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Abstract: The scheduling of operating room (OR) slots requires the accurate prediction of surgery
duration. We evaluated the performance of existing Moving Average (MA) based estimates with
novel machine learning (ML)-based models of surgery durations across two sites in the US and
Singapore. We used the Duke Protected Analytics Computing Environment (PACE) to facilitate data-
sharing and big data analytics across the US and Singapore. Data from all colorectal surgery patients
between 1 January 2012 and 31 December 2017 in Singapore and, 1 January 2015 to 31 December 2019
in the US were used, and 7585 cases and 3597 single and multiple procedure cases from Singapore
and US were included. The ML models were based on categorical gradient boosting (CatBoost)
models trained on common data fields shared by both institutions. The procedure codes were based
on the Table of Surgical Procedure (TOSP) (Singapore) and the Current Procedural Terminology
(CPT) codes (US). The two types of codes were mapped by surgical experts. The CPT codes were
then transformed into the relative value unit (RVU). The ML models outperformed the baseline MA
models. The MA, scheduled durations and procedure codes were found to have higher loadings
as compared to surgeon factors. We further demonstrated the use of the Duke PACE in facilitating
data-sharing and big data analytics.

Keywords: surgical durations; machine learning; data sharing; multi-country; multi-site; big
data analytics

1. Introduction

Operating Rooms (ORs) account for a significant proportion of a hospital’s total
revenue and about 40% of the hospital’s total expenses. [1] With a global estimate of
312.9 million surgeries performed each year, the effective planning of OR resources is an
essential process that has a large impact on hospital surgical processes worldwide [2]. The
scheduling of surgical procedures plays an important role in the OR planning process and
has a direct impact on resource utilization, patient outcomes and staff welfare. Optimal
scheduling of OR slots for surgeries prevents under-utilization of costly surgical resources
as well as delays which cause unfavorable waiting times. Overtime resulting from sub-
optimal schedules also leads to staff dissatisfaction as well as burnout from long working
hours [3,4]. One key factor required in optimal scheduling of OR slots is the accurate

Healthcare 2022, 10, 1191. https://doi.org/10.3390/healthcare10071191 https://www.mdpi.com/journal/healthcare

https://doi.org/10.3390/healthcare10071191
https://doi.org/10.3390/healthcare10071191
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com
https://orcid.org/0000-0001-5274-3840
https://orcid.org/0000-0002-8565-2926
https://doi.org/10.3390/healthcare10071191
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com/article/10.3390/healthcare10071191?type=check_update&version=1


Healthcare 2022, 10, 1191 2 of 16

prediction of surgery duration [3,5]. However, the variability in patients’ conditions and
the type of surgical procedures and techniques required and the uncertainties around
these patient and provider related factors present challenges for the prediction of surgery
durations [6,7].

In recent years, many studies around the world have reported the use of various
machine-learning (ML) methods to accurately predict surgery duration [8–10]. Linear
regression techniques have been explored using patient and surgical factors and have re-
ported the importance of such variables in predicting the total surgical procedure time [11].
Distributional modelling methods such as Kernel Density Estimation (KDE) [12] as well
as log-normal distributions [13] were also demonstrated to be able to effectively predict
surgery duration. More complex methods such as heteroscedastic neural network regres-
sion combined with expressive drop-out regularized neural networks have also been shown
to have good performance [14]. Ensemble tree-based methods such as random forests were
also used to predict surgery duration and cross validation showed that it outperformed
other methods, reducing the mean absolute percentage error by 28%, when compared
to current hospital estimation approaches [15]. A multi-center study based on two large
European teaching hospitals has also demonstrated the use of a parsimonious lognormal
modelling approach to improve the estimation of surgery duration and OR efficiency across
more than one hospital [13].

The significance of multiple factors affecting surgical duration predictions may vary
across hospital systems due to differences in case scheduling practices, surgical techniques
and intraoperative processes. A broader understanding of the differences in the characteris-
tics of the scheduling processes as well as scheduling behavior will lead to further insights
into improving such estimations. In order to determine hospital level differences for esti-
mating surgery duration, there is a need to go beyond simple distributional approaches
to understand the multifactorial effects influencing the length of surgery durations across
multiple sites. ML models such as gradient boosted trees, which utilize error residuals to
improve the performance of ensemble models, have also been reported for other clinical
prediction models, such as anterior chamber depth (ACD) in cataract surgery [16].

