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Abstract: In general, the quantum yields (QYs) of monolayer transition metal dichalcogenides
(1L-TMDs) are low, typically less than 1% in their pristine state, significantly limiting their photonic
applications. Many methods have been reported to increase the QYs of 1L-TMDs; however, the
technical difficulties involved in the reliable estimation of these QYs have prevented the general
assessment of these methods. Herein, we demonstrate the estimation of the QYs of 1L-TMDs using
a poly methyl methacrylate (PMMA) thin film embedded with rhodamine 6G (R6G) as a reference
specimen for measuring the QYs of 1L-TMDs. The PMMA/R6G composite films with thicknesses of 80
and 300 nm demonstrated spatially homogeneous emissions with the incorporation of well-dispersed
R6G molecules, and may, therefore, be used as ideal reference specimens for the QY measurement of
1L-TMDs. Using our reference specimens, for which the QY ranged from 5.4% to 22.2% depending
on the film thickness and R6G concentrations, we measured the QYs of the exfoliated or chemical
vapor deposition (CVD)-grown 1L-WS2, -MoSe2, -MoS2, and -WSe2 TMDs. The convenient procedure
proposed in this study for preparing the thin reference films and the simple protocol for the QY
estimation of 1L-TMDs may enable accurate comparisons of the absolute QYs between the 1L-TMD
samples, thereby enabling the development of a method to improve the QY of 1L-TMDs.

Keywords: quantum yield; molybdenum disulfide; molybdenum diselenide; tungsten disulfide;
tungsten diselenide; 2D semiconductors; photoluminescence

1. Introduction

Layered transition metal dichalcogenides (TMDs) with chemical formulas of MX2 (wherein
M represents a transition metal atom, such as Mo or W, and X represents a chalcogen atom,
such as S, Se, or Te) have been extensively investigated for fundamental science and device
applications [1,2]. These monolayer transition metal dichalcogenides (1L-TMDs) possess direct
band gaps, which make them highly applicable in the field of optoelectronics such as light-emitting
diodes [3], phototransistors [4], photo-detectors [5,6], and lasers [7]. However, the photoluminescence
(PL) quantum yields (QYs) of pristine 1L-TMDs are typically less than 1%, significantly limiting their
application in optoelectronic devices [8]. A high density of structural defects in these systems has
been proven to be the main cause of the low QYs of 1L-TMDs [9–13]. Methods to improve the QYs of
1L-TMDs through the treatment of these defects using bis(trifluoromethane) sulfonimide (TFSI) [13–16],
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hydrohalic acids (HBr) [17], poly(4-styrenesulfonate) [18], and light illumination [19–21] have been
reported. However, the effectiveness of these methods is not clear without the general assessment
of the QYs of 1L-TMDs. In particular, mere factors indicating PL enhancement do not represent
how effective these treatments are because the sample conditions are vastly different. For example,
TMD samples with low QYs tend to exhibit higher PL enhancements when the same treatment is
used [14]. Therefore, for the accurate comparison of the treatments developed to increase the PL or QY
of 1L-TMDs, the reliable and general measurement of the QYs of 1L-TMDs is critically important.

The QY represents the efficiency of the conversion of absorbed photons into emitted photons [22,23],
and it has been estimated by directly measuring the absorptions and emissions of the photons using an
integrating sphere [24–26]. However, such a direct measurement of the absolute QY is not applicable
for 1L-TMDs because of their small sizes and significantly low QYs. Alternatively, the QY of the
reference sample is first measured using the integrating sphere. The PL intensity and absorption data of
the reference sample are then measured using microscopes for comparison with data obtained from the
1L-TMD samples using the same experimental conditions [27–30]. In this method, the reference samples
are usually thin films made of fluorescent organic dyes, such as 3-borylbithiophene derivatives [27–30]
or rhodamine 6G (R6G) [1,13,14]. The thicknesses and emission profiles of the reference films must be
spatially uniform at micro-scale dimensions to permit comparison with the local PL of micro-sized
1L-TMDs. R6G in low-concentration solutions has a QY close to 100% [1,31,32]; however, this dye
tends to exhibit an extremely low QY in its solid form due to fluorescence quenching that originates
from the aggregation of the solid particles [33]. Therefore, they are undesirable for use as reference
samples. Previously, 3-borylbithiophene derivatives have been used as reference films [28–30]; however,
controlling the uniform dispersion of organic molecules in a matrix is technically difficult. Therefore,
for the reliable measurement of the QY of 1L-TMDs, the method of preparing thin films containing
uniformly dispersed organic dyes is still in high demand.

