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The cerebral vasculature is made up of highly specialized structures that assure constant

brain perfusion necessary to meet the very high demand for oxygen and glucose by

neurons and glial cells. A dense, redundant network of arteries is spread over the

entire pial surface from which penetrating arteries dive into the cortex to reach the

neurovascular units. Besides providing blood to the brain parenchyma, cerebral arteries

are key in the drainage of interstitial fluid (ISF) and solutes such as amyloid-beta.

This occurs along the basement membranes surrounding vascular smooth muscle

cells, toward leptomeningeal arteries and deep cervical lymph nodes. The dense

microvasculature is made up of fine capillaries. Capillary walls contain pericytes that

have contractile properties and are lined by a highly specialized blood–brain barrier that

regulates the entry of solutes and ions and maintains the integrity of the composition

of ISF. They are also important for the production of ISF. Capillaries drain into venules

that course centrifugally toward the cortex to reach cortical veins and empty into dural

venous sinuses. The walls of the venous sinuses are also home to meningeal lymphatic

vessels that support the drainage of cerebrospinal fluid, although such pathways are still

poorly understood. Damage to macro- and microvasculature will compromise cerebral

perfusion, hamper the highly synchronized movement of neurofluids, and affect the

drainage of waste products leading to neuronal and glial degeneration. This review will

present vascular anatomy, their role in fluid dynamics, and a summary of how their

dysfunction can lead to neurodegeneration.

Keywords: cerebral vessel, glymphatic, intramural periarterial drainage, small vessel disease, neurodegeneration,

perivascular space

INTRODUCTION

Damage to cerebral vasculature and reduction in cerebral perfusion initiate a cascade of events that
rapidly leads to disturbed cellular homeostasis and death of neurons and glial cells (1). The cerebral
arterial network of vessels is unique in its anatomy, and its flow dynamics is inextricably intertwined
with those of other fluids such as venous blood, cerebrospinal fluid (CSF), and the interstitial fluid
(ISF) (2, 3). Emerging evidence regarding the role of cerebral vasculature in the drainage of solutes
and fluids adds to the complexity of the overall interaction with neurofluids.

The arteries of the brain have a dual function: to supply oxygenated blood to neurons and glia
and to drain ISF. Neurons and glial cells are constantly “at work,” even during rest, and this very
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high demand for oxygen and glucose requires a steady supply
of oxygenated blood. Histological and tracer studies reveal the
intricate relationship of cortical arteries with meningeal sheaths
and the constitution of the perivascular compartment and spaces
that provide a pathway for inflow and outflow of ISF (4–6).
Cerebral capillaries are considered important sites of CSF and ISF
production and absorption. Capillaries drain into venules that are
hierarchically organized and run centrifugally toward the cortex.
All venous drainage occurs through dural venous sinuses that
drain toward the neck veins. The walls of dural venous sinuses
are also home to meningeal lymphatic vessels (7, 8), with a role
in the drainage of CSF. In this review, a brief overview of the
current evidence for the anatomy and function of vessels in the
brain will be provided, followed by a summary of mechanisms
of interaction of what we term “neurofluids”: blood, CSF, and
ISF (2). A disruption of such mechanisms will trigger a series of
pathological events such as microvascular injury, failure of ISF
drainage, local deposition of amyloid-beta as cerebral amyloid
angiopathy (CAA), focal ischemia, and demyelination.

Arterial and Capillary Systems
The brain parenchyma is supplied by two internal carotid arteries
(ICAs) and two vertebral arteries. The ICA enters the skull-base
through the carotid canal, located in the petrous portion of the
temporal lobe. It pierces through the dura mater at the level
of the cavernous sinus and bifurcates within the subarachnoid
space (SAS) into middle cerebral arteries and anterior cerebral
arteries. The ICA carries ∼80% of the total blood to the brain.
The vertebral arteries enter the vertebral foramina at the level
of C6; they exit out of C1 foramina, loop around the posterior
arch of the atlas as they enter the foramen magna, and lies on
the ventral surface of the brain stem to form the basilar artery
(BA). The BA terminates into two posterior cerebral arteries.
The anterior (ICA and its branches) and the posterior circulation
(vertebral arteries and its branches) arteries come together at the
base of the skull to form the circle ofWillis that lies in the cisternal
space (9).