Although previous studies have examined the use of various ML prediction modelling
methods to provide more accurate estimates, most of these studies offer results that are
specific to a single institution with a minority that derived prediction models validated
with external institutional data, albeit from the same country [3,6,10,11,13,14,17]. Similar
to other use cases where prediction models are developed based on an extensive use of
real-world data, a key reason resulting in the difficulty of conducting multi-site across
multiple countries is the lack of data sharing and of governance infrastructure to support
collaborative work. This impediment can be further magnified when the sharing of data
has to occur over multiple jurisdictions. This has resulted in a scarcity of published studies
that can cover multi-institutional data across countries or continents, thereby reducing the
external validity and generalizability of the prediction models.

In this study, we aim to determine the performance of current surgery case duration
estimations and the use of machine learning models to predict surgery duration across
two large teaching hospitals in the United States and Singapore. To facilitate deep col-
laboration between both hospitals and the sharing of large-scale datasets required for the
development of the ML models, we will introduce the use of Duke Protected Analytics
Computing Environment (PACE) [18]. PACE is a collaborative platform for facilitating
data-sharing and analysis across both healthcare institutions. This study has demonstrated
value in the use of PACE for a cross border and multi-institutional studies in the evaluation
of surgical durations across institutions.

2. Materials and Methods

The two study hospitals SH-1 and SH-2 described in this study are from Singapore,
a city-state in Southeast Asia, and Durham, North Carolina, a state in the United States,
respectively. SH-1 is the Singapore General Hospital (SGH), which is one of the largest com-
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prehensive public hospitals in Singapore under the Singapore Health Services (SingHealth)
public healthcare cluster. SGH is a tertiary multidisciplinary academic hospital which com-
prises more than 30 clinical disciplines and approximately 1700 inpatient beds and provides
acute and specialist care to over one million patients per year [19]. The hospital saw more
than 25,000 surgeries in 2019. SH-2 is Duke University Hospital, a full-service tertiary and
quaternary care hospital that is part of the Duke University Health System in Durham,
North Carolina. Duke University Hospital has 957 inpatient beds, 51 operating rooms, an
endo-surgery center and an ambulatory surgery center with nine operating rooms. The
hospital offers multidisciplinary care and serves as a regional emergency/trauma center
where 42,554 patients were admitted in 2020 [20,21].

Ethics approval for the study was exempted by both the SingHealth’s Centralized
Institutional Review Board (SingHealth CIRB Reference: 2018-2558) and Duke Institutional
Review Board (Duke IRB Reference: Pro00104275) for both study hospitals.

2.1. Cross Country Collaborative Platform

The Duke PACE [22] is a secured virtualized network environment where researchers
can collaborate and perform analysis with protected health information. PACE simplifies
the process of obtaining and sharing protected data from the electronic medical record
(EMR) systems. Datasets from both study hospitals are shared and analyzed jointly by
the study team through the PACE system. The use of PACE requires video-based training
and a rigorous account request and approval process for Duke University employees and
affiliates. Data loaded in PACE has to be HIPAA compliant. Ethics approval or exemption
has to be given by the ethics review boards of the respective study hospitals.

Data was extracted from the SH-1 EMR system based on the Sunrise Clinical Man-
ager, Allscripts [23], extracted through the enterprise data warehouse, electronic Health
Intelligence System-eHIntS [24]. Data from the SH-2 EMR system were extracted from
the Duke Health enterprise data warehouse and Duke’s Maestro Care (Epic) EMR sys-
tem [25]. These data were loaded into PACE and then served through a secured Duo
multifactor authentication gateway [26] for access by collaborators across the two coun-
tries with approved network IDs. The analysis was performed with Python 3.6, Python
Software Foundation [27], with the required packages loaded into the PACE environment.
The hardware provisioned in PACE for this study was Intel(R) Xeon(R) Gold 6252 CPU
@ 2.10GHz (2 processors) (Intel Corporation) and 32 GB of RAM running on Windows 10
Enterprise operating system (Microsoft Corporation). Access was time-bound based on the
approved period of study according to the respective ethics review boards’ decisions.

2.2. Descriptive Analysis

We performed a retrospective analysis of all patients who had undergone colorectal
surgery between 1 January 2012 and 31 December 2017 for SH-1 and 1 January 2015
to 31 December 2019 for SH-2. Common data fields were mapped between datasets
from both study sites and used in the study. Patient demographics included age, gender,
height, weight and body mass Index (BMI). Surgery related factors included surgery
procedure codes, number of procedures done in the surgery, first and second surgeons
codes, principal anesthetist codes, anesthesia type (local, general or regional anesthesia),
patient case type (inpatient or day surgery), OR location, OR code and ASA scores. The
Table of Surgical Procedures (TOSP) is a categorical variable used for billing purposes [28].
TOSP codes provide some information on the complexity of the procedure codes used in
SH-1, where higher levels represent greater complexity. SH-2 uses the categorical Current
Procedural Terminology (CPT) codes that similarly show the complexity of the procedures
and services [29]. The TOSP and CPT codes for colorectal surgeries used in this study were
mapped by the surgical domain experts and shown in Table A1, Appendix A. The list of
mapped fields across the two institutions is shown in Table 1. In SH-2, the categorical
CPT codes per case were transformed into the relative value unit (RVU) which is a single
continuous variable (see Table 2). The RVU is a consensus driven billing indicator that can
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serve as a proxy for procedure workload and replace CPT codes as a more informative
feature of surgical duration predictions [30,31]. The scheduled/listing duration for the
surgical case as well as the moving average (MA) durations were also included.

