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Abstract

The development of neural crest-derived pigment cells has been studied extensively as a model for cellular differentiation,
disease and environmental adaptation. Neural crest-derived chromatophores in the zebrafish (Danio rerio) consist of three
types: melanophores, xanthophores and iridiphores. We have identified the zebrafish mutant endzone (enz), that was
isolated in a screen for mutants with neural crest development phenotypes, based on an abnormal melanophore pattern.
We have found that although wild-type numbers of chromatophore precursors are generated in the first day of
development and migrate normally in enz mutants, the numbers of all three chromatophore cell types that ultimately
develop are reduced. Further, differentiated melanophores and xanthophores subsequently lose dendricity, and iridiphores
are reduced in size. We demonstrate that enz function is required cell autonomously by melanophores and that the enz
locus is located on chromosome 7. In addition, zebrafish enz appears to selectively regulate chromatophore development
within the neural crest lineage since all other major derivatives develop normally. Our results suggest that enz is required
relatively late in the development of all three embryonic chromatophore types and is normally necessary for terminal
differentiation and the maintenance of cell size and morphology. Thus, although developmental regulation of different
chromatophore sublineages in zebrafish is in part genetically distinct, enz provides an example of a common regulator of
neural crest-derived chromatophore differentiation and morphology.
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Introduction

The neural crest is a transient vertebrate embryonic cell

population that gives rise to a wide variety of cell types, including

chromatophores, craniofacial cartilage, and neurons and glia of

the peripheral nervous system [1]. This array of neural crest-

derived cell types has long been of interest in studying the

mechanisms of cell diversification among embryonic cell popula-

tions. The development of neural crest-derived chromatophores in

particular has been studied extensively, and many important

mechanistic insights have resulted from the analysis of mouse and

zebrafish mutants [1–5].

Vertebrate chromatophore populations are readily observed, as

they produce their own visible intrinsic markers. In addition,

chromatophores are not strictly required for viability [5–7]. As a

result, chromatophores have long been used to study develop-

mental processes such as cell fate specification, proliferation,

migration, differentiation, and survival. Mice and other mammals

have a single chromatophore cell type termed melanocytes [8].

Hundreds of mouse coat color mutants have been identified,

covering over 100 loci, which affect multiple cellular processes

[4,5]. Further, many of these mutations in mice have proved to be

medically relevant as models for human diseases involving the

same genes [9]. Besides the melanocytes (melanophores) also

found in mammals, zebrafish and other ectotherms possess neural

crest-derived yellow xanthophores and iridescent iridiphores

[10,11]. In addition to the isolation of several zebrafish

chromatophore mutants that arose spontaneously [12,13], numer-

ous mutagenesis screens have yielded over 100 mutations affecting

various processes in the development of different combinations of

the chromatophore types [6,14–17].

Studies from several vertebrates, including zebrafish, have led to

the extensive characterization of melanophore development, and

to a lesser extent, xanthophore and iridiphore development

[2,4,8,18,19]. Prior to overt differentiation, chromatophore

precursors are referred to as chromatoblasts, and can be identified

by expression of genes specific to one or multiple chromatophore

sublineages. Sox10, mutations in which cause Waardenburg-

Hirschsprung Syndrome in humans, is required for development

of nonectomesenchymal neural crest derivatives, including all

chromatophores, as well as many peripheral neurons and glia

[20,21]. Sox10 has been shown to directly regulate expression of

microphthalmia-associated transcription factor (mitf), which is both

necessary and sufficient for melanophore development, and

dopachrome tautomerase (dct), an enzyme in the melanin synthesis

pathway [6,22–24]. The receptor tyrosine kinase c-kit is also

expressed by melanoblasts, and appears to be necessary for their

migration and survival [25,26]. Similarly, the kit ortholog fms,

which has no known role in mammalian melanocyte development,

is required for the migration of embryonic xanthophores and the
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specification of a subset of adult melanophores in zebrafish

[27,28]. fms is expressed by embryonic xanthoblasts and

macrophages, which can be distinguished from one another based

on location and cellular morphology [28–30]. Synthesis of yellow

pteridine pigments, found in xanthophores, requires xanthine

dehydrogenase (xdh), which is correspondingly expressed by xantho-

blasts [28,31,32]. Both fms and xdh are co-expressed in a subset

mitf+ cells in the premigratory neural crest, which may represent

uncommitted precursors of melanophores or xanthophores [28].

Neither of these genes is co-expressed with c-kit, however, and both

have been used as specific diagnostic markers of xanthoblasts at

migratory and post-migratory stages of chromatophore develop-

ment [28,33]. The enzyme GTP-cyclohydrolase (Gch) is involved

in the conversion of intermediates of both melanin and pteridine

synthesis [34–36]. Accordingly, gch expression is observed in both

melanoblasts and xanthoblasts [28]. A G protein-coupled receptor,

endothelin receptor (ednr) b, is also expressed by neural crest-derived

chromatophore precursors [37–41] Homozygous ednrb mutant

mice are almost completely devoid of melanocytes [4,5]. In

contrast, zebrafish ednrb1/rose mutants display defects in subsets of

adult melanophores and iridiphores but lack an embryonic

chromatophore phenotype [37]. In the zebrafish embryo, ednrb1

is initially expressed by all chromatophore sublineages, but by late

embryonic/early larval stages, is restricted to iridiblasts and

iridiphores [37].