Herein, we prepared thin reference films with nanoscale thicknesses and the spatially uniform
emissions of R6G molecules that are embedded in a poly methyl methacrylate (PMMA) matrix.
These films were used for the relative estimation of the QYs of 1L-TMDs, including those of 1L-WS2,
1L-MoSe2, 1L-MoS2, and 1L-WSe2. The results were consistent between measurements using two
different thicknesses of reference specimens.

2. Materials and Methods

2.1. Fabrication of Thin Films of R6G Embedded within a PMMA Matrix

First, 0.47906 g of R6G powder was dispersed in a PMMA solution (950 PMMA C4, MicroChem
Corp (Westborough, MA, USA)) to prepare a 10−2 M concentration of R6G. Here, the PMMA solution
was used as a solvent for the R6G molecules. Next, the 10−2 M concentration of R6G dispersed in a
PMMA solution was diluted to 5 × 10−5 M stepwise to obtain various concentrations of this solution.
A series of thin films with differing R6G concentrations were prepared on quartz substrates via spin
coating at a rate of 3000 rpm for 1 min. In a similar manner, a PMMA solution with a concentration
lower than that of 950 PMMA C4 (950 PMMA C2, MicroChem Corp (Westborough, MA, USA)) was
used to prepare thinner reference films.

2.2. Exfoliation and Growth of 1L-TMDs

All 1L-TMDs were exfoliated on quartz substrates using bulk single crystals (2D Semiconductors
Inc. Scottsdale, AZ, USA). 1L-MoS2 samples were grown using the chemical vapor deposition
(CVD) method on Si/SiO2 substrates and transferred onto quartz substrates using the wet transfer
method, wherein hydrofluoric acid (HF) was used as the SiO2 etchant, according to previously
reported methods [13,15,34,35]. The CVD-grown 1L-MoS2 samples were chemically treated using TFSI
(Sigma-Aldrich, St. Louis, MO, USA) molecules after being transferred onto the quartz substrates and
further optical characterizations were conducted [13,14].
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2.3. Quantum Yield, Confocal PL, Raman, Transmission, and Scanning Electron Microscopy Measurements

The QYs of the thin reference films composed of R6G embedded within a PMMA matrix were
determined using a commercial QY spectrometer (Quantaurus-QY, Hamamatsu Photonics, Hamamatsu
City, Japan) or a lab-made QY measurement system consisting of an integrating sphere (819C-SL-3.3,
Newport, Irvine, CA, USA) and a spectrometer equipped with a cooled charge-coupled device (CCD,
Acton, MA, USA). The excitation light source was a 150-W Xenon lamp (Hamamatsu Photonics,
Hamamatsu City, Japan) with a selectable wavelength or 514 nm laser line, respectively. For the
confocal PL and transmission spectroscopy measurements, a lab-made laser confocal microscope
combined with a spectrometer was used [15,34–36]. The laser light was focused using a 0.9-NA objective
lens, and the scattered light was collected using the same objective lens and guided to a 50-cm-long
monochromator equipped with a cooled CCD. The excitation laser was a 514-nm-wavelength argon
laser line, which was used for the PL measurements. Scanning electron microscopy (SEM, JEM-2100F,
JEOL Corp. Tokyo, Japan) with field voltages of 5–20 KeV was used to obtain images of the cross
sections of the thin R6G films embedded within a PMMA matrix, as well as to determine the thicknesses
of these films.