Table 1. Field mapping between SH-1 and SH-2.

SN SH-1 Data Fields SH-2 Data Fields

1 OT Code Room
2 Actual Duration In-Out Duration
3 First Surgeon Department Code Service Type
4 Priority of Operation Case Class
5 Department Code Division
6 OT Location Code Location
7 Procedure Code CPT List
8 Type of Anesthesia Primary Anesthesia Type
9 ASA Status ASA Rating
10 Age Patient Age
11 Gender Sex
12 Visit Type Patient Class
13 BMI BMI
14 Height Height
15 Weight Weight
16 First Surgeon ID Primary Physician ID
17 Second Surgeon ID Secondary Physician ID
18 Principal Anesthetist ID First Anesthetist ID
19 MA 1 year_3rd MA 1 year_3rd (calculated)
20 Number of Procedures Number of Procedures
21 Number of Panels Number of Panels
22 Multiple Procedure Codes Sorted CPT List
23 Listing Duration Scheduled Duration

Notations: OT: Operating Theatre; CPT: Current Procedure Terminology (transformed into Relative Value Units);
ASA: American Society of Anesthesiology; BMI: Body Mass Index; ID: Unique identifier; MA: Moving Average.

Table 2. List of CatBoost models compared (List of features present in each model are shown in
Table A2 in the Appendix A).

Name Features Considered

Model 0 Baseline Model which considered patient and surgery factors only
Model 1 Baseline Model + RVU/Procedure Surgical Table Code
Model 2 Baseline Model + Moving Average
Model 3 Baseline Model + Scheduled Duration
Model 4 Baseline Model + Moving Average + Scheduled Duration

Model 5 Baseline Model + Moving Average + Scheduled Duration + RVU/Procedure
Surgical Table Code

A total of 7585 cases and 3597 cases from SH-1 and SH-2 were included respectively.
The data cleaning process is shown in Figure 1 for both SH-1 and SH-2. The mean duration
for SH-1 and SH-2 were 102 min and 128 min, respectively. The mean patient age across
both sites were 54.8 and 54.4 years, respectively.
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Figure 1. Data-cleaning process (MA: Moving Average).

2.3. Moving Average Estimation

The existing EMR systems for both SH-1 and SH-2 surgical case management both
adopt a moving average (MA) prediction of historical surgery durations to provide an
estimated surgery duration for each surgery case. SH-1 uses Allscripts [23], whilst SH-2
uses the EPIC system [25]. The MA algorithm calculates a historical moving average of
actual surgery duration by grouping surgical procedure codes and surgeon codes over a
specified period of time. The OR schedulers, who schedule surgery cases into the respective
EMR systems, are able to override the estimates with their own estimated durations.

The historical moving average of the actual case length for each procedure and surgeon
code combination was used as the prediction for the next surgery of the same procedure
code and conducted by the same surgeon. If there are less than five cases for a particular
surgeon and procedure code combination, the MA of the surgical duration for that particular
procedure (regardless of surgeon) is utilized. If the data is insufficient for this grouping, no
MA estimate will be provided and the scheduler will have to provide an estimate instead. If
there are sufficient data for the MA estimates, data below the 10th percentile and above the
90th percentile will be excluded from the MA calculation. If there are no manual overrides
on the MA prediction, the MA-based duration is then recorded as the scheduled duration
and is used to schedule cases in the system. The existing estimates as well as the scheduled
durations will be used as the baseline against which new predictions developed by machine
learning algorithms in this study will be compared.

Cases which were listed as emergency cases as well as those with missing actual
surgery duration were excluded for the study. Both single and multiple procedure surgeries
were included. The data cleaning process is summarized in Figure 1. Cases with missing
values for either scheduled duration or MA duration were excluded. Outcome metrics
were compared by available cases by individual duration type, as well as a common set of
valid cases.

The outcome of interest was the difference between the predicted and the actual
surgery durations for each surgical case. Surgery duration was defined as the time taken
between the point when the patient is wheeled into the OR and when the patient is wheeled
out of the OR. For each comparison, we compared the Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and the percentage
of cases within 20% of scheduled duration with the predicted duration.