Morphologically, differentiated melanophores and xantho-

phores are large and dendritic with many processes, while

iridiphores are rounded in shape [8]. In ectotherms, considerable

attention has been given to mechanisms of color adaptation,

reversible changes in pigmentation brought on by prolonged

exposure to either light or dark environments [42]. Extensive

analyses, especially in a variety of fish species, have revealed that

this occurs through relocalization of pigment organelles within

cells, changes in cell morphology, and proliferation and apoptosis

of chromatophores [42–45]. In adults, these processes appear to be

under hormonal, as well as nervous control [43–45]. a-

melanophore-stimulating hormone (a-MSH) and melanin-concen-

trating hormone (MCH) appear to have mutually antagonistic

effects on melanophores, with a-MSH enhancing melanin and

melanophore development, and MCH promoting aggregation of

melanosomes and downregulating secretion of a-MSH [46–49].

The effects of a-MSH are enacted in part through influence on mitf

expression in mammals [50–52]. Rho GTPase-mediated cytoskel-

etal rearrangements may play roles in redistribution of pigment

organelles and dendrite collapse [42].

Despite these and other data that have been amassed regarding

chromatophore development in a variety of vertebrate systems,

many questions remain. For example, relatively few genes have

been identified that are required for the development of all

embryonic chromatophores, and yet are specific to chromato-

phore sublineages within the neural crest. For example, Sox10 is

necessary for development of chromatophore sublineages, but is

also required for some crest-derived neurons and glia, and

mammalian ednrb is necessary for both melanocyte and enteric

neuron development [39,53–57]. Further, although expressed by

all three zebrafish chromatophore cell types, ednrb1 appears to be

dispensable for their embryonic development [37]. While

hormonal and neuronal influences have been demonstrated for

pigment distribution, cell morphology, proliferation and survival of

differentiated chromatophores, less is known about the down-

stream effectors governing these processes. Additionally, these

studies focus on adults, and comparatively little is known about

control of pigment cell morphology or color adaptation at

embryonic stages.

We report here characterization of the zebrafish mutant

endzoneb431 (enzb431;enz), which was isolated based on the abnormal

appearance of embryonic chromatophores. Our results indicate

that all three chromatophore types are similarly reduced in cell

size and number in enz mutant embryos. We show that enz is

required specifically for chromatophore sublineages within the

neural crest, and that this requirement is cell autonomous.

Further, we report the identification of multiple enz alleles and

progress toward the molecular identification of the enz locus. We

suggest that enz is a relatively late cue required by pigment cell

sublineages of the neural crest during embryogenesis, and is

indicative of common requirements of chromatophores that are

distinct from other neural crest derivatives.

Results

Live phenotype of endzone mutants
enz was identified in a chemical (ethyl-nitrosourea, ENU)

mutagenesis screen for mutations affecting neural crest derivatives

as previously described [15]. The enz mutant was identified based on

its altered pigment pattern. At 54 hours post-fertilization (hpf), the

morphology of melanophores is dramatically altered being smaller

and less stellate in enzb431 mutant embryos compared to wild-type

siblings (compare insets, Fig. 1A, B). In addition, the pigmented

retinal epithelium (PRE) of enz homozygotes, which is not neural

crest-derived, is pale compared to that of wild-type siblings prior to

48 hpf. Unlike crest-derived melanophores, however, the PRE

phenotype recovers rapidly (Fig. 1 and data not shown). At 54 hpf,

enzb431 embryos also lack the characteristic yellow cast caused by

xanthophores concentrated dorsally in wild-type embryos (Figure 1).

In addition, iridiphores are reduced in number and size in 82 hpf

and 6 days-postfertilization (dpf) enz mutant larvae compared to wild-

type siblings (Figure 1F-H, Table 1 and data not shown). Recently,

we identified three additional ENU-induced enz alleles as determined

by non-complementation of enzb431 and linkage analysis (Figure 1

and data not shown). All four enz alleles are recessive. These alleles

vary in the severity of the developmental defects in all three

chromatophore phenotypes. enzos15 is less severe than enzb431, enzos7,

and enzos18, which are similar in expressivity. All data refer to enzb431

unless otherwise specified. Most enz homozygotes do not develop

swim bladders, and subsequently fail to survive past early larval

stages (Figure 2A, B). enz mutant larvae that do develop swim

bladders survive, but are runted compared to wild-type siblings

through adulthood. Qualitative differences in melanophore pigmen-

tation persist through at least 30 dpf (Figure 2). As adults, enz

homozygotes are viable as both males and females, and are fertile

(not shown), although they remain smaller than wild-type siblings.

Within the neural crest lineage, enz selectively affects
chromatophore development

Because of the visible defects in neural crest-derived chromato-

phore development in enz mutant embryos, we investigated

whether the development of other cell types derived from the

neural crest were affected by the enz mutation. Molecular markers

indicated that neural crest-derived peripheral neuron and cranial

glial populations develop normally in enz homozygotes (Table 2).