3. Results and Discussion

The thicknesses of the thin reference films were controlled using the PMMA concentration in a
chlorobenzene solution and the spin coating speed. Two thicknesses of these films, 300 nm (PMMA C4)
and 80 nm (PMMA C2), with various concentrations of R6G were fabricated. The optical microscopy
(OM), epi-fluorescence (Epi), and SEM (cross section) images of the thin film (300 nm, 10−4 M of
R6G) exhibit their uniform thickness and fluorescence, as illustrated in Figure 1a(i–iii), respectively.
These thin films were loaded into an integrating sphere and excited using a 514-nm wavelength light.
The scattered light was collected through an optical fiber connected to the integrating sphere. We found
some degradation of PL with high laser intensity over ~11 W/cm2, therefore, for every measurement we
used new locations of PL collection. An example of the detected spectra obtained with and without the
reference sample (for a 300-nm thick thin film with 10−4 M of R6G) is depicted in Figure 1b. A reduction
in the laser peak corresponds to the absorption (Ia) by the reference sample, and the peak at ~559 nm
(shown in the magnified portion of the spectra in the inset in Figure 1b) represents the emission (Ie).
The QY of the reference sample was estimated using Equation (1):

QY =
Ie

Ia
(1)

The measured QY of our reference samples range from 5.4% to 22.2% depending on the film
thicknesses and R6G concentrations, as presented in Table 1. Considering that the R6G molecules
exhibit the highest QY in a solution without aggregation [31–33], a similar trend in the thin films
composed of R6G embedded in a PMMA matrix may be expected, wherein the QY is higher at lower
R6G concentrations. Less QY of thinner reference samples is attributed to the shorter interdistance
between R6G molecules and the higher chance of the adsorption of the environmental water or oxygen
molecules that could induce the quenching of R6G fluorescence [33,37,38].

Table 1. The photoluminescence (PL) quantum yields (QYs) of the thin reference films measured using
integrating sphere for varied concentrations of rhodamine 6G (R6G) and two different thicknesses.

Concentration (M) Thickness 10−2 5 × 10−3 10−3 5 × 10−4 10−4 5 × 10−5

Quantum Yield (%) 300 nm 14.5 17.8 19.5 20.3 20.6 22.2

80 nm 5.4 6.4 6.2 9.1 9.5 10.8

The confocal PL spectra of a reference specimen (with a 300-nm thickness and 10−4 M of R6G)
with varying excitation powers obtained using a 514 nm laser are depicted in Figure 1c. The PL peak at
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~553 nm is the characteristic emission peak of R6G, and the linear dependency of the PL intensity on
the increasing excitation laser intensity was observed, as depicted in Figure 1d. Similar linear increases
of the PL with increasing laser intensities were obtained for the R6G film (80 nm thickness) fabricated
using PMMA C2 with 10−4 M of R6G (see the Supplementary Materials, Figure S1).
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Figure 1. (a): (i) Optical microscopy, (ii) epi-fluorescence, and (iii) Scanning electron microscopy (SEM)
(cross section showing the uniform thickness of 300 nm) images of a thin film fabricated using a poly
methyl methacrylate (PMMA) C4 with 10−4 M of rhodamine 6G (R6G) (the scale bars in the optical
and SEM images are 5 µm and 100 nm, respectively). (b) Photoluminescence (PL) spectrum of a
300-nm-thick film with 10−4 M of R6G and a bare quartz substrate measured using an integrating
sphere. The inset illustrates a magnified portion of this spectrum for the emission range of R6G.
(c) Representative confocal PL spectra of the 300 nm thick reference sample with 10−4 M of R6G at varied
laser intensities under a 514-nm excitation. (d) Integrated PL intensity of a 300-nm-thick reference
sample with 10−4 M of R6G as a function of the laser intensity.