The predictive models were generated with the categorical gradient boosting (Cat-
Boost, version 0.2.1) [32] package in Python 3.6 [27]. The dataset of each study hospital was
split into 80% for training and 20% for testing. The models were trained on the common
data fields (Patient and Surgery factors) shared by both datasets, with different permuta-
tions of additional key variables such as the Moving Average, Scheduled/Listing Duration
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and TOSP Code/RVU. The CatBoost models with features listed in Table 2 were compared.
SH-1’s models were trained and tested on SH-1’s dataset and SH-2’s models were trained
and tested on SH-2’s dataset.

Hyperparameter optimization was conducted using a grid search on a four-fold cross
validation performed to determine the optimal parameters for the models. The following
parameters were used for the CatBoost models-Number of Iterations: 200; Maximum Tree
Depth: 5, 6, 7, 8, 9, 10, 11, Learning Rate: 0.01, 0.03, 0.05, 0.1, 0.2, 0.3; Loss Function: Root
Mean Square Error (RMSE). The parameters which provided the lowest cross validation
RMSE score were chosen for the final model. Feature importance for the CatBoost models
were evaluated based on the amount that the prediction value changes with respect to a
change in the predictor variable [32].

3. Results
Scheduler and System Average Performance

Table 3 compares the performance of the scheduled duration and the MA duration
against the actual surgery duration. The MA algorithm provides better performance across
all evaluation metrics for both datasets as compared to the scheduled durations. Proportion
of cases with the actual duration falling within 80–120% of the listed duration is higher
in SH-2. Higher proportion of cases were found to be overestimated in the SH-2 dataset,
whereas for SH-1 (>80% of actual duration) higher proportion of cases were found to be
underestimated (<80% of actual duration) (see Figure 2).

Table 3. Performance of scheduled vs. MA duration.

SH-1 SH-2
Scheduled MA Scheduled MA

N (cases) 7685 7685 3597 3597
RMSE 61.5 51.5 57.5 48.2

MAE (mins) 37.7 29.2 34.8 29.5
MAPE (%) 7.49% 2.40% 15.91% 5.54%

<=80% 41.0% 36.8% 20.2% 24.7%
80–120% 24.8% 36.6% 41.4% 49.8%
>=120% 34.2% 26.6% 38.4% 25.5%

RMSE: Root Mean Squared Error; MAE: Mean Absolute Error; MAPE: Mean Absolute Percentage Error.
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Tables 4 and 5 show the performance of the various SH-1 and SH-2 predictive models
based on the test dataset. The results showed that with the ML-based models (Models
0–5), SH-1 could at least predict 40% of cases accurately within +/−20% of the actual
duration, while SH-2 could at least predict approximately 50% of its cases within +/−20%
of the actual duration. Based on the +/−20% prediction band, the ML-based models in
both hospitals showed better prediction accuracy than the existing MA models that each
individual hospital uses.

In SH-1, Model 5 showed the best performance as shown in Table 4. Model 4 has
slightly higher MAE, MAPE and RMSE, as compared to Model 5, but it shows a better
prediction accuracy (within +/−20% deviation from the actual duration). Nonetheless,
both Models 4 and 5 have at least a 5% higher prediction accuracy than that of the MA.
Among the five models in SH-2, Table 5 shows that Model 5 has the best performance, with
56.11% of its predictions falling within +/−20% of the actual duration. Model 5 prediction
accuracy (within +/−20%) is 7.78% higher than that of the MA. Model 5 also has the lowest
RMSE, MAE and MAPE at 38.48%, 23.61% and 23.36%, respectively.

Table 4. SH−1 Accuracy & Error Metrics Comparison of Models.

Model Percentage within +\−20% RMSE MAE MAPE

Listing 24.68% 62.31 37.505 65.57%
MA 37.66% 55.16 28.844 46.85%

Model 0 40.31% 48.15 26.323 36.74%
Model 1 43.15% 47.88 25.221 34.61%
Model 2 43.28% 47.30 24.938 35.56%
Model 3 41.34% 46.26 25.426 34.97%
Model 4 42.89% 45.30 24.325 34.50%
Model 5 44.06% 45.18 23.986 34.40%

RMSE: Root Mean Squared Error; MAE: Mean Absolute Error; MAPE: Mean Absolute Percentage Error.

Table 5. SH-2 Accuracy & Error Metrics Comparison of Models.

Model Percentage within +\−20% RMSE MAE MAPE

Listing 43.06% 53.57 32.167 27.63%
MA 48.33% 45.39 28.19 27.30%

Model 0 49.86% 50.845 30.492 27.23%
Model 1 52.78% 38.817 24.412 23.83%
Model 2 55.42% 40.9 25.529 24.90%
Model 3 55.28% 43.208 26.18 24.54%
Model 4 55.42% 39.367 24.518 23.79%
Model 5 56.11% 38.482 23.61 23.36%

RMSE: Root Mean Squared Error; MAE: Mean Absolute Error; MAPE: Mean Absolute Percentage Error.

