filters may be environmental and ecological

(e.g., differential diurnal temperature, irradiance, turbidity,

sedimentation, predation, and herbivory; [10–11]. However, some

driving factors may interact on multiple scales. For example,

seasonal-low temperatures clearly prevent most coral species

growing at relatively high latitudes, but diurnal temperature

extremes also select against temperature-sensitive species on

shallow reef flats.
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Additive partitioning of species diversity is a promising

approach to distinguish among spatial diversity patterns using

hierarchical sampling [12–14]. Unlike most studies that compare

mean diversity among a number of samples, additive partitioning

distinguishes the specific contribution of each hierarchical level

relative to overall diversity. Comparing observed patterns with

those predicted by null models, gives further insight into non-

random selective mechanisms that may disproportionately differ-

entiate overall diversity. For example, if diversity is lower than

predicted from random at the scale of habitat, then we can safely

assume that the habitat conditions are conducive to strong-

selective filters, although we do not know precisely what those

filters entail, without experimental manipulations. The utility of

this analysis has been criticized because the specific processes

responsible for the observed patterns in many cases can be difficult

to tease apart [15]. However, in a conservation context identifying

appropriate spatial boundaries at which these processes interact

can be highly informative, even if the underlying processes

themselves are not yet evident [16].

The coral reefs of Zanzibar Island (Unguja), Tanzania, support

a large proportion of regional reef-coral diversity [17], and are

representative reef assemblages of the western Indian Ocean

region [18]. However, these reefs are subjected to natural and,

more recently, anthropogenic disturbances [18–23]. One of the

main threats to the reefs is over-exploitation of reef resources and

extractive fishing [24–25]. Reports of the status of Tanzanian

fisheries and the coral reefs in general are grim, because fishing

effort has doubled in less than 20 years [25], and destructive

methods (e.g., dynamite) are commonplace [26]. In addition, other

stressors, such as sedimentation, eutrophication and pollution, add

chronic stress to reef-coral communities that in turn force local

extirpation and reduce regional coral diversity [22,27].

Nevertheless, there is a paucity of data describing the

composition and spatial diversity of reef-coral assemblages around

Zanzibar [25,28–32]. In areas with a high degree of anthropo-

genic disturbances, conservation strategies must consider the

distribution patterns of the organisms within the region [33–34].

This conservation vision requires a sophisticated knowledge of

how biodiversity is organized across different spatial scales [35].

In a noteworthy study Belmaker et al. [36] tested variations in

diversity partitioning of coral-dwelling fishes and their hosts in

three regions across the Indo-Pacific - Red Sea, Tanzania, and the

Great Barrier Reef. In their study, two sites in Zanzibar (Bawe and

Chumbe) were sampled within the Tanzanian region. Since

Belmaker’s study focused on fish diversity within branching-coral

heads, only branching corals from the genera Stylophora, Pocillopora,

Seriatopora and Acropora were sampled.

In this study we focused on stony-coral assemblages. Our

hypothesis (to be tested) was that coral assemblages around

Zanzibar vary non-randomly across spatial scales. Thus, we sought

to quantitatively describe composition and diversity of stony-corals

on the Zanzibar reefs and examine their distribution across a

hierarchy of spatial scales. Our major objective was to identify

where and at which spatial scales non-stochastic processes might

interact and have direct influences on the arrival and survival of

corals. This would enable us to highlight the appropriate spatial

boundaries for studying these processes.

Methods

Study sites
Reef surveys were conducted in November 2006 on four reef

sites around Zanzibar (Fig. 2). All four study sites were established

in the wave-sheltered shallow reefs habitat, approximately 1–3 m

below low water datum, and which experienced relatively little

wave action. We focused our sampling effort on one habitat in

order to increase spatial resolution of that habitat. Sites 1 and 2

were located 5 and 7 km from Zanzibar Town (respectively). They

are both influenced to varying degrees by fishing [26,29], and

receive untreated town and harbor sewage discharge, and are

subjected to a number of other destructive activities [37–38]. In

contrast, the other two sites, Sites 3 and 4, were located within

Figure 1. Schematic representation of species passing through
a series of scale-dependent ‘‘filters’’ (i.e., processes), which
represent historical, environmental and ecological constraints
on the arrival and survival of species. This representation is
modified from Hillebrand and Blenckner [4] to represent the nested
sampling design of the present study. ‘A’ represents the first filter,
which determines the regional species pool; filter ‘B’ determines the
species composition within a site in the region; filter ‘C’ determines the
species composition within a station at the site; and filter ‘D’ determines
the species composition within a transect (Tr.) at the station.
doi:10.1371/journal.pone.0009941.g001