In Figure 2, the QY estimation results for the exfoliated 1L-WS2 on a quartz substrate are depicted.
The confocal PL spectra obtained with various laser intensities are illustrated in Figure 2a, wherein the
PL peak at ~613 nm is consistent with the previous PL results obtained for 1L-WS2 [15,39,40] (the Raman
spectrum of 1L-WS2 that confirm the 1L thickness of this material is provided in the Supplementary
Materials, Figure S2a). As shown in Figure 2a, the spectral width of the PL spectra broadens at
the shoulder (indicated by A*) as the excitation laser intensity is increased due to increased carrier
interactions [15,41]. The deconvoluted PL spectra illustrated in Figure 2b indicate that the spectral
weight of the trions is ~15% at 0.216 W/cm2, while it increases to ~35% at 108 W/cm2 (Figure 2c) due to the
increased carrier concentration and subsequent recombination of trions. A nonlinear increase in the PL
intensity with increasing laser intensity is observed in the plot depicted in Figure 2d. We estimated the
QY of 1L-WS2 at low excitation intensity of linear dependence, where the exciton–exciton interactions
were negligible [28]. The representative transmittance spectrum of 1L-WS2 used to measure the
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absorption on the quartz substrate is illustrated in Figure 2e, wherein the sharp exciton peak at ~612 nm
corresponds to the A exciton of 1L-WS2. This is consistent with the obtained PL spectrum and previous
results concerning the transmittance of 1L-WS2 [42,43]. The PL QY of 1L-WS2 was estimated using the
following, Equation (2) [28,29,44]:

ΦTMD = ΦRe f
IPL
TMD/ATMD

IPL
Re f /ARe f

Fsp (2)

Here,

• ΦTMD = QY of the TMD to be measured
• ΦRef = QY of the reference sample measured with the integrating sphere
• IPL

TMD = PL intensity of the TMD measured under the microscope

• IPL
Re f = PL intensity of the reference sample measured under the microscope

• ATMD = Absorption of the TMD measured under the microscope
• ARef = Absorption of the reference sample measured under the microscope
• Fsp = Calibration factor for the wavelength dependence on the sensitivities of our microscope

and spectrometer with respect to the peak emission wavelength of the reference sample (553 nm).
Regarding the emission of each 1L-TMDs, Fsp was estimated from the calibration factor vs.
wavelength curve shown in Figure S3 in Supplementary Materials. This curve was obtained using
532 nm, 633 nm, and 785 nm lasers in our microscope equipped with a spectrometer, under the
same experimental conditions. For our system, this was measured to be 1.17, 1.30, 1.80, and 2.0 for
the peak emission at 613 nm of 1L-WS2, 658 nm of 1L-MoS2, 745 nm of 1L-WSe2, and 785 nm of
1L-MoSe2, respectively.
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Figure 2. (a) Confocal PL spectra of the exfoliated 1L-WS2 on a quartz substrate with various laser
intensities. Deconvoluted PL spectra of the exfoliated 1L-WS2 at (b) 0.216 W/cm2 and (c) 108 W/cm2.
(d) Integrated PL intensity of 1L-WS2 as a function of laser intensity. (e) Representative transmittance
spectrum of 1L-WS2. (f) Plot of the QYs of 1L-WS2 as a function of laser intensity, estimated using 80-
and 300-nm-thick reference specimens.

The QYs of 1L-WS2, estimated using Equation (2), were plotted as a function of the excitation
laser intensity in Figure 2f. Here, the QYs were constant until an excitation laser intensity of
0.1 W/cm2 was reached because the emissions were solely dominated by the single-body process
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(exciton recombination) at low excitation powers. The QYs then decreased with increasing excitation
intensities due to the activation of many-body processes, such as trion formation and exciton–exciton
annihilation [16,45,46]. Noticeably, the estimated QYs of 1L-WS2 using both reference samples of
different thicknesses (80 and 300 nm) were similar, thereby providing clear evidence of the reliability of
using R6G molecules embedded within a PMMA film as standard reference samples for the estimation
of the QY of 1L-TMDs. The estimated QY of 1L-WS2 is 0.73 ± 0.11%, which is in a similar range to the
previously reported QY of 1L-WS2 [29].