For example, cervical sympathetic neurons, enteric neurons, and

neurons of the dorsal root ganglia are all present in qualitatively

normal numbers and positions in enz mutant embryos (Figure 3

and data not shown). Craniofacial cartilage, stained with alcian

blue, was also found to be normal in terms of individual elements

and their shapes (Figure 3A, B). In addition, the pan-neural crest

marker crestin was used to analyze neural crest populations at

different embryonic stages. In wild-type embryos, crestin is first

Chromatophore Morphology

PLoS ONE | www.plosone.org 2 July 2008 | Volume 3 | Issue 7 | e2845



Figure 1. All three neural crest-derived chromatophore cell types are affected by enz mutations. Dorsal views of 54 hpf (A–E) and 82 hpf (F–J)
wild-type (A, F) and enz mutant (B–E, G–J) embryos. (A, A inset) Wild-type melanophores are stellate and darkly pigmented at 54 hpf. (B–E) In contrast,
enzb431 (B), enzos7 (C), enzos15 (D) and enzos18 (E) mutant embryos have small, punctate melanophores at this stage (compare insets in A and B). Yellow
xanthophores, observed dorsally in the head of wild-type embryos (arrowhead in A) appear to be absent in enz homozygotes (B–E, arrowheads). (F–J)
Iridescent iridiphores are also reduced in size in enz mutants (G–J, arrowheads) compared to wild-type siblings (F, arrowheads) at 82 hpf.
doi:10.1371/journal.pone.0002845.g001

Chromatophore Morphology
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Figure 2. enz larvae and adults are undersized compared to wild-type siblings. Lateral (A, B) and dorsal (C, D) views of 7 dpf wild-type (A, C)
and enz (B, D) larvae. (A) Wild-type zebrafish develop swim bladders between 4 and 6 dpf (arrowhead). (B) The vast majority of enz homozygous
larvae do not develop swim bladders (arrowhead). Some melanophores recover in size and morphology in enz homozygotes (D) compared to wild-
type siblings (C). (E–L) Those enz homozygous larvae that do develop swim bladders survive, but are runted compared to wild-type siblings (stage-
matched wild-type and enz mutant larvae shown at the same magnification). Lateral (E, F) and dorsal (G–J) views of wild-type (E, G, I) and enz mutant
(F, H, J) larvae at 21 dpf (E–H) and 30 dpf (I, J). Melanophores continue to be paler in enz mutant larva than in wild-type siblings through at least 30
dpf (see arrowheads in G–J). (K, L) Lateral views of 119 dpf wild-type (K) and enz homozygous (L) adults. Normal overall morphology and
pigmentation of enz mutant adults, as well as nascent fin stripe formation (L, arrowheads), suggests generalized growth retardation in enz mutants
compared to wild-type siblings.
doi:10.1371/journal.pone.0002845.g002

Chromatophore Morphology
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expressed in neural crest cells at the boundary of neural and non-

neural ectoderm during gastrulation. Expression continues in

premigratory and migratory neural crest cells, and persists until

slightly after overt differentiation of neural crest derivatives, such

that by 24 hpf, crestin-expressing cells are found throughout the

embryo [58]. crestin expression is normal in enz embryos at all

stages, indicating that neural crest induction and migration are

unaffected by the enz mutation and that neither the proliferation or

survival of early neural crest cells are overtly compromised by the

enz mutation (Figure 4A, B and data not shown). Further, we

examined the expression of genes that, within the neural crest, are

expressed by precursors for melanophores, [23], xanthophores

[28] and all three chromatophore cell types [37] at 24 hpf.

Expression of each gene is qualitatively normal at this stage,

suggesting that effects of the enz mutation on crest-derived

chromatophores occur relatively late in the development of these

cell populations (Figure 4C–H). These data indicate that within

the embryonic neural crest lineage, enz is required specifically for

chromatophore development and only after neural crest dispersal

and initial differentiation have largely occurred.

Reduced numbers of differentiated chromatophores in
enz mutant embryos

To determine whether appropriate numbers of chromatophores

are generated in enz mutant embryos, we counted differentiated

melanophores and iridiphores in enz homozygotes and wild-type

siblings. At 4 dpf, the number of melanophores in enz mutant

embryos is significantly reduced compared to wild-type siblings

(P,0.0001, Table 1). Likewise, iridiphore numbers are reduced in

enz homozygotes compared to wild-type siblings at 6 dpf

(P,0.0001, Table 1). In both cases, only about 75% of the wild-

type complement of each class of chromatophores is present in enz

mutants at the stages examined. Quantification of xanthophore

numbers was precluded by indistinct boundaries and overlap

between these cells. However, methylene blue staining (see below)

at 3 dpf, as well as fms expression between 48 and 53 hpf, revealed

that while many xanthophores are present in enz homozygotes,

their numbers are reduced in a manner qualitatively similar to that

of melanophores and iridiphores (Figure 5 and data not shown).

Thus, enz mutations appear to result in similar reductions in the

numbers of differentiated chromatophores, while other neural

crest-derived cell types are unaffected.

Chromatophore cell morphology is altered in enz mutant
embryos

In wild-type zebrafish embryos raised at 28.5uC, neural crest-

derived melanophores normally begin to differentiate at approx-

imately 25 hpf, while xanthophores and iridiphores begin to

overtly differentiate at about 42 hpf and 72 hpf, respectively [59].