A rich, anastomotic network of leptomeningeal arteries
spreads over the pial surface from which numerous branches
(arterioles) sprout out and pierce the glia limitans to dive into
the cortex at approximately right angles to it. From a structural
point of view, both pial arteries and penetrating arterioles lack
an external elastic lamina, but leptomeningeal arteries retain
an internal elastic lamina (10). The gray matter (GM) has a
larger number of arterioles with respect to those in the white
matter (WM) with a ratio of 8:1, which is proportionate to
the elevated energy demand of the more cellular GM (11, 12).
Penetrating arterioles are completely encased by a sheet of
pia mater, which reflects off the cortical surface, separating
them from the surrounding SAS and the brain parenchyma (4)
(Figure 1). However, around the perivascular compartment of
the arterioles in the WM, there are two such sheaths, creating
a potential space for the accumulation of edematous fluid (13).
At the capillary level, direct observations under the electron
microscope in a variety of species reveal that the basement
membrane of the pial sheath and the basement membranes of
the astrocytes (glia limitans) fuse together to create a perivascular

FIGURE 1 | Diagrammatic summary of the structure of an arteriole in the gray

matter. Endothelium hosts the blood–brain barrier. There are several layers of

smooth muscle cells separated by basement membranes. Adventitial

leptomeningeal sheath has its own basement membrane that fuses with the

basement membrane of astrocyte end feet to form a perivascular

compartment or perivascular space. Diagram drawn by Marco Fanuli.

compartment, or periarterial space, filled with an extracellular
matrix (ECM), which is not continuous with the SAS (4, 14)
and referred to as the “perivascular space” (PVS) (Figure 1).
Indeed, PVSs, or more appropriately the periarterial spaces,
are not visible within the cortical GM even under pathological
conditions, whereas they are seen in the WM both in histological
specimens and on neuroimaging (13, 15). Changes in the walls of
capillaries and arterioles associated with aging, hypertension, or
diabetes mellitus lead to small vessel disease (SVD) and vascular
dementia (16, 17).

Pial surface arterial networks are richly innervated by
sympathetic nerves from the superior cervical ganglion,
sphenopalatine, otic, and trigeminal ganglia that release
several neurotransmitters and neuromodulators such as a
vasoactive intestinal peptide, nitric oxide synthase, acetylcholine,
norepinephrine, and substance P (18). This innervation, also
termed “extrinsic” innervation, ends in the precapillary segment
and, more precisely, where the PVS terminates. The extrinsic
innervation is primarily responsible for a prompt myogenic
response to temporary pressure differences. According to
Poiseuille’s law, a change in radius directly affects resistance
to flow to the fourth power, thereby modulating blood flow
instantly and efficaciously (19). Intraparenchymal arterioles
are innervated by nerves arising from the nuclei of basal
forebrain such as the locus coeruleus, nucleus basalis of
Meynert, and raphe nuclei in the brain stem that release
norepinephrine, acetylcholine, and 5-hydroxythyrosine as well
as other neuropeptides either directly to the walls of capillaries
or indirectly via local interneurons and astrocytes (18, 20). Such
nerve endings are likely to control the intrinsic spontaneous
contractile activity of vascular smooth muscle cells (VSMCs)
in the tunica media, also termed “vasomotion.” Vasomotor
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oscillations form the basis of ultra-slow 0.1-Hz wave activity in
the microvasculature independent of neuronal activity (21, 22).

A dense capillary anastomotic network characterizes the GM
and varies with its depth (23). Approximately 50–60% of total
blood volume is within the capillaries (23). Capillary walls
are made up of a single layer of endothelial cells, pericytes,
and a basal lamina made up of collagen type IV, heparan
sulfate proteoglycans, laminin, fibronectin, and other ECM
proteins, in various proportions and with different isoforms
depending on the type of vessel (24–26). The endothelial cells
are bound together by tight junction proteins such as claudins
and occludins, creating a highly regulated blood–brain barrier
(BBB) that restricts transcellular flux of ions and hydrophilic
solutes, shielding the internal parenchymal milieu from even the
slightest fluctuations in the osmolarity of surrounding tissues and
blood plasma (27, 28). The endothelium contains a spectrum
of receptors essential for the entry and efflux of peptides,
such as low-density lipoprotein related protein-1 or adenosine
triphosphate-binding cassette transporters, which are essential
for the efflux of soluble amyloid-beta from the brain parenchyma
(29). The abluminal surface of the capillaries is continuous with
astrocytic end feet (or glia limitans), containing aquaporin-4
(AQP-4) water channels.