Figure 3a illustrates the confocal PL spectra of the 1L-MoSe2 exfoliated on a quartz substrate
with varying laser intensities, wherein the peak at ~785 nm is consistent with previous PL
results for 1L-MoSe2 (for the Raman spectra, see the Supplementary Materials, Figure S2b) [34,47].
As laser-intensity-dependent PL spectra are illustrated in Figure 3a, the PL spectra are shown to be
quite symmetrical even at higher laser intensities in comparison with 1L-WS2; however, the influence
of the recombination of trions [34] can be clearly observed in the deconvoluted PL spectra illustrated
in Figure 3b,c. In these figures, it can be seen that the spectral weight of trion increases from ~16% to
~20% as the laser intensity is increased. Figure 3d depicts the linear dependency of the PL intensity of
1L-MoSe2 at low laser intensities, while this behavior becomes nonlinear at high laser intensities [29].
The consistency of the two peaks at ~783 nm and ~694 nm corresponding to the A and B excitons,
respectively, in the transmittance spectra of 1L-MoSe2 demonstrate the 1L thickness of the MoSe2

sample used in this study [48]. The QY of 1L-MoSe2 was also estimated using both reference samples
(with 80-and 300-nm thicknesses), and the results were plotted against the laser intensity, as depicted
in Figure 3f. It can be clearly observed that the QYs estimated using the two reference samples with
different thicknesses (80 and 300 nm) are similar. The estimated QY of 1L-MoSe2 at low excitation
intensity was found to be 0.38 ± 0.02%.

Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 11 

 

(d) Integrated PL intensity of 1L-WS2 as a function of laser intensity. (e) Representative transmittance 

spectrum of 1L-WS2. (f) Plot of the QYs of 1L-WS2 as a function of laser intensity, estimated using 80- 

and 300-nm-thick reference specimens. 

Figure 3a illustrates the confocal PL spectra of the 1L-MoSe2 exfoliated on a quartz substrate with 

varying laser intensities, wherein the peak at ~785 nm is consistent with previous PL results for 1L-

MoSe2 (for the Raman spectra, see the Supplementary Materials, Figure S2b) [34,47]. As laser-

intensity-dependent PL spectra are illustrated in Figure 3a, the PL spectra are shown to be quite 

symmetrical even at higher laser intensities in comparison with 1L-WS2; however, the influence of 

the recombination of trions [34] can be clearly observed in the deconvoluted PL spectra illustrated in 

Figure 3b,c. In these figures, it can be seen that the spectral weight of trion increases from ~16% to 

~20% as the laser intensity is increased. Figure 3d depicts the linear dependency of the PL intensity 

of 1L-MoSe2 at low laser intensities, while this behavior becomes nonlinear at high laser intensities 

[29]. The consistency of the two peaks at ~783 nm and ~694 nm corresponding to the A and B excitons, 

respectively, in the transmittance spectra of 1L-MoSe2 demonstrate the 1L thickness of the MoSe2 

sample used in this study [48]. The QY of 1L-MoSe2 was also estimated using both reference samples 

(with 80-and 300-nm thicknesses), and the results were plotted against the laser intensity, as depicted 

in Figure 3f. It can be clearly observed that the QYs estimated using the two reference samples with 

different thicknesses (80 and 300 nm) are similar. The estimated QY of 1L-MoSe2 at low excitation 

intensity was found to be 0.38 ± 0.02%. 

 

Figure 3. (a) Confocal PL spectra of the exfoliated 1L-MoSe2 on a quartz substrate with various laser 

intensities. Deconvoluted PL spectra of the exfoliated 1L-MoSe2 at (b) 0.216 W/cm2 and (c) 108 W/cm2. 

(d) Integrated PL intensity of 1L-MoSe2 as a function of laser intensity. (e) Representative 

transmittance spectrum of 1L-MoSe2. (f) Plot of the QYs of 1L-MoSe2 as a function of laser intensity, 

estimated using 80- and 300-nm-thick reference specimens. 

For 1L-MoS2, the effect of chemical treatment using TFSI to increase the QY was investigated 

because TFSI is known to enhance the QY of 1L-TMDs via the repair of the sulfur vacancies [13,14]. 