By 27 hpf, primarily in anterior regions, large, stellate, dark

melanophores are present in wild-type embryos. In enz mutant

embryos, as in wild-type siblings, melanophores differentiate at

,25 hpf (data not shown). At 27 hpf, enz melanophores are

stellate, but pale compared to those of wild-type siblings

(Figure 5A, B). After 27 hpf, enz melanophores begin to transition

from the initial pale, stellate appearance to a dark, punctate form,

while wild-type melanophores remain stellate and dark. The

transformation of melanophores occurs in a rostro-caudal wave,

and is complete by about 48 hpf (Figure 5C–F and data not

shown). We hypothesized that this apparent change in cell

morphology of enz melanophores might be the result of either

redistribution of melanosomes within cells or of a change in cell

shape. To distinguish between these two possibilities, we

performed in situ hybridization of melanized 36 hpf and 48 hpf

wild-type and enz mutant embryos, using the melanophore

sublineage-specific riboprobes c-kit [7] and dct [23]. In wild-type

embryos, c-kit and dct mRNAs are distributed throughout the cell

cytoplasm, including in the processes, reflecting stellate cellular

morphology (Figure 5G, H and data not shown). The distribution

of dct and c-kit mRNAs is punctate in enz melanophores, similar to

the distribution of melanin (Figure 5I, J and data not shown). This

is consistent with a cell morphology change, rather than only

relocalization of melanin or melanosomes within a stellate cell.

Subsequently, we quantified the area of punctate melanophores in

enz mutant embryos compared to stellate melanophores in wild-

type siblings. At 2 dpf, wild-type melanophores at cephalic levels

have a mean area of 282.1619.1 mm2, while enz melanophores at

similar axial levels have a mean area of 21.961.7 mm2 (P,0.0001,

Table 3). The change in melanophore cell morphology in enz

mutant embryos further suggested that the apparent absence of

yellow pigmentation might be due at least in part to a reduction in

size of xanthophores in these embryos. Individual xanthophores

are difficult to distinguish, and even fms and xdh expression appear

as diffuse staining over the dorsal aspect of the embryo, precluding

the quantitative type of analysis performed on melanophores

(Figure 6A, B) [11,14,28]. However, qualitative observations of

xanthophore morphology were made using methylene blue, which

is taken up specifically by xanthophores and is concentrated

around active pterinosomes, the organelles that produce pteridine

pigments [60]. Methylene blue staining revealed that while some

xanthophores are present in enz homozygotes, these appear much

Table 1. Melanophore and iridiphore numbers are reduced in
enz mutant embryos.

Melanophores (4 dpf) Iridiphores (6 dpf)

Wt 23.960.7 wt 53.160.9

Enz 17.761.1 enz 41.461.7

compared to wt 74.1% compared to wt 78.0%

P,0.0001 P,0.0001

Larvae were mounted dorsally.
Melanophores were counted in the
dorsal and ventral stripes from
somites 5–14. The mean number of
cells in wild-type and enz embryos
were subjected to a one-tailed T-test
to determine whether observed
differences were significant.

Larvae were mounted dorsally.
Iridiphores were counted posterior of
somite 1 in the dorsal stripe and
posterior of the yolk sac in the ventral
stripe. The mean number of cells in
wild-type and enz embryos were
subjected to a one-tailed T-test to
determine whether observed
differences were significant.

doi:10.1371/journal.pone.0002845.t001

Table 2. Other neural crest derivatives are normal in enz
mutant embryos.

Neural crest-related
population Marker Stage Phenotype?

Early neural crest cells crestin 14s-24hpf no

Enteric neurons anti-Hu/location 7 dpf no

Dorsal Root Ganglion Neurons anti-Hu/location 7 dpf no

Sympathetic neurons anti-TH/location 7 dpf no

Neural crest-derived glia foxd3 48 hpf no

Craniofacial cartilage alcian blue 5 dpf no

doi:10.1371/journal.pone.0002845.t002

Chromatophore Morphology
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Figure 3. enz selectively affects chromatophores among neural crest derivatives. Wild-type (A, C, E, G) and enz (B, D, F, H) mutant embryos.
Craniofacial cartilages revealed with alcian blue staining are normal at 5 dpf (A, B: ventral view). Cervical sympathetic neurons, which express TH
immunoreactivity (arrowheads in C, D), are indistinguishable between wild-type (C) and enz mutant (D) embryos at 7 dpf. (E–H) Hu-positive neurons
of the dorsal root ganglia (E, F, arrowheads) and the enteric nervous system (arrowheads in G, H) also appear normal in enz mutant embryos (F, H)
compared to wild-type siblings (E, G) at 7 dpf.
doi:10.1371/journal.pone.0002845.g003

Chromatophore Morphology
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smaller and less stellate than xanthophores in wild-type siblings at

3 dpf (Figure 6C, D). Similarly, iridiphores are reduced in size in

enz mutant embryos compared to wild-type siblings. In contrast to

melanophores and xanthophores, iridiphores in the trunk of wild-

type embryos have a rounded, rather than stellate morphology at

72 hpf (see Figure 1). While this is also true in enz homozygotes,

overall iridiphore cell size, as measured by area, is reduced

compared to wild-type siblings. At 6 dpf, the average iridiphore

area in enz mutant larvae is reduced by ,40% compared to that in

wild-type siblings (P,0.0001, data not shown). Together, these

data indicate that mutations in enz similarly affect all three neural

crest-derived chromatophore types with respect to cell size and

also result in loss of the the typical stellate morphology of

melanophores and xanthophores.

enz acts cell autonomously with respect to melanophore
development

Mosaic analysis can be used to determine whether a mutation

acts cell autonomously or non-autonomously, and thus predict the

mode of action of a gene product within developmental pathways.