Venous System
The parenchymal microvasculature drains deoxygenated blood
centrifugally from the ventricular ependymal surface toward the
cortical pial surface, via medullary venules and veins arranged
hierarchically and centrifugally from the ventricular ependymal
wall toward the cortex (30). Large cortical bridging veins, such
as the vein of Labbè and the Trolard vein, empty into the
superficial dural venous sinuses (31). The superior sagittal sinus
subdivides into right and left transverse sinus and continues
directly via sigmoid sinuses into the internal jugular veins,
extracranial neck vessels, and the intra- and extra-spinal venous
plexi, conveying deoxygenated blood to the right atrium (32, 33).
Deep internal veins form the inferior sagittal sinus, the vein of
Galen, and the straight sinus to drain into the superior sagittal
sinus posteriorly. Anterior venous drainage occurs through the
cavernous sinus, sphenopetrosal sinuses, and sigmoid sinuses.
Several anatomical variations exist, and veins can vary in number,
size, symmetry across hemispheres, and their extracranial venous
drainage patterns, adding to the complexity of the cerebral
venous system. It is important to note that dural venous sinuses
are valveless, making cephalad retrograde flow possible in cases
of obstruction to downward flow (34).

Surrounding each parenchymal arteriole are eight venules
(5). Venules typically have a larger lumen area and a thinner
vessel wall with respect to arterioles (35). Exiting venules in
the cortex are surrounded by an incomplete layer of pia mater
(4). Paravenous spaces communicate with the SAS directly. The
first reports of the presence of lymphatic vessels in the dura
mater were reported in 1787, whereas histologic evidence of their
existence was providedmuch later (36). More recently, lymphatic
channels were described lining the dural venous sinuses that
appear to be additional routes for the drainage of fluids and cells
toward the deep cervical lymph nodes (7, 8). Lymphatic channels

are also found in the cribriform plate that drains fluids, cells, and
solutes via nasal lymphatics toward the superficial cervical lymph
nodes (37).

Production and Drainage of Cerebrospinal
Fluid and Interstitial Fluid
Our classic understanding of CSF fluid production and
absorption is being challenged, as new evidence suggests
that CSF production also occurs at other sites such as the
capillary endothelial surface, as formulated by the Bulat–Klarica–
Orešković hypothesis (38). Almost 80% of CSF is secreted by
fenestrated capillaries in the choroid plexi at a rate of ∼0.3–
0.4 ml/min for a total production of 430–580ml daily. CSF
secretion across the blood–CSF barrier depends on hydrostatic
and osmolarity gradients that exist between the plasma and the
intraventricular CSF fluids. CSF comprises 99% water, some ions,
and negligible quantities of proteins and glucose. Arachnoid
granulations found in the dural venous sinuses are traditionally
recognized to play a prime role in CSF reabsorption. However,
the contemporary presence of the meninx primitiva and the lack
of arachnoid granulations in the fetus suggests that there must be
alternative routes for its absorption (37, 39).

There are multiple sources of ISF production, such as filtration
across the capillaries via the development of hydrostatic and
osmotic pressures across the endothelium, secretion through
choroid plexi, and cellular metabolism (40, 41). ISF fills the
extracellular space (ECS) or interstitial space. This space contains
an ECM made up of glycosaminoglycans, glycoproteins (e.g.,
laminins, collagen, chondroitin, fibronectin) and proteoglycans
(e.g., hyaluronic acid, heparan sulfate). Such an environment
determines a negatively charged ambient necessary for cellular
communication, volume transmission, immunosurveillance, and
a binding capacity for solutes to be transported around brain
areas. ECS occupies∼15–20% of the total brain volume, and this
volume can change in physiologic and pathologic conditions such
as sleep, under anesthesia, and stroke (42–45). ISF is also the
primary fluid medium for waste removal; however, the presence
of BBB notably restricts the movement of proteins across
the capillaries, which suggested that there must be alternative
pathways. Bulk flow of ISF through the brain parenchyma was
proposed as a route to flush out waste products and fluids
toward the ventricular ependymal walls (46). In the past decade,
multiple waste clearance pathways have been characterized in the
brain: the glymphatic pathway, intramural periarterial drainage
pathway (IPAD), flow along cranial nerves, and meningeal
lymphatics along the dural venous sinuses (6, 39, 47), still
extensively debated (48, 49). The glymphatic system proposes
that CSF from the SAS recycles along the para-arterial spaces and
enters the brain tissue via astrocytic AQP-4 water channels. CSF
intermingles with ISF, which flows toward paravenous spaces via
bulk flow, thus flushing out fluids and solutes from the brain
(50, 51). However, diffusion rather than bulk flow may be the
likely principal mechanism for flowwith an unclear role for AQP-
4 channels (40, 52–55). Also, the mechanism of unidirectional
CSF flow along intraparenchymal para-arterial spaces remains
debatable, as arterial pulsations alone do not determine such flow
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(56). Furthermore, the glymphatic hypothesis does not explain
why in CAA, the deposition of proteins occurs in the tunica
media of arterioles and arteries, spreading to occupy the whole
of the arterial wall and rarely involves veins (57–59).