Figure 2. Location of the four study sites around Zanzibar
Island, Tanzania. Site 1 (Changuu; 06u 079 07.060 S, 39u 099 59.740 E),
Site 2 (Bawe; 06u 089 52.030 S, 39u 089 10.090 E), Site 3 (Chumbe; 06u 169
38.570 S, 39u 109 31.060 E) and Site 4 (Mnemba; 05u 489 58.710 S, 39u 229
59.200 E).
doi:10.1371/journal.pone.0009941.g002

Coral-Diversity Partitioning
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Marine Protected Areas (MPAs). Site 3, located ca. 13 km south of

Zanzibar Town, has been a private nature reserve, developed and

managed by the Chumbe Island Coral Park (CHICOP), since

1992. Site 4, located ca. 2.5 km off the north-eastern tip of

Zanzibar, has been protected from extractive resource use since

1989. Fishing has been strictly banned and all tourist activities are

controlled at Sites 3 and 4.

Coral-community survey
A hierarchical (nested) sampling design was employed to assess

three spatial scales of influence: (1) transects (#20 m), (2) stations

(,100 m), and (3) sites (,1000 m). The design consisted of four

sampling sites (Fig. 2) that were separated by at least 5 km. At each

site, two randomly allocated stations were established, separated

by ca. 300 m. Within each station six 2061 m belt-transects were

randomly placed over an area of ca. 75620 m to sample

composition of coral assemblages. Each belt-transect was subdi-

vided into twenty 161 m quadrats, which were photographed

with a digital camera (Olympus C-5060) attached to a 161 m

PVC-frame. Field sampling was performed by a single surveyor

(AZ) to reduce sampler bias. From the photographs taken in the

field, corals were enumerated and identified to the lowest

taxonomic resolution. However, since some closely-related species

were difficult to differentiate, they were combined and analyzed as

taxonomic units (hereafter TAUs). The complete list of TAUs,

including the coral species belonging to each TAU, is provided in

Table S1 in the electronic supplementary material. To prevent

biases related to the boundary effect of the sampling units, only the

corals with centers lying within the sampling unit were

enumerated (following the ‘‘center rules’’ scheme of Zvuloni et al.

[39]).

Data analyses
Additive partitioning of coral diversity was used to quantify the

spatial distribution of diversity patterns [12,40–41]. Total

(regional) diversity (c) was partitioned into local a diversity (i.e.,

average diversity within a given sample) and among-sample b
diversity (i.e., turnover diversity). Thus, b diversity was calculated

as the total diversity minus the average local diversity (b = c2a).

The main advantage of additive partitioning, in characterizing the

relationship between a and b components over the traditional

multiplicative method (i.e., c = a6b), is that the contribution of a
and b to the total diversity can be directly calculated and

compared [12,40]. Consequently, when local diversity, on

average, is lower than expected, we also expect high variation

among samples (i.e., high b diversity) and vice versa.

As a first stage in this study, regional diversity was defined as the

total number of TAUs found in the full collection of samples from

the four sites. Alpha (a) diversity was the average number of TAUs

within a transect (note that the terms diversity and number of

TAUs are used interchangeably for convenience, but strictly

speaking they are all the latter). Since we used a nested sampling

design, samples at one scale are themselves composed of samples

at a smaller scale. Hence, partitioning can be applied at all spatial

scales and c diversity can be partitioned into the diversity

contributed by each scale. As such, b1 is regarded as the average

diversity among transects, within stations; b2 is the average

diversity between stations, within sites; and b3 is the average

diversity among sites, within the region. Given our nested

sampling design, these components can be calculated using the

following equations:

b1~S0ST{a, ð1Þ

b2~S0SI{S0ST , ð2Þ

b3~c{S0SI , ð3Þ

where S0ST and S0SI are the average number of TAUs within a

station and a site, respectively. In combination, we express

regional sampled diversity in terms of its a and b components, as:

c~azb1zb2zb3: ð4Þ

Using the number of observed TAUs as a measure of regional

diversity underestimates actual species diversity [42]; however,

their consistent use across all spatial scales does not significantly

alter the relationship among the diversity components [43].