Genetic mosaics were created between wild-type, enz mutant, and

goldenb1 embryos. To facilitate the identification of donor-derived

melanophores, particularly from enz donors, we utilized hosts

homozygous for the goldenb1 mutation, which results in pale

Figure 4. The numbers and distribution of chromatophore precursors appear normal in enz homozygotes at 24 hpf. Lateral views of
24 hpf wild-type (A, C, E, G) and enz mutant (B, D, F, H) embryos. Early neural crest cells (crestin; A, B), xanthoblasts (xdh; C, D), melanoblasts (dct; E, F)
and all chromatophore precursors (ednrb1; G, H) are all qualitatively normal at this stage.
doi:10.1371/journal.pone.0002845.g004

Chromatophore Morphology
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melanophores that are distinct from wild-type melanophores

[7,61]. Donor embryos were labeled with lysinated rhodamine

dextran (LRD). Cells from donor embryos were then transplanted

into unlabeled hosts, in which chromatophore development was

subsequently observed. LRD-labeled cells from wild-type embryos

formed dark, stellate melanophores at 28 hpf when transplanted

into enz hosts (n = 6; Figure 7). In the reciprocal experiment, LRD-

labeled cells from wild-type or enz mutant embryos were

transplanted into unlabeled goldenb1 homozygous hosts [7,61].

While wild-type cells were able to form dark, stellate melano-

phores (n = 13; Figure 7D), enz mutant cells formed punctate

melanophores (n = 5; Figure 7E). Together, these data demon-

strate that enz acts cell autonomously with respect to melanophore

development, and inferentially, may act in a similar fashion in the

development all chromatophores.

The enz locus is located on chromosome 7
As an initial step towards cloning the endzone gene, we placed

allele enzb431 on the zebrafish linkage map [62,63]. Simple

sequence length polymorphisms [64,65] between AB* and WIK

zebrafish strains were used to map enz to chromosome 7.

Parthenogenetic diploid embryos were generated by suppressing

the second meiotic division using early pressure [66]. enz and wild-

type embryos were identified by live phenotype, and PCR was

performed on DNA from individual enz and wild-type embryos.

The enz locus was initially localized to chromosome 7 in EP diploid

embryos using three markers, z10441, z11652 and z6819 (see

Methods). Subsequent recombination analysis employing DNA

from 889 individual haploid embryos established a tentative

interval in which enz lies proximal to z8252 and z10441 and distal

to z55887 and z6819.

Figure 5. Melanophore cell morphology changes in enz mutant embryos. (A, B) At 27 hpf, wild-type melanophores are large, stellate and
well-pigmented (A). enz melanophores are also large and stellate at this stage, but are pale compared to wildtype (B). (C, D) By 31 hpf, enz
melanophore begin to transition to a punctate morphology (D), while wild-type melanophores remain large with many processes (C). (E, F) Wild-type
(E) and enz mutant (F) embryos at 34.5 hpf. The morphological transition of melanophores in enz homozygotes continues in a rostro-caudal wave and
is complete by approximately 48 hpf. (G–J) At 36 hpf, melanosomes are distributed throughout the cytoplasm of wild-type melanophores, reflecting
the stellate morphology of these cells (G). (H) dct mRNA (red) is likewise distributed in the extensive processes of wild-type cells (arrowheads).
Punctate distribution of melanosomes (I) and dct mRNA (J, red) in enzos18 mutant melanophores is identical at 36 hpf reflecting cell shape change.
doi:10.1371/journal.pone.0002845.g005

Chromatophore Morphology
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Analysis of compound trpm7/enz mutants supports a late
role for enz in chromatophore development

To investigate the role of enz compared to a known gene, we

generated a line of fish doubly heterozygous for enzb431 and

trpm7b508, a gene previously shown to be required for development

of the majority of neural crest-derived melanophores [67–69].

trpm7b508 appears to affect melanophore development prior to

overt differentiation, as most melanophores fail to appear in

trpm7b508 homozygotes. Further, there is evidence that some

melanophore precursors undergo apoptosis in trpm7b508 mutant

embryos [67]. Those melanophores that do develop in trpm7 single

mutant embryos have punctate cell morphology upon differenti-

ation, in contrast to the transiently stellate cell morphology of enz

melanophores. In clutches obtained from double heterozygote

crosses, four classes of phenotypes were observed. As expected,

three of these classes were wild-type, trpm7 single mutants and enz

single mutants. The fourth phenotypic class, approximately 1/16

of the total number of embryos, exhibited defects resembling both

trpm7 and enz mutant embryos, and is presumed to represent

double mutants. trpm7-enz double mutants exhibit an early

reduction in melanophore number as well initial punctate

melanophore morphology that is characteristic of the phenotype

of trpm7 single mutants. Iridiphores and xanthophores, on the

other hand, are depleted as in enz homozygotes. At approximately

65 hpf, double mutants are touch insensitive, as are trpm7 mutants.

Thus, double mutants show a combination of the trpm7 and enz

phenotypes. Depletion of melanophores and initially abnormal

melanophore morphology early in double mutants as in trpm7

homozygotes supports the inference that trpm7 is epistatic to endzone

during melanophore development.