The feature importance of each predictor variable is averaged across all of the decision
trees within the model. The best performing models (Model 5 for both SH-1 and SH-2)
were used to plot the feature importance shown in Figures 3 and 4.
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4. Discussion

The objective of this study was to explore and determine the performance of current
surgery case duration estimations and the use of machine learning models to predict
surgery duration across two large tertiary healthcare institutions located in the United
States and Singapore. The two healthcare institutions have different EMR systems, coding
and representation of surgical details such as surgical procedure codes. The Table of
Surgical Procedure (TOSP) codes [28] were used in SH-1 whilst the Current Procedural
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Terminology (CPT) [29] codes were used in SH-2. The two types of codes were mapped by
surgical domain experts. The mapping table is given in Appendix A.

The validation results showed that, in both study sites, the simple MA-based predic-
tions outperform the scheduled duration provided by the OR schedulers across RMSE,
MAE, MAPE and proportion of cases within 80–120% of the scheduled actual duration.
Every minute of improved duration estimates would help in improving the efficiency of OR
performance [15,33]. MA-based predictions have been frequently reported in the literature.
Similar to the existing literature [3,6,34], both hospitals have been using simple MA-based
methods, such as Last-5 [6], which uses the average of the most recent five cases in the
relevant history for the prediction. Simple MA methods can be accurate in the estimation
of surgery durations across multiple sites.

The baseline machine-learning (ML) models which considered patient, surgeon and
surgery related factors without the MA (Model 0) show improved performance for SH-1
across all metrics against the scheduled durations and MA estimates. Extending from the
baseline model, Models 2, 4 and 5 included the MA features to improve the performance
and generalizability for the predictions. The improved performance of ML-based models
is similar to results that were recently reported [8,10,17,35]. For both SH-1 and SH-2, the
majority of the contributions to the model was based on the MA and scheduled duration.
For SH-1, the next five variables with the highest contributions are: Procedure Surgical
Table Code, OT Code, First Surgeon ID, OT Location Code and BMI. At SH-2, the most
significant factors are also MA and scheduled duration. whilst the next five variables with
the highest contributions are RVU, Patient Class, Primary Physician ID and OR Location
and Number of Procedures. In both SH-1 and SH-2, MA, scheduled duration and, TOSP
Code (for SH-1) or RVU (for SH-2), have higher loading in the model as compared to
surgeon factors. However, the order of importance of the other variables differs slightly
between the two sites. For both sites, the variables describing the complexity of the surgery
(TOSP Code in SH-1 and RVU in SH-2) have relatively higher loadings in the prediction
models. The presence of the MA, Scheduled/Listing and Procedure Surgical Table Code
and RVU only for Model 5 may have resulted in the better performance of this model. All
these features have the highest contributions in Model 5 feature importance for SH-1 and
SH-2 as shown in Figure 4.

As the study sites utilized similar datasets across different study periods, there may be
concerns about model bias. However, for both sites during the study horizon, there were
no significant shifts in the surgical procedures for colorectal procedures and the design
of the EMR systems and the extract-transform-load (ETL) system within the enterprise
data warehouse across both sites. Moreover, each hospital has its own trained CatBoost
ML model [32] so different periods in one model will not affect the other. The framework
using CatBoost ML models has been tuned to provide the best prediction models based on
the lowest cross validation RMSE. This result can be further evaluated in future studies in
collaboration with more study sites. The collaborative PACE platform [22] has been shown
to facilitate such study across two different jurisdictions.

Electronic health record (EHR) data are extremely sensitive and valuable and require a
protected environment to work in. This can be difficult and time consuming to achieve even
in one institute. Duke PACE [22] provides a secured and protected environment to query
and store these data and perform advanced analysis. This study demonstrates that PACE
can provide the platform for this study to share EHR data between the two institutes of the
two countries and facilitates the use of advanced machine-learning tools to predict surgical
durations. Similar features were used in the prediction models developed at both sites (see
Table 1). This study shows a viable alternative to facilitate future collaboration between
institutes around the world. The collaboration through PACE demonstrated the feasibility
in data sharing, validating the hypothesis and collaborative development of analytical
models in order to support better clinical decision that can improve system, process and
patient outcomes.
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5. Conclusions

In this study, we compared the performance of existing MA-based estimates with novel
ML-based predictive models for surgery durations across two large tertiary healthcare
institutions. The ML-based models which considered additional patient, surgeon and
surgery related factors show improved performance over both the MA-based method
and the scheduled durations across multiple accuracy metrics. The ML-based models
can be deployed in place of the existing MA-based estimates. Additional patient-related
factors (e.g., comorbidities) could potentially help to further improve the accuracies of
the predictions.