Using a null model, all the individual coral colonies within the

region were shuffled through individual-based randomization.

This model is more powerful than the sample-based model in

detecting departures between observed and null partitions because

of intra-specific aggregation of individuals. Furthermore, the

individual-based model overcomes the effects of abundance and

sampling effort on diversity measures and comparisons (see Crist

et al. [41] and Gotelli & Colwell [42] for further discussion). The

model assumes that within the region an individual coral settles

independent of locality and independent of the presence or

absence of other corals. This approach preserves the original

regional species-abundance distribution and the number of

individuals within each transect. Following these constraints, we

randomized all the individual coral colonies within the region and

recorded the number of TAUs at each hierarchical level (i.e., a,

S0ST and S0SI ). We then calculated the three components of b
diversity (using equations 1–3), and repeated this procedure 1000

times to obtain a 95% confidence interval (CI) for each diversity

component.

Deviations of the observed components from the null expecta-

tion indicate a non-random spatial distribution of TAUs.

However, deviations of the mean diversity across the four tested

sites can be the result of strong deviations within only some of the

sites, whereas other sites may show diversity patterns similar to the

expected overall null model. Alternatively, lack of deviations from

the overall model may be the result of considerable negative

deviations at some sites that are counterbalanced by high, positive

deviations at other sites. Therefore, the observed diversity-

component for each hierarchical level was calculated separately

Figure 3. Comparison of number of coral TAUs (taxonomic
units; mean + SD) at each site calculated per transect (n = 12),
station (n = 2) and site (n = 1). Columns with diagonal lines show the
number of ‘unique’ TAUs (i.e., TAUs that occur only at that site).
doi:10.1371/journal.pone.0009941.g003
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for each site and compared with those expected by the overall

model that takes into account all the individual corals within the

four sites. We then tested the relative contribution of each site to

the observed regional diversity. In addition, the total diversity

within each site was partitioned into the diversity contributed by

each component within the site (a, b1 and b2). In these four

independent analyses, c diversity was defined as the total number

of TAUs found in the full collection of samples within a site. The

observed components were then compared with those expected by

a null model that randomized all the individual corals within the

tested site.

Multivariate analyses were conducted to examine differences in

coral-community structure across the four sites (PRIMERH; [44]).

The abundance of colonies within each TAU per transect was 4th-

root transformed to reduce the influence of very dominant species

(e.g., Porites rus; see ‘Results’). Thereafter, the Bray-Curtis similarity

index was used to create a similarity matrix between transects, and

differences among the sites were analyzed using non-metric

multidimensional scaling (MDS) and one-way analysis of similar-

ities (ANOSIM). The SIMPER (similarity percentages) routine

was used to determine which TAUs made significant contributions

to distinguishing differences among sites.

Results

In total, 2,829 individual coral colonies were sampled,

categorized into 46 TAUs ( = c diversity). Diversity across the

three tested spatial scales was highest at Site 3, followed by Site 4,

Site 2 and Site 1 (Fig. 3). Site 3 also supported the highest number

of ‘unique’ TAUs (13; i.e., TAUs occurring only at that site) and

the highest number of ‘locally rare TAUs’ (11; i.e., TAUs found

only in one transect within a site; Table 1). Site 1, on the other

hand, did not support any unique TAUs and supported the least

number of locally rare TAUs (3); in terms of community

composition this site was nested within (i.e., it was a coral

compositional of) the other three sites (Table 1).

The curve shown in Fig. 4 represents the expected number of

TAUs per number of individuals, under the assumption that

individual corals within the region settle independent of locality

and independent of the presence or absence of other corals. In the

three hierarchical scales the observed mean diversity was

significantly lower than the expected diversity. The reason for

these differences was primarily because diversity at Sites 1 and 2

was consistently lower than expected at all three scales. In contrast,

diversity at Sites 3 and 4 did not deviate from the null expectation

at any of the tested scales.