The laser-intensity-dependent PL spectra of the TFSI-treated CVD-grown 1L-MoS2 on a quartz 

substrate are depicted in Figure 4a (for the Raman spectra, see the Supplementary Materials, Figure 

S2c). The peak shown at ~658 nm is consistent with previous PL results obtained for 1L-MoS2 [13]. 

The representative deconvoluted PL spectra at low (0.054 W/cm2) and high (108 W/cm2) laser 

intensities are illustrated in Figure 4b,c, respectively. In these figures, it is shown that contribution of 

the trion recombination is ~25% for the overall emissions at all power ranges measured in this study. 

The PL spectra of the pristine, CVD-grown 1L-MoS2 are depicted in Figure S4 in Supplementary 

720 750 780 810 840 870 900

0

200

400

600      108 W/cm2

      54 W/cm2

      27 W/cm2

   10.8 W/cm2

     5.4 W/cm2

   3.24 W/cm2

  2 .16 W/cm2

   1.08 W/cm2

   0.54 W/cm2

 0.324 W/cm2

 

 

 

 

 

Wavelength (nm)

P
L
 i
n
te

n
s
it
y
 (

a
rb

. 
u
n
it
)

450 525 600 675 750 825

-0.12

-0.09

-0.06

-0.03

0.00

 

 

 

 

Wavelength (nm)

T
ra

n
s
m

it
ta

n
c
e

0.01 0.1 1 10 100

100

1k

10k

Power density (W/cm2) 

 

 

 
In

t.
 P

L
 i
n
te

n
s
it
y
 (

a
rb

. 
u
n
it
)

720 750 780 810 840
0

200

400

600

Wavelength (nm)

P
L
 i
n
te

n
s
it
y
 (

a
rb

. 
u
n
it
)  108 W/cm2

 

 

720 750 780 810 840
0

50

100

150

200

250

Wavelength (nm)

P
L
 i
n
te

n
s
it
y
 (

a
rb

. 
u
n
it
)

 

 

 0.216 W/cm2

a b c

d e

0.01 0.1 1 10 100

0.1

Power density (W/cm2)

Q
Y

 (
%

)

 

 

 300 nm

   80 nm

f

A0

A-

A0

A-

Figure 3. (a) Confocal PL spectra of the exfoliated 1L-MoSe2 on a quartz substrate with various laser
intensities. Deconvoluted PL spectra of the exfoliated 1L-MoSe2 at (b) 0.216 W/cm2 and (c) 108 W/cm2.
(d) Integrated PL intensity of 1L-MoSe2 as a function of laser intensity. (e) Representative transmittance
spectrum of 1L-MoSe2. (f) Plot of the QYs of 1L-MoSe2 as a function of laser intensity, estimated using
80- and 300-nm-thick reference specimens.