Discussion

Zebrafish enz is selectively required during neural crest
development for the terminal differentiation and
maintenance of cell morpholgy in late embryonic and
larval chromatophores

The zebrafish mutant enz was identified based on the reduced

size and numbers of neural crest-derived melanophores, xantho-

phores and iridiphores. Analysis of the development of other

neural crest derivatives indicates that the enz mutation selectively

affects chromatophore sublineages, as non-chromatophore deriv-

atives, based on diagnostic gene expression, are morphologically

indistinguishable from wildtype embryos. Whether all non-

chromatophore derivatives are functionally normal in enz mutants,

however, is not known. We observed that melanophores begin to

differentiate in enz mutant embryos at approximately 25 hpf,

similar to wild-type siblings. However, these melanophores were

pale compared to wild-type melanophores, and later transitioned

to a punctate morphology due to a change in cell shape as opposed

to only a change in melanosome distribution. Wild-type

melanophores, on the other hand, remain highly dendritic.

Iridiphores and xanthophores in enz mutants also begin to

differentiate normally in enz mutants but subsequently, like

melanophores, appear smaller or less dendritic, respectively, and

less chromatic than the same cell types in wild-type embryos. In

addition, expression of genes diagnostic of early neural crest cells,

melanoblasts, xanthoblasts and all chromatoblasts was normal

through 24 hpf. Thus, the specification, migration and early

differentiation of neural crest-derived chromatophores is unaffect-

ed by the enz mutation. Double mutant analysis of enz with

trpm7b508, a mutation previously demonstrated to affect melano-

phores just prior to overt differentiation [67], revealed that

embryos homozygous for mutations in both genes resembled

trpm7b508 single mutants with respect to the melanophore

phenotype. This places enz genetically downstream of trpm7b508

and, together with phenotypic characterization, suggests enz

function is required for the terminal differentiation of chromato-

phores, the establishment of correct cell numbers and subsequently

for the maintenance of chromatophore cell morphology.

Potential functions of enz in zebrafish chromatophore
development

The mechanism by which disruption of enz function affects

chromatophore development is unclear. We have determined that

it is unlikely that enz is required prior to overt differentiation. The

fact that the numbers of differentiated chromatophores in enz

mutants are reduced compared to wild-type embryos raises several

possibilities. It is formally possible that incompletely differentiated

chromatophores persist abnormally in enz mutants. That we have

not detected comparatively more cells expressing chromatophore

precursor markers and not pigment in enz mutants during

embryogenesis argues against but does not rule out this possibility.

On the other hand, embryonic chromatophores are believed to be

mitotically active, although the proliferation rates of zebrafish

chromatophores have not been determined. It is possible then, that

enz mutations reduce chromatophore proliferation resulting in a

smaller population of pigment cells. Conversely, enz mutations

could result in an increase in chromatophore cell death that would

result in reduced numbers of cells. Although TUNEL analysis at

sequential stages of development between 16hpf and 30 hpf did

not reveal detectable differences in melanophore cell death

between mutant and wild type embryos (data not shown), there

are several factors that prevent conclusions to be drawn from the

experiments. First, TUNEL, as well as most other reliable methods

to detect cell death in vivo are only useful in the instantaneous

detection of apoptotic cells. Thus, if cell death were to occur at a

low rate over an extended period, differences in cell death rate

would be very difficult to detect. This would be especially true if, as

is the case in enz mutants, the cell types of interest are only slightly

reduced in number compared to control embryos. Nevertheless, it

is potentially significant to note that multiple studies have shown

that chromatophores differentiate and undergo apoptosis in

response to factors that control chromatophore motile responses,

that is, the redistribution of pigment organelles within chromato-

phores (see Sugimoto, 2002). Further, these factors are likely to

utilize shared intracellular signaling pathways in different pigment

cell types. Thus, the chromatophore phenotypic consequences and

cell autonomous action of enz are at least consistent with a role for

enz in such a pathway and the regulation of differentiation and

Table 3. Melanophore size is reduced in enz mutant embryos
at 2 dpf.

Melanophore Areas (mm2)

wt 282.1619.1

enz 21.961.7

compared to wt 7.8%

P,0.0001

Larvae were mounted dorsally, observed on a Zeiss compound microscope, and
photographed using Zeiss software. Zeiss software was then used to calculate
the approximate areas of individual melanophores. The mean areas of cells in
wild-type and enz mutant embryos were subjected to a one-tailed T-test to
determine whether observed differences were significant.

doi:10.1371/journal.pone.0002845.t003
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apoptosis via such a pathway. Finally, in addition to the molecular

identification of enz it will also be critical to determine whether any

of the enz alleles we have identified result in loss of function. While

the majority of chromatophores develop in enz mutants, the same

situation is observed in most mutants and morphants affecting

chromatophore development [4,14,15,70,71]. Further, the major-

ity if not all chromatophores in more severe enz alleles exhibit

altered morphology. Thus, it is possible that one or more of the enz

alleles we have identified result in loss of function, but this will only

be possible to ascertain by cloning the enz locus.

While the vast majority of homozygous enz larvae die after 2–3

weeks of development, a minority of individuals does survive to

adulthood but were found to be significantly smaller than wild-type

siblings. Because neural crest-derived chromatophores are not

required for viability and are not thought to regulate growth

[6,7,55,72], enz must function in other cells required for growth and

viability. Interestingly, there is abundant evidence demonstrating

roles for pituitary hormone signaling systems in chromatophore

development and growth control [42,46,73]. Notably, hormones

known to regulate chromatophore morphology in teleosts specifically

have been shown in mammals and fish to affect body weight and

composition, as well [46]. Because our data indicate that enz acts cell

autonomously, enz would be predicted to be a downstream effector if

it acts in such a hormonal signaling pathway.

