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ABSTRACT: The quantitative identification of the coal texture is
of great importance as a crucial parameter for coalbed methane
(CBM) reservoir evaluation. This study combined drilling core
data, electrical imaging logging data, and four conventional logging
data, namely, compensation density (DEN), natural γ (GR), deep
lateral resistivity (RD), and acoustic time difference (AC), to
achieve accurate inversion of coal texture in the Shouyang Block.
Meanwhile, wavelet analysis and Fisher discriminant analysis were
introduced to the inversion process to further improve the
accuracy. Through the utilization of software packages, such as
Matlab and SPSS, the establishment of the coal texture logging
interpretation chart of the No. 15 coal seam in the Shouyang block
was successfully realized. The outcome of this comprehensive study
reveals that the coal texture logging interpretation chart is an effective tool for the identification and classification of each coal texture
and gangue. Moreover, the validity and reliability of this method were tested and confirmed using wells CS-8 and CS-9 in the region,
achieving an accuracy of 97.1 and 93.2%, respectively. This innovative method has significant prospects for predicting and evaluating
the coal texture in the Shouyang Block, which can be further applied to other regions.

■ INTRODUCTION
Coal texture refers to the structural characteristics of coal seams
that have undergone various geological processes during the
geological evolution process. Due to the low Young’s modulus
and high Poisson’s ratio of coal, the coal seam is prone to
deformation, damage, crushing, and rheology, forming different
coal textures.1 Coal texture, as an observable manifestation of
the degree of structural deformation, significantly influences the
physical characteristics of the coal reservoirs, the selection of
fracturing layers, and the development outcomes. Consequently,
it serves as a crucial indicator for evaluating coalbed methane
reservoirs.2,3 The No. 3 coal seam of Shanxi Formation and the
No. 15 coal seam of Taiyuan Formation are the main coal seams
for coalbed methane development in the Shouyang Block. The
coal texture of these coal seams is complex, variable, and
unstable in distribution. Therefore, it is urgent to establish an
effective method for distinguishing coal texture. Logging curves,
as an indirect parameter for identifying coal texture, have
applicability advantages compared to identifying coal texture
with coal cores, which may be affected by drilling and lead to
misjudgment.4 Early research on coal texture prediction based
on logging curves primarily employed cluster analysis5 and the
Protodyakonov’s coefficient method.6 Subsequently, methods
such as Archie’s formula,7 coal texture index,8 brittleness index,9

geological strength index (GSI),10 K-means algorithm,11

principal component analysis,12 neural network,13,14 Fisher
discriminant analysis,15 and other quantitative classification
techniques were gradually introduced. Although many logging
interpretation models for coal texture have already been built,
there are still some shortcomings in coal texture correction and
interpretation accuracy. Moreover, there is still a lack of effective
identification of gangues in complex coal seams. Thus, in this
study, the No. 15 coal seam in the Shouyang Block was selected
as the research object to tackle this challenge. To improve the
accuracy of coal texture classification, core correction was
performed by electrical imaging logging data.16 Furthermore,
the wavelet analysis method was used to decompose and
reconstruct the logging curve and improve its longitudinal
resolution. Finally, a coal texture logging interpretation chart
was built to distinguish different coal textures and gangue. This
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model has the advantages of high recognition accuracy and the
ability to identify gangues in complex coal seams.

■ ESTABLISHMENT OF A LOGGING
INTERPRETATION CHART FOR COAL TEXTURE

Core Repositioning and Coal Texture Correction by
Electrical Imaging Logging. Logging interpretation of coal
texture requires establishing a corresponding relationship

between logging parameters and coal cores. Nonetheless, due
to the influence of drilling tools and environmental factors, the
coring depth needs to be meticulously corrected to match the
logging depth. The core repositioning is accomplished by
formula 1

D D D D
h
h

( )2 2= ×
(1)

Figure 1. Electrical imaging recognition patterns of coal textures in the Shouyang Block.