We further demonstrated the use of the Duke PACE as the collaborative platform for
facilitating data-sharing and analysis across both healthcare institutions for cross border
and cross-institutional studies. Duke PACE was able to overcome the impediments in data
sharing and governance policies to support collaborative work across multiple jurisdictions.
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Appendix A

Table A1. Mapping of CPT to TOSP codes.

Anatomical
System Type of Procedure CPT Code TOSP

Codes
TOSP
Table

Digestive Hepatectomy 47120 SF815L 4C
Digestive Hepatectomy 47120 SF813L 5C
Digestive Hepatectomy 47122 SF809L 7C
Digestive Hepatectomy 47125 SF812L 6B
Digestive Hepatectomy 47130 SF812L 6B
Digestive Appendectomy 44950 SF849A 3B
Digestive Appendectomy 44950 SF723A 4A
Digestive Appendectomy 44960 SF849A 3B
Digestive Appendectomy 44960 SF723A 4A
Digestive Appendectomy 44970 SF849A 3B
Digestive Appendectomy 44970 SF723A 4A
Digestive Colorectal 44140 SF701C 6C
Digestive Colorectal 44140 SF803C 5C
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Table A1. Cont.

Anatomical
System Type of Procedure CPT Code TOSP

Codes
TOSP
Table

Digestive Colorectal 44140 SF806C 5C
Digestive Colorectal 44143 SF808R 5C
Digestive Colorectal 44144 SF808R 5C
Digestive Colorectal 44145 SF805R 6C
Digestive Colorectal 44145 SF703R 6C
Digestive Colorectal 44145 SF807R 6B
Digestive Colorectal 44146 SF805R 6C
Digestive Colorectal 44146 SF703R 6C
Digestive Colorectal 44146 SF807R 6B
Digestive Colorectal 44147 SF703R 6C
Digestive Colorectal 44150 SF804C 6A
Digestive Colorectal 44150 SF712C 6A
Digestive Colorectal 44151 SF804C 6A
Digestive Colorectal 44151 SF712C 6A
Digestive Colorectal 44160 SF803C 5C
Digestive Colorectal 44204 SF701C 6C
Digestive Colorectal 44204 SF803C 5C
Digestive Colorectal 44204 SF806C 5C
Digestive Colorectal 44205 SF803C 5C
Digestive Colorectal 44206 SF808R 5C
Digestive Colorectal 44207 SF805R 6C
Digestive Colorectal 44207 SF703R 6C
Digestive Colorectal 44207 SF807R 6B
Digestive Colorectal 44208 SF805R 6C
Digestive Colorectal 44208 SF703R 6C
Digestive Colorectal 44208 SF807R 6B
Digestive Colorectal 44210 SF712C 6A
Digestive Colorectal 44210 SF804C 6A
Digestive Esophagectomy 43101 SF802E 5B
Digestive Esophagectomy 43107 SF809E 7B
Digestive Esophagectomy 43108 SM702L 7C
Digestive Esophagectomy 43112 SF809E 7B
Digestive Esophagectomy 43112 SM702L 7C
Digestive Esophagectomy 43113 SF809E 7B
Digestive Esophagectomy 43113 SM702L 7C
Digestive Esophagectomy 43116 SF806E 7C
Digestive Esophagectomy 43117 SF804E 6B
Digestive Esophagectomy 43117 SF809E 7B
Digestive Esophagectomy 43118 SF804E 6B
Digestive Esophagectomy 43118 SF809E 7B
Digestive Esophagectomy 43121 SF804E 6B
Digestive Esophagectomy 43122 SF804E 6B
Digestive Esophagectomy 43123 SF804E 6B
Digestive Esophagectomy 43124 SF812E 3A
Digestive Esophagectomy 43124 SF806E 7C
Digestive Pancreatectomy 48120 SF705P 4C
Digestive Pancreatectomy 48120 SF706P 5A
Digestive Pancreatectomy 48140 SF708P 5B
Digestive Pancreatectomy 48145 SF809P 7C
Digestive Pancreatectomy 48145 SF712P 5C
Digestive Pancreatectomy 48146 SF703P 7A
Digestive Pancreatectomy 48146 SF704P 7A
Digestive Pancreatectomy 48148 SF807B 5C
Digestive Pancreatectomy 48150 SF809P 7C
Digestive Pancreatectomy 48152 SF809P 7C
Digestive Pancreatectomy 48153 SF809P 7C
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Table A1. Cont.