It is also potentially informative to note that recent reports have

described mutants and morphants with live phenotypes similar to

enz that disrupt genes involved in organellar biosynthesis and

transport [70,71,74]. Although more in depth investigations into

the nature of these pigmentation defects have not been described

to date, such as whether organelle transport, chromatophore cell

morpholgy or survival and proliferation are affected, morpholino-

mediated knockdown of zebrafish ATPase 6 subunit v0c (atp6v0c) and

Figure 6. Xanthophores are qualitatively reduced in number and size in enz mutants. (A, B) fms expression in 48 hpf wild-type (A) and enz
mutant (B) embryos. Qualitatively reduced fms expression suggests that fewer xanthophores are present in enz mutants than in wild-type siblings at this
stage (arrowheads in A and B). (C, D) Methylene blue-stained xanthophores appear much larger in wild-type (C) embryos than in enz mutants (D) at 3 dpf.
doi:10.1371/journal.pone.0002845.g006
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vacuolar protein sorting protein 18 (vps18) result in punctate melano-

phore appearance, apparent loss of xanthophores and reduced

iridiphore numbers [71]. Similar phenotypes were observed in

mutants for a variety of ATP synthase and vacuolar protein sorting genes

generated in a viral insertion-based mutagenesis screen [70,74].

We noted a predicted vps35 ortholog assigned to chromosome 7

(http://www.sanger.ac.uk/), however, sequencing of the four enz

alleles reported here did not reveal any molecular lesions in the

vps35 coding sequence. This does not rule out the possibility that

enz encodes vps35, as lesions may be present in non-coding

regulatory regions of this gene in enz mutants. Rawls and

colleagues have identified a mutation linked to chromosome 7

and SSLP marker z10441 that phenotypically resembles enz [17].

However, enz mutants complement this mutation. Further, the

genomic region in which the enz gene is located contains several

other genes involved in organellar function that may be good

candidates for the enz locus (http://zfin.org). Thus, it is also

possible that the enz locus encodes a protein required for normal

formation or activity of cellular organelles. Specifically in the case

of enz, such a gene would have to regulate chromatophore cell

morphology instead of or in addition to organelle synthesis and

distribution. The characterization of enz mutant embryos and

larvae presented here may provide clues to the mechanisms

behind phenotypes described for organellar biosynthesis mutants

and morphants described previously. In any case, the potential

relevance of the speculation discussed here will be resolved with

the molecular identification of the enz locus.

Coordinated control of the late development of
chromatophore sublineages

Although many loci have been identified that are required for

crest-derived chromatophore development, relatively few of them

affect all three chromatophore cell types found in zebrafish

[14,16,17,70]. Still fewer of these affect all chromatophore

sublineages in the same way [14,70,74]. At the same time, other

neural crest derivatives appear to develop normally in enz

homozygotes. Together with our finding that the enz mutation

acts cell autonomously with respect to melanophore development,

this suggests that the enz locus does not encode a gene generally

required by neural crest-derived cells, but rather a molecule

intrinsic to chromatophores themselves. Our results strongly

suggest that the differentiation and maintenance of cell morphol-

ogy of all three zebrafish chromatophore cell types depends on enz

and are thus at least partially coordinately regulated during

terminal differentiation. However, since the development of all

three chromatophore lineages is unaffected in enz mutants until

late in their embryonic development and many mutants and

identified genes selectively affect individual or subsets of

chromatophore types [14,16,17,70,74], the regulation of earlier

stages of chromatophore development is at least partially

genetically distinct. Nevertheless, it will be interesting to determine

when and to what degree the development of zebrafish

chromatophore sublineages is regulated by common and distinct

genes. The great numbers of zebrafish pigment mutants, including

enz, will provide important contributions to ultimately determining

the genetic regulation of chromatophore development and leading

to potential insights into clinically relevant conditions in humans

involving pigment cells. Further, many of these mutants are likely

to provide valuable insights into the genetic regulation of color

changes and light adaptation in fish and other organisms.

Materials and Methods

Zebrafish
Adult zebrafish and embryos were maintained in the Ohio State

University zebrafish facility. Adults and embryos were reared at

28.5uC and embryos were staged based on morphological criteria,

according to Kimmel et al., 1995. Mutant lines were maintained in

the AB* and WIK backgrounds. Homozygous mutant embryos

and wild-type siblings were obtained by crossing heterozygous

carriers.

Cell size quantification and analysis
Melanophores in 2 days post-fertilization (dpf) wild-type and enz

embryos were imaged on a Zeiss Axioplan compound microscope.

Individual cells were outlined and areas calculated using Zeiss

Axioplan software with appropriate scalings. Iridiphores in 6 dpf

larvae were imaged on a Leica dissecting microscope. Individual

cells were outlined and areas calculated using Spot Advanced

software with appropriate scalings. A minimum of 3 melanophores

or iridiphores in at least 3 wild-type and 3 enz mutant individuals

were utilized for each set of measurements. Standard errors of

mean were calculated for wild-type and enz cell areas, and mean

numbers were also subjected to a one-tailed t-test to determine

whether differences observed between wild-type and enz chro-

matophore areas were statistically significant.