On the other hand, tracer injection studies in animal brains
have unequivocally demonstrated that one important route for
ISF and solute removal is the IPAD. For decades, perivascular
compartments have been considered to play a fundamental
role in the removal of waste products (36, 60, 61). According
to this mechanism, fluids and waste products flow within
the basement membranes of arterioles and arteries in the
opposite direction to arterial blood flow within their lumen
and is primarily driven by vasomotion (62–65). The ultraslow
frequency oscillation (<0.1Hz) appears to be critical to the
clearance of solutes. Electrophysiologically observed slow-wave
oscillations characteristic of sleep are intricately associated with
large CSF flow oscillations suggestive of vasomotion driven
clearance of CSF and thereby of solutes and supportive of IPAD
pathways of clearance (66).

Neurofluid Physiology
To understand the interaction between the several space-
competing compartments within the cranium, we must remind
ourselves of the Monro–Kellie hypothesis, which remains a
cardinal principle in the understanding of fluid movements
(67). This hypothesis maintains that because the brain contents
are enclosed in a non-expandable bony skull, the total brain
volume must remain constant at all times to avoid a dangerous
increase in ICP (68). However, with the recent discoveries of
meningeal lymphatics and the understanding of mechanisms
for brain waste clearance mechanisms, it has become necessary
to revisit the original Monro–Kellie doctrine (69). With every
systole, an increase in arterial pressure pumps ∼700ml of
oxygenated blood, causing inflation of arteries, arterioles, and the
microvascular bed (70). This expansion of vessels will squeeze
ISF and CSF from the interstitium and promote flow. The
creation of a pressure gradient between the cranial SAS and the
spinal SAS will cause displacement of CSF toward the spinal
SAS and facilitate venous outflow toward the extracranial neck
vessels (3, 71). During diastole, as the elastic vessels relax,
CSF flows back with little net forward displacement. Such
pulsatile forces will also create a variable magnitude of brain
tissue deformation, generating additional forces affecting blood
flow, production, and absorption of ISF and CSF. The intrinsic
viscoelasticity of the brain, or brain compliance, is the capacity
of brain tissue to deform in conditions of intracranial pressure
changes. Such mechanical and viscoelastic properties vary in
different brain regions and depend on cellular morphology,
capillary distribution, the compactness of white matter axons,
their orientation, and ECM composition (72). These properties
are different both at a macroscale (WM is stiffer than GM)
and at a microscale (cortical GM is stiffer than hippocampal
GM; WM in the corpus callosum is stiffer than WM in the
corona radiata) (72). WM is three times stiffer than GM,
accounting for differential response to compression load (73).
Physiologic rheological properties of the brain can be measured
in vivo by magnetic resonance elastography (74, 75). Thus, in

FIGURE 2 | (A) The fine anatomy of the cerebral arterial wall. An artery is lined

by endothelium (Endo) and coated by the tunica media (TM) composed of

smooth muscle cells and by the outermost tunica adventitia (TA) composed of

connective tissue. As it enters the brain, the artery loses the tunica adventitia

but is still coated by a layer of pia-arachnoid (Pia) that intervenes between the

artery and the glia limitans (GL) of the brain. As the arteriole divides into

capillaries, the tunica media, and the layer of pia mater are lost. Thus, at the

level of the capillary, the GL is in direct contact with the wall of the capillary. (B)