Additive partitioning of the mean diversity across the four sites

(Fig. 5a) showed that the (observed) b3 diversity component was

significantly higher than the null expectation. Alternatively, b1 and

b2 components were similar to those expected by the null model.

As a result of the strong deviation of the b3 diversity component,

the local a component (i.e., the contribution of the within-transect

diversity relative to regional diversity) was significantly lower than

expected. By applying the partitioning approach and a null model

Table 1. Inter-site comparisons showing the total number of
coral TAUs (taxonomic units) at the study site (diagonal bold),
where the numbers in parentheses are the frequency of
locally rare TAUs (i.e., TAUs recorded only in one transect
within a site).

Site 1 2 3 4

1 13 (3) 13 13 12

2 24 (10) 20 19

3 38 (11) 23

4 28 (4)

The number of TAUs that sites have in common is displayed above the
diagonal.
doi:10.1371/journal.pone.0009941.t001

Figure 4. Observed number of coral TAUs (taxonomic units) found at each site across the three (hierarchical) sampling scales (i.e.,
transect, station and site) and expected number of TAUs generated by individual-based randomization (black line) including the
95% confidence interval envelop (shaded area). The expected curve is based on 2,829 individuals belonging to 46 TAUs, recorded within the
four sites. The mean number of TAUs across the four sites for each hierarchical level is also presented as crosses. Horizontal and vertical error bars
represent standard deviations.
doi:10.1371/journal.pone.0009941.g004

Coral-Diversity Partitioning

PLoS ONE | www.plosone.org 4 March 2010 | Volume 5 | Issue 3 | e9941



separately for each site (Fig. 5b), we found significant deviation

from the expected partitioning at Site 1 only. This site supported

significantly lower a diversity than expected.

The multivariate analysis showed that all pairwise comparisons

among the four sites were statistically significant in terms of coral

species composition, with the exception of Sites 1 and 2, which

were similar (Fig. 6 and Table 2). SIMPER analysis showed that P.

rus and the combined affect of Fungia concinna, F. fungites, F.

klunzingeri and Cycloseris spp. contributed the most to the differences

among sites (Table 3). P. rus was relatively abundant at Sites 1 and

2 and was rare at Sites 3 and 4, and the fungiids were relatively

abundant at Site 3 and rare elsewhere.

Discussion

This study shows that the mean diversity observed at the three

hierarchical scales was consistently lower than expected by chance,

under the assumption of a random distribution of TAUs around

Zanzibar (Fig. 4). In addition, additive partitioning of mean

diversity across the four sites (Fig. 5a) showed that b3 diversity (i.e.,

the contribution of the among-sites diversity) was significantly

higher than expected by the null model. Thus, the local a diversity

component was significantly lower than expected. Such deviations

from the null expectations suggest that forces included in neutral

theory [45], such as demographic stochasticity, may not be

sufficient to explain diversity patterns around Zanzibar. Indeed,

these results indicate that there are non-random processes

interacting and disproportionately influencing spatial coral

diversity patterns.

Our findings agree with a spatial study by Belmaker et al. [36],

who sampled coral-dwelling fishes and their hosts (i.e., coral

colonies from the genera Stylophora, Pocillopora, Seriatopora and

Figure 5. Additive partitioning of number of coral TAUs (taxonomic units) across the three (hierarchical) sampling scales (i.e.,
transect, station and site). The observed partitions (Obs.) are compared with the expected values (Exp.) as predicted by the overall (regional) null
model, for (a) the mean across the four sites, and (b) separately for each site. Arrows indicate cases in which the observed diversity component differs
(p,0.05) from the expected one.
doi:10.1371/journal.pone.0009941.g005

Figure 6. Multidimensional scaling (MDS) ordination based on
Bray-Curtis similarities using 4th-root transformation, where
each symbol represents a 2061 m belt-transect.
doi:10.1371/journal.pone.0009941.g006

Table 2. Analysis of similarity (ANOSIM) contrasts between
sites, based on 9,999 permutations.