Anatomical
System Type of Procedure CPT Code TOSP

Codes
TOSP
Table

Digestive Pancreatectomy 48154 SF809P 7C
Digestive Pancreatectomy 48155 SF809P 7C
Digestive Colorectal 44155 SF712C 6A
Digestive Colorectal 44155 SF804C 6A
Digestive Colorectal 44155 SF805C 6B
Digestive Colorectal 44156 SF805C 6B
Digestive Colorectal 44157 SF805C 6B
Digestive Colorectal 44157 SF713C 6C
Digestive Colorectal 44158 SF713C 6C
Digestive Colorectal 44211 SF713C 6C
Digestive Colorectal 44212 SF712C 6A
Digestive Colorectal 44212 SF804C 6A
Digestive Colorectal 44212 SF805C 6B
Digestive Colorectal 45110 SF845A 6B
Digestive Colorectal 45110 SF805R 6C
Digestive Colorectal 45111 SF805C 6B
Digestive Colorectal 45111 SF701R 5C
Digestive Colorectal 45112 SF807R 6B
Digestive Colorectal 45113 SF807R 6B
Digestive Colorectal 45114 SF701R 5C
Digestive Colorectal 45116 SF701R 5C
Digestive Colorectal 45119 SF807R 6B
Digestive Colorectal 45120 SF803R 5C
Digestive Colorectal 45120 SF700R 5C
Digestive Colorectal 45121 SF803R 5C
Digestive Colorectal 45126 SF703R 6C
Digestive Colorectal 45126 SF808R 5C
Digestive Colorectal 45126 SF805A 6B
Digestive Colorectal 45130 SF700R 5C
Digestive Colorectal 45135 SF700R 5C
Digestive Colorectal 45160 SF701R 5C
Digestive Colorectal 45395 SF805C 6B
Digestive Colorectal 45395 SF805C 6B
Digestive Colorectal 45397 SF713C 6C
Digestive Colorectal 45402 SF701R 5C
Digestive Colorectal 45550 SF701R 5C
Endocrine Thyroid 60200 SJ801T 3B
Endocrine Thyroid 60210 SJ802T 4A
Endocrine Thyroid 60212 SJ802T 4A
Endocrine Thyroid 60220 SJ804T 6A
Endocrine Thyroid 60220 SJ802T 4A
Endocrine Thyroid 60225 SJ804T 6A
Endocrine Thyroid 60225 SJ802T 4A
Endocrine Thyroid 60240 SJ803T 5C
Endocrine Thyroid 60240 SJ703T 6C
Endocrine Thyroid 60252 SJ702T 6A
Endocrine Thyroid 60254 SJ702T 6A
Endocrine Thyroid 60260 SJ702T 6A
Endocrine Thyroid 60270 SJ702T 6A
Endocrine Thyroid 60271 SJ702T 6A
Reproductive Hysterectomy/Myomectomy 58140 SI816U 3B
Reproductive Hysterectomy/Myomectomy 58146 SI815U 5A
Reproductive Hysterectomy/Myomectomy 58150 SI803U 4A
Reproductive Hysterectomy/Myomectomy 58150 SI804U 5C
Reproductive Hysterectomy/Myomectomy 58150 SI805U 5C
Reproductive Hysterectomy/Myomectomy 58150 SI812U 5C
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Table A1. Cont.