Schematic representation of the IPAD and convective influx/glymphatic

systems of the brain. On the left-hand side of the diagram, an artery enters the

brain from the SAS, and an arteriole divides into capillaries. Tracers in the CSF

enter the brain along the pial-glial basement membrane (1) between the pia

mater and the GL (indicated by a green arrow) and enter the brain parenchyma

and interstitial fluid by an aquaporin four-dependent mechanism, which is the

glymphatic pathway (2). On the right-hand side of the diagram, the red arrows

indicate the intramural perivascular lymphatic drainage pathway by which

interstitial fluid (ISF) and solutes pass out of the brain along basement

membranes in the walls of capillaries (3a) and along basement membranes

surrounding smooth muscle cells in the tunica media of arterioles and arteries

(3b). Reproduced with permission from Morris et al. (90)
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one magnetic resonance elastography study, the compression
of internal jugular veins in the neck was shown to increase
CSF pulsatility in the brain and increase stiffness within
the brain parenchyma in accordance with the Monro–Kellie
doctrine (75).

Cerebrovascular Damage and
Neurodegeneration
Our attention is drawn to the intricate coupling of arterial,
venous, CSF, and brain parenchymal dynamics; damage to
any one of them can initiate a cascade of events affecting
clearance of waste products in the brain and lead thereby to
neurodegeneration. Reduced cerebral perfusion is considered a
potential link between vascular risk factors and the development
of SVD, vascular dementia, and Alzheimer’s disease (AD)
(76). The most important risk factors are advancing age and
hypertension, both of which will hamper cerebral blood flow
by directly damaging arterial walls and the microvasculature.
Patients with SVD and AD often present with increased
arterial stiffness, altered BBB permeability, VSMC loss, multiple
fenestrations in the internal elastic lamina, remodeled arterial
wall basement membranes, pericyte degeneration, increased
intercapillary distance, reduced capillary density, increased
arteriolar tortuosity, and swelling of astrocyte end feet, ultimately
reducing the capacity for an optimal exchange of substances
across the capillary endothelium (77–80). The inefficient transfer
of pulsatile energy from the arterial bed toward the capillaries
and the venous walls will disrupt hydrostatic forces. Arterial
vasomotion will also be affected in several ways: direct arterial
wall damage, deposition of amyloid-beta, and loss of cholinergic
innervation of VSMCs. The geometry of ECS changes with age
and disease, as free water within the parenchyma increases and
toxic solutes such as amyloid-beta deposit within the extracellular
space (81). In this scenario, the glymphatic/convective influx as
well as IPAD will be hampered.

As the density of capillaries is lower in the white matter than in
the gray matter and capillary basement membranes are the entry
portals for IPAD bywhich ISF and solutes drain from brain tissue,
the shortage of capillaries in the white matter may be a factor in a
reduced capacity for IPAD in the white matter (82). Obstruction
of CSF drainage from the cerebral ventricles results in dilatation
of the ventricular system and the accumulation of fluid in the
periventricular white matter in the acute stages of hydrocephalus

with the slowly progressive destruction of white matter fibers and
gliosis, suggesting that the capacity for IPAD is lower in the white
matter compared with the gray matter (83).

Damage to veins, venules, and capillaries can also characterize
other subtypes of SVD, such as perivenous collagenosis (84). This
is characterized by concentric thickening of venular walls and
pathological deposition of collagen resulting in leukoaraiosis or
white matter hyperintensities on magnetic resonance imaging.
Occlusion of venules and veins causes hypoperfusion and
ischemia and affects the drainage of CSF via meningeal
lymphatics (85).

There are several, albeit nonspecific, magnetic resonance
imaging biomarkers such as dilated PVS, white matter
hyperintensity, cerebral microbleeds, and superficial siderosis
that characterize SVD, AD, and CAA that are an expression of
impaired clearance of proteins and fluids, focal ischemia, and
deposition of amyloid-beta within the walls of capillaries and
neurodegeneration (82, 86–89). Neural tissue can become stiffer
via several processes such as Wallerian degeneration, axonal
atrophy, loss of oligodendroglial cells, microglial activation,
neuroinflammation, and microvascular damage, resulting in a
range of microstructural changes from increased tissue water
content to progressive gliosis and loss of volume.

There is substantial evidence that fluid movements in the
brain are related such that damage to one compartment
can lead to several events leading to neuroglial vascular
compromise (Figure 2). In particular, the morphological damage
to macro/microvasculature or their dysfunction will most likely
compromise the movement of fluids, with impact on the
perfusion of the brain and the drainage of CSF, ISF, altering the
homeostasis of the brain, which in turn leads to neuronal cell loss
and dementia.
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