Contrasts R p

Site 1–Site 2 0.142 0.015

Site 1–Site 3 0.938 ,0.0001*

Site 1–Site 4 0.996 ,0.0001*

Site 2–Site 3 0.813 ,0.0001*

Site 2–Site 4 0.949 ,0.0001*

Site 3–Site 4 0.809 ,0.0001*

The global R was 0.766 with p,0.0001. A pairwise comparison was considered
significant (*) at the 5% level, if its p-value is below 0.0083, and not below 0.05
(using Bonferroni’s adjustment).
doi:10.1371/journal.pone.0009941.t002
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Acropora) in three regions across the Indo-Pacific - Red Sea,

Tanzania, and the Great Barrier Reef. Their coral-sampling

design consisted of two hierarchical levels, both transects and sites,

within each region. They found deviations at similar spatial scales

in their three studied regions. However, in contrast with previous

studies that partitioned only the mean diversity components within

a region, the present study also separately tested the input of each

site to the deviation from the overall (regional) null model. Indeed,

using such examinations we found that deviations from the null

expectations were the result of strong negative deviations only

within Sites 1 and 2 (Fig. 4). On the other hand, Sites 3 and 4

showed diversity components similar to those expected by the

overall null model.

Sites 1 and 2 are situated outside of any form of protection,

whereas Sites 3 and 4 are situated within MPAs and experience a

low degree of anthropogenic disturbance. Based on our data,

however, we cannot explicitly identify the non-random processes

that forced low diversity within Sites 1 and 2. Neither can we

unequivocally suggest that the MPAs are causing high diversity

within Sites 3 and 4. The latter sites may have been selected as

MPAs because they supported high diversity. However, our

findings do identify the sites where non-random processes reduce

overall diversity, and highlight the need to further examine the

mechanisms that reduce coral diversity at these sites. We show that

these mechanisms interact on the among-sites scale (10’s of

kilometers), but also on the within transect-scale (i.e., #20 m) in

Table 3. Dissimilarity percentages (SIMPER) of significant contrasts between sites.

TAU
number Species belonging to the TAU

Average
abundance

Average
abundance

Average
dissimilarity

% contribution to
dissimilarity

Cumulative %
contribution

Average dissimilarity = 75.8 Site 2 Site 3

20 Fungia concinna, Fungia fungites, Fungia
klunzingeri, Cycloseris cyclolites

0.08 22.08 17.3 22.82 22.82

44 Porites rus 20.42 8.33 13.57 17.9 40.73

42 Porites cylindrica 10.83 11 8.33 10.99 51.71

Average dissimilarity = 78.32 Site 1 Site 3

44 Porites rus 42.58 8.33 24.08 30.75 30.75

20 Fungia concinna, Fungia fungites, Fungia
klunzingeri, Cycloseris cyclolites

0.17 22.08 13.84 17.68 48.42

42 Porites cylindrica 9.75 11 7.29 9.31 57.73

Average dissimilarity = 91.3 Site 2 Site 4

44 Porites rus 20.42 0.25 19.51 21.37 21.37

42 Porites cylindrica 10.83 0.5 11.79 12.92 34.29

38 Pocillopora eydouxi 0.08 8.42 10.26 11.23 45.52

22 Galaxea astreata 7.5 0.17 9.65 10.57 56.1

Average dissimilarity = 92.4 Site 1 Site 4

44 Porites rus 42.58 0.25 37.75 40.85 40.85

42 Porites cylindrica 9.75 0.5 9.09 9.83 50.68

Average dissimilarity = 79.56 Site 3 Site 4

20 Fungia concinna, Fungia fungites, Fungia
klunzingeri, Cycloseris cyclolites

22.08 0.33 17.54 22.04 22.04

42 Porites cylindrica 11 0.5 8.41 10.57 32.61

38 Pocillopora eydouxi 0 8.42 7.47 9.39 42

44 Porites rus 8.33 0.25 6.24 7.84 49.84

39 Pocillopora verrucosa 3 3.58 3.4 4.27 54.11

TAU
number Species belonging to the TAU

Average
abundance

Average
abundance

Average
dissimilarity

% contribution to
dissimilarity

Cumulative %
contribution

Average dissimilarity = 75.8 Site 2 Site 3

20 Fungia concinna, Fungia fungites, Fungia
klunzingeri, Cycloseris cyclolites

0.08 22.08 17.3 22.82 22.82

44 Porites rus 20.42 8.33 13.57 17.9 40.73

42 Porites cylindrica 10.83 11 8.33 10.99 51.71

Average dissimilarity = 78.32 Site 1 Site 3

44 Porites rus 42.58 8.33 24.08 30.75 30.75

20 Fungia concinna, Fungia fungites, Fungia
klunzingeri, Cycloseris cyclolites

0.17 22.08 13.84 17.68 48.42

42 Porites cylindrica 9.75 11 7.29 9.31 57.73

Lists of coral TAUs (taxonomic units) were truncated whenever the cumulative percentage was $50%.
doi:10.1371/journal.pone.0009941.t003
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Site 1. Over the larger scale, these mechanisms can range from