Anatomical
System Type of Procedure CPT Code TOSP

Codes
TOSP
Table

Reproductive Hysterectomy/Myomectomy 58152 SI702U 4C
Reproductive Hysterectomy/Myomectomy 58180 SI802U 4A
Reproductive Hysterectomy/Myomectomy 58210 SI825U 5C
Reproductive Hysterectomy/Myomectomy 58210 SI827U 5A
Reproductive Hysterectomy/Myomectomy 58210 SI828U 4A
Reproductive Hysterectomy/Myomectomy 58240 SI824U 6B
Reproductive Hysterectomy/Myomectomy 58260 SI837U 4A
Reproductive Hysterectomy/Myomectomy 58260 SI713V 4A
Reproductive Hysterectomy/Myomectomy 58262 SI723U 4B
Reproductive Hysterectomy/Myomectomy 58263 SI721U 4B
Reproductive Hysterectomy/Myomectomy 58270 SI713V 4A
Reproductive Hysterectomy/Myomectomy 58290 SI837U 4A
Reproductive Hysterectomy/Myomectomy 58290 SI713V 4A
Reproductive Hysterectomy/Myomectomy 58291 SI723U 4B
Reproductive Hysterectomy/Myomectomy 58292 SI721U 4B
Reproductive Hysterectomy/Myomectomy 58294 SI713V 4A
Reproductive Hysterectomy/Myomectomy 58541 SI713U 4B
Reproductive Hysterectomy/Myomectomy 58542 SI713U 4B
Reproductive Hysterectomy/Myomectomy 58543 SI712U 5A
Reproductive Hysterectomy/Myomectomy 58544 SI712U 5A
Reproductive Hysterectomy/Myomectomy 58545 SI709U 3C
Reproductive Hysterectomy/Myomectomy 58546 SI700O 4B
Reproductive Hysterectomy/Myomectomy 58548 SI800O 5C
Reproductive Hysterectomy/Myomectomy 58548 SI804O 4A
Reproductive Hysterectomy/Myomectomy 58550 SI718U 4B
Reproductive Hysterectomy/Myomectomy 58552 SI718U 4B
Reproductive Hysterectomy/Myomectomy 58553 SI718U 4B
Reproductive Hysterectomy/Myomectomy 58554 SI718U 4B
Reproductive Hysterectomy/Myomectomy 58570 SI713U 4B
Reproductive Hysterectomy/Myomectomy 58572 SI712U 5A
Reproductive Hysterectomy/Myomectomy 58940 SI805O 3B
Reproductive Hysterectomy/Myomectomy 58951 SI800O 5C
Reproductive Hysterectomy/Myomectomy 58951 SI711U 6A
Reproductive Hysterectomy/Myomectomy 58953 SI804O 4A
Reproductive Hysterectomy/Myomectomy 58954 SI800O 5C
Reproductive Hysterectomy/Myomectomy 58954 SI804O 4A
Musculoskeletal THA 27125 SB838H 5C
Musculoskeletal THA 27130 SB839H 6A
Musculoskeletal THA 27130 SB723H 6B
Musculoskeletal THA 27132 SB724H 6C
Musculoskeletal THA 27134 SB724H 6C
Musculoskeletal THA 27137 SB724H 6C
Musculoskeletal THA 27138 SB724H 6C
Kidney Nephrectomy 50220 SG816K 4B
Kidney Nephrectomy 50225 SG816K 4B
Kidney Nephrectomy 50230 SG804K 5C
Kidney Nephrectomy 50234 SG800K 5C
Kidney Nephrectomy 50236 SG800K 5C
Kidney Nephrectomy 50240 SG721K 5C
Kidney Nephrectomy 50543 SG720K 6A
Kidney Nephrectomy 50545 SG710K 6A
Kidney Nephrectomy 50546 SG700K 6A
Kidney Nephrectomy 50546 SG722K 4C
Kidney Nephrectomy 50548 SG700K 6A
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Table A2. List of features present in each CatBoost model.

Model Number

SN SH-1 Data Fields SH-2 Data Fields 0
(Baseline) 1 2 3 4 5

1 OT Code Room X X X X X X
2 Actual Duration In-Out Duration X X X X X X
3 First Surgeon Department Code Service Type X X X X X X
4 Priority of Operation Case Class X X X X X X
5 Department Code Division X X X X X X
6 OT Location Code Location X X X X X X
7 Procedure Code CPT List X X
8 Type of Anesthesia Primary Anesthesia Type X X X X X X
9 ASA Status ASA Rating X X X X X X

10 Age Patient Age X X X X X X
11 Gender Sex X X X X X X
12 Visit Type Patient Class X X X X X X
13 BMI BMI X X X X X X
14 Height Height X X X X X X
15 Weight Weight X X X X X X
16 First Surgeon ID Primary Physician ID X X X X X X
17 Second Surgeon ID Secondary Physician ID X X X X X X
18 Principal Anesthetist ID First Anesthetist ID X X X X X X
19 MA 1year_3rd MA 1year_3rd (calculated) X X X
20 Number of Procedures Number of Procedures X X X X X X
21 Number of Panels Number of Panels X X X X X X
22 Multiple Procedure Codes Sorted CPT List X X X X X X
23 Listing Duration Scheduled Duration X X X

Notations: OT: Operating Theatre; CPT: Current Procedure Terminology (transformed into Relative Value Units);
ASA: American Society of Anesthesiology; BMI: Body Mass Index; ID: Unique identifier; MA: Moving Average.

References
1. Ang, W.; Sabharwal, S.; Johannsson, H.; Bhattacharya, R.; Gupte, C. The cost of trauma operating theatre inefficiency.

Ann. Med. Surg. 2016, 7, 24–29. [CrossRef] [PubMed]
2. Weiser, T.G.; Regenbogen, S.E.; Thompson, K.D.; Haynes, A.B.; Lipsitz, S.R.; Berry, W.R.; Gawande, A.A. An estimation of the

global volume of surgery: A modelling strategy based on available data. Lancet 2008, 372, 139–144. [CrossRef]
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