For 1L-MoS2, the effect of chemical treatment using TFSI to increase the QY was investigated
because TFSI is known to enhance the QY of 1L-TMDs via the repair of the sulfur vacancies [13,14].
The laser-intensity-dependent PL spectra of the TFSI-treated CVD-grown 1L-MoS2 on a quartz substrate
are depicted in Figure 4a (for the Raman spectra, see the Supplementary Materials, Figure S2c). The peak
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shown at ~658 nm is consistent with previous PL results obtained for 1L-MoS2 [13]. The representative
deconvoluted PL spectra at low (0.054 W/cm2) and high (108 W/cm2) laser intensities are illustrated
in Figure 4b,c, respectively. In these figures, it is shown that contribution of the trion recombination
is ~25% for the overall emissions at all power ranges measured in this study. The PL spectra of
the pristine, CVD-grown 1L-MoS2 are depicted in Figure S4 in Supplementary Materials. The PL
intensities of the pristine and TFSI-treated 1L-MoS2 are depicted in Figure 4d, and the transmittance
spectrum of the TFSI-treated 1L-MoS2 is illustrated in Figure 4e. In this figure, the peaks at ~655 and
~607 nm correspond to the A and B excitons of 1L-MoS2, respectively. The QYs of the pristine and
TFSI-treated CVD-grown 1L-MoS2 obtained using Equation (2) with both reference samples (of 80 and
300 nm thicknesses) are plotted in Figure 4f. The QYs for the pristine and TFSI-treated samples are
estimated to be 0.0093 ± 0.001% and 0.062 ± 0.01%, respectively, indicating the enhancement of QY by
TFSI treatment.
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Figure 4. (a) Confocal PL spectra of the bis(trifluoromethane) sulfonimide (TFSI)-treated chemical vapor
deposition (CVD)-grown 1L-MoS2 on a quartz substrate with various laser intensities. Deconvoluted PL
spectra of the TFSI-treated CVD-grown 1L-MoS2 at (b) 0.054 W/cm2 and (c) 108 W/cm2. (d) Integrated
PL intensities of the TFSI-treated and pristine CVD-grown 1L-MoS2 samples as a function of laser
intensity. (e) Representative transmittance spectrum of the TFSI-treated CVD-grown 1L-MoS2. (f) Plot
of the QYs of the pristine and TFSI-treated 1L-MoS2 samples as a function of the laser intensity, which
were estimated using 80- and 300-nm-thick reference specimens.

The QY estimation results of the exfoliated 1L-WSe2 are shown in Figure 5. The PL spectra
of 1L-WSe2 exfoliated on a quartz substrate with varying laser intensities are depicted in Figure 5a
(for the Raman spectra, see the Supplementary Materials, Figure S2d). In this figure, the peak at
~745 nm is consistent with the previous PL results obtained for 1L-WSe2 [29,34,35]. The shapes of
the PL peaks and deconvoluted spectra illustrated in Figure 5b,c indicate that the contributions of
the trion recombination in the overall emissions is ~42% for all power ranges measured in this study.
The PL intensity is also shown to be linearly dependent on the increasing laser intensity, as depicted in
Figure 5d. The transmittance spectrum of 1L-WSe2 illustrated in Figure 5e exhibits a sharp peak at
~742 nm, which corresponds to the A exciton and is in good agreement with previous results obtained
for the transmittance of 1L-WSe2 [48]. The QY of 1L-WSe2 was estimated using both reference samples
(with 80- and 300-nm thicknesses) and plotted against the laser intensity, as depicted in Figure 5f.
The QY values obtained using both reference samples were similar, which is consistent with the results
obtained for 1L-WS2, 1L-MoSe2, and 1L-MoS2. The QY of 1L-WSe2 was estimated to be 0.066 ± 0.02%.
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The estimated QYs of the CVD-grown 1L-MoS2 and 1L-WSe2 were less than the previously reported
values for these materials. This may be attributable to the quality of the samples used in this study
because the QY of 1L-TMDs mainly depends on the crystal quality of the samples [13,14].Nanomaterials 2020, 10, x FOR PEER REVIEW 8 of 11 
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Figure 5. (a) Confocal PL spectra of the exfoliated 1L-WSe2 on a quartz substrate with various laser
intensities. Deconvoluted PL spectra of the exfoliated 1L-WSe2 at (b) 0.216 W/cm2 and (c) 108 W/cm2.
(d) Integrated PL intensity of 1L-WSe2 as a function of laser intensity. (e) Representative transmittance
spectra of 1L-WSe2. (f) Plot of the QYs of 1L-WSe2 as a function of laser intensity, estimated using 80-
and 300-nm-thick reference specimens.

4. Conclusions

We fabricated R6G-embedded PMMA thin films with two different thicknesses (80 and 300 nm) as
reference samples that were used for the relative estimation of the PL QY of 1L-TMDs. The estimated QY
results of 1L-WS2, 1L-MoSe2, 1L-MoS2, and 1L-WSe2 were highly consistent between the measurements
obtained using the reference specimens with two different thicknesses and assert the reliability for the
estimation of QY using these reference samples and the applicability for other micro-sized nanomaterials.
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