dispersal-limitation to differential survival among the sites.

However, in Site 1, there are mechanisms that prevent the success

of some species in specific locations and reduce local a diversity.

These mechanisms can range from interspecific interactions to

human disturbances that interact on that scale.

The MDS ordination (Fig. 6) and ANOSIM (Table 2) supported

these results by showing that each of the studied sites was different

in terms of coral species composition. P. rus was found to be

relatively abundant at Sites 1 and 2 (43% and 20%, respectively),

and was shown to be among the most important taxa contributing

to the differences among sites (Table 3). P. rus formed large

monospecific stands at both sites, considerably reducing local

diversity potential. In theory, interspecific interactions might

exclude species from some habitats and force others into a

dominant role, but there is little evidence supporting this

mechanism in determining local coral composition [5,46–47].

Although competitive interactions between corals are prolific,

there is no evidence of a consistent hierarchical pattern, whereby

one species always wins [48–49]. In other words, while among

coral-species competition exists on coral reefs, it does not alone

drive local coral species diversity [5]. On the other hand, habitat

selection through differential propagule settlement [50–52], biotic

factors (e.g., fish predation; [53]), or adaptation to different abiotic

environments [e.g., 11, 54], are all known to play a role in habitat

specialization. P. rus is a fast-growing species that covers large

areas of reefs and contributes greatly to the coral coverage.

Therefore, even though there are processes that interact within

Sites 1 and 2 leading to a reduced local diversity, this is not

expressed in reduced coral coverage.

Inter-site comparisons showed that Site 1, in contrast to the

other sites, did not support any unique TAUs (i.e., TAUs

occurring only at that site; see Fig. 3), and showed the fewest

locally rare TAUs (i.e., TAUs recorded only in one transect within

a site; see Table 1). Indeed, in terms of species composition this site

was nested (a subset) within the other three sites (Table 1). Similar

findings have been reported for the Great Barrier Reef [55], and

Micronesia [56], where highly stressed sites support only

widespread, regionally dominant species. Site 2, which is also a

non-protected site, supported unique TAUs and showed a much

larger number of locally rare TAUs than Site 1. In addition, 50%

of the locally rare TAUs found at Site 2 were rare elsewhere,

whereas none of the three locally rare TAUs found at Site 1 were

rare at the other sites. Species with restricted distributions are

known to be highly susceptible to habitat degradation [57], and

thus are important criteria for site selection by conservationists

[58]. Therefore, with regard to regional-diversity conservation,

and based on comparison of unique TAUs and locally rare TAUs

between Sites 1 and 2, we strongly recommend that Site 2 (Bawe)

be declared a MPA. Regarding Sites 3 and 4, our results

unreservedly support their declared status as MPAs.

To the best of our knowledge, this is the first study to use

additive partitioning of biodiversity in order to study spatial

patterns of stony-coral communities. The additive partitioning

approach has indicated that there are non-random processes

governing the observed coral diversity patterns around Zanzibar.

Indeed, this approach not only helped to identify a site where non-

random processes interact and disproportionately differentiate the

overall diversity, but it also enabled us to highlight the appropriate

spatial boundaries for studying the mechanisms that may decrease

coral diversity. Based on our results, at a time in history when

understanding the underlying mechanisms that regulate the spatial

distribution of corals is urgent, we suggest that further work needs

to be done in order to understand the processes that may be

interacting locally, especially at Site 1, to reduce coral diversity.

Supporting Information

Table S1 List of coral TAUs (taxonomic units), including

number of individuals observed in the survey and species included

within each TAU.

Found at: doi:10.1371/journal.pone.0009941.s001 (0.07 MB

DOC)
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