Cell counts and statistics
Melanophores in 4 dpf larvae were counted in dorsal stripes. To

better visualize distinct melanophores, wild-type and enz mutant

larvae were placed in epinephrine (10 mg/ml) at 4 dpf for

,10 minutes, that results in redistribution of melanosomes to the

center of the cell body in wild-type melanophores (Johnson 1995,

Rawls 2000). Larvae were fixed in 4% paraformaldehyde at 4uC
overnight, rinsed and stored in 1:1 PBS:glycerol. Larvae were then

deyolked, mounted on single bridge cover slips, and viewed on a

Zeiss Axioplan microscope. Melanophores in the dorsal stripes

were counted from somite 5 to somite 14. Iridiphores in 6 dpf

Figure 7. enz acts cell autonomously with respect to melano-
phore development. (A) Nomarski image of a 28 hpf enz mutant host
that has received cells from a wild-type donor (anterior to the left). Several
large, dark melanophores (arrowheads) are present in addition to pale
melanophores (arrows) normally observed in enz mutant embryos at this
stage (see also Figure 5B). (B) High magnification of a wild-type cell (boxed
area in (A) that formed a dark melanophore in the mutant environment.
(C) Melanophore in (B) viewed under a rhodamine filter. (D) Wild-type cells
form dark, stellate melanophores in 48 hpf gol hosts. (E) enz cells give rise
to punctate melanophores in 48 hpf gol hosts.
doi:10.1371/journal.pone.0002845.g007
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larvae were counted in the dorsal and ventral stripes. Live fish

were viewed under incident light using a Zeiss dissecting

microscope. Iridiphores were counted posterior of the hindbrain

in the dorsal stripe, and caudally from the posterior edge of the

yolk ball in the ventral stripe. Standard errors of mean were

calculated for wild-type and enz cell counts. The mean numbers of

cells in wild-type and enz embryos were subjected to a one-tailed

T-test to determine whether the decrease in cell numbers in enz

mutant embryos compared to wild-type siblings was statistically

significant.

In situ hybridization
In situ hybridizations were performed as described by Thisse, et

al. (1993) with minor modifications. A detailed protocol will be

provided upon request. mitfa and c-ret cDNAs were provided by D.

Raible [6,75]. cDNA clones of c-kit and fms were obtained from D.

Parichy [7,28]. dct and ednrb1 cDNA clones were provided by R.

Kelsh [23,37].

Immunohistochemistry
Antibody labeling was performed as previously described [76]. 7

dpf larvae were cryo-sectioned onto gelatin-subbed slides and

stored at 220uC overnight. All neurons were detected with

monoclonal antibody 16A11 that recognizes neuron-specific Hu

RNA binding proteins [15,76], while DRG neurons and enteric

neurons were subsequently identified by position within the larva.

16A11-immunoreactivity was detected using an Alexa red

fluorescent secondary antibody (Molecular Probes). Sympathetic

neurons were identified by detection of tyrosine hydroxylase (TH)

using anti-TH polyclonal antibody (Pel-Freeze, Rogers, AZ).

Neural crest-derived sympathetic neurons were subsequently

assessed by location of TH+ cells within whole-mount wild-type

and endzone larvae.

Mosaic analysis
Genetic mosaics were produced using cell transplantation

techniques [77]. Donor embryos obtained from AB* or heterozy-

gous (enz+/b431) crosses were manually dechorionated and injected

at the one to two cell stage with 2–5% lysinated rhodamine

dextran (LRD, 10,000 MW, Molecular Probes) in 0.2 M KCl. To

facilitate the identification of donor-derived melanophores, we

utilized hosts homozygous for the goldenb1 mutation, which results

in pale melanophores that are distinct from wild-type melano-

phores [7,61]. Embryos were then allowed to develop to early

blastula stages. 10–20 cells were transplanted from LRD-labeled

donor embryos into unlabeled host embryos. Donor-host pairs

were kept separate and allowed to develop to $32 hpf, then fixed

in 4% paraformaldehyde at 4uC overnight. Donors and hosts were

classified as either wild-type or mutant based on melanophore

phenotype, and subsequently examined using a Zeiss Axioplan

microscope with Nomarski optics, and a rhodamine filter to detect

donor cells. Dark, punctate melanophores were scored as mutant,

while dark, stellate melanophores were considered wildtype. Wild-

type R wild-type and mutant R mutant transplants served as

controls.

Genetic mapping
enz alleles were maintained in the AB* background. For

mapping purposes, enz carriers in this background were crossed

to a wild-type WIK line, which is polymorphic to AB* [78]. enz

carriers in the WIK background were then used to generate

parthenogenetic diploid progeny by suppressing the second

meiotic division with early pressure [66]. enz embryos and wild-

type siblings were identified by live phenotype and used to obtain

DNA. enz was initially placed on the zebrafish genomic map based

on PCR amplification of simple sequence length polymorphisms

(SSLPs) from diploid genomes [62–65]. enzb431 was initially

demonstrated to be linked to SSLP markers near the centromere

of chromosome 7 based on the MGH mapping panel (http://

zebrafish.mgh.harvard.edu/zebrafish/index.htm). enz was shown

to cosegregate with z10441 (map position 36.7 cM), z11625 (map

position 51.1 cM) and z6819 (map position 45.0 cM). Further

linkage analysis was performed on enz using haploid genomes, or

meioses [62]. This analysis confirms linkage to microsatellite

marker z10441, and further defines a tentative interval for the enz

locus distal to z6819 and z55887 and proximal to z8252 and

z10441.
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