Figure 2. Schematic diagram of wavelet decomposition of the compensated density logging curve.
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where h and h′ are the coal seam thicknesses obtained from
drilling and logging interpretation, respectively, m; D1 and D2
are the top and bottom depths obtained from drilling,
respectively, m; D1′ and D2′ are the top and bottom depths of
the coal seam obtained from logging interpretation, respectively,
m; D and D′ are the coal sample depths obtained from drilling
and logging interpretation, respectively, m.
During the conventional coring process, coal texture is often

plagued by issues, such as broken cores and distorted coal
textures, due to drilling fluid, stress release, and other factors.
The visual characteristics of electrical imaging logging can
provide a solution by compensating for these deficiencies and
enhancing the accuracy of coal texture classification. The
national standard GB/T 30050-2013 classifies coal textures into
four categories: undeformed coal, cataclastic coal, granulated
coal, and mylonitized coal, with the latter two often grouped
together as structural coal or replaced directly with granulated
coal during coalbed methane exploration and develop-
ment.17−21

The images generated by processing the electrical imaging
logging data are calibrated using a combination of static and
dynamic color calibration methods.22 The static color
calibration employs a consistent color scheme across the entire
wellbore, which reflects the relative changes in electrical
resistivity throughout the wellbore, resulting in high discrim-
inative power for lithological differentiation. For example, coal
exhibits bright white color on the static image due to its high
electrical resistance. The dynamic color calibration is used to
address the conflict between limited color scales and the large
range of resistivity changes across the entire wellbore. Generally,
a color is assigned to each half-meter section for detailed
stratigraphic analysis. In this study, a dynamic color recognition
mode was established for the classification of coal textures, as
shown in Figure 1. The corresponding classification is as follows:
undeformed coal has an intact macroscopic structure, presenting
a blocky or layered structure with a uniform yellow−red color on

the electrical image; cataclastic coal has local development of
external fissures, appearing as a blocky-layered structure with a
yellow−brown color on the electrical image; granulated coal has
a large number of external fissures, appearing as brown−yellow−
black on the electrical image; and the gangue is characterized by
low electrical resistance, resulting in dark black stripes on the
electrical image.
Wavelet Transform. The logging data at a certain depth is a

comprehensive result of the rock information within the
detection range of the probe at that position.23 In practical
logging operations, there may be “boundary effects”.24 For
example, a thin layer of high radioactivity sandwiched between
two thick low-radioactivity layers may cause the GR value of the
high radioactivity layer to be underestimated. Due to the
common occurrence of mudstone and other gangue interlayers
within coal seams, abrupt changes in rock properties can lead to
distorted logging data and seriously affect the logging curves
near the interlayer.
Currently, common signal processing techniques used to

address “boundary effects” include the Walsh transform,25

Fourier transform,26 deconvolution,27 and wavelet transform.28

The wavelet transform, as a time−frequency analysis method for
digital signals, has been widely applied in geophysical
exploration and well logging analysis. Its mathematical
expression for wavelet basis functions is

i
k
jjj y

{
zzzt

a
t

a
a R( )

1
( 0, )a , = >

(2)

where the parameter a is the scaling factor or scale factor, which
characterizes the width and amplitude change of the wavelet
function, and the parameter τ is the translation factor or time
shift factor, which characterizes the shift position of the wavelet
function on the time axis.
The wavelet toolbox inMatlab software was used to perform a

1D discrete wavelet transform on the logging data. Taking the
two-level wavelet decomposition as an example, the original well

Figure 3. Schematic diagram of Fisher discriminant analysis. Reprinted (adapted or reprinted in part) with permission fromChen et al.15 Identification
of thin-layer coal texture using geophysical logging data: Investigation by wavelet transform and linear discrimination analysis. Copyright [2021]
[Elsevier].
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logging curve is divided into high-frequency wavelet coefficients
(detail coefficients) and low-frequency wavelet coefficients
(approximation coefficients) by high-pass and low-pass filters.
Then, the SymN wavelet is used for two-level decomposition,
and the first-level low-frequency wavelet coefficients are further
decomposed into the second-level high-frequency wavelet
coefficients and low-frequency wavelet coefficients (Figure 2).
Wavelet reconstruction is the inverse process of wavelet
decomposition, and the original well logging curve can be
reconstructed from the decomposed signal using the following
formula

s a d a d d1 1 2 2 1= + = + + (3)

where s represents the original well logging curve; a1 and a2
represent the low-frequency wavelet coefficients after the first
and second decomposition, respectively; d1 and d2 represent the
high-frequency wavelet coefficients after the first and second
decomposition, respectively.
Fisher Discriminant Analysis.Differences in coal pore and

fracture development reflect in logging signals for different coal
textures.29−31 However, changes in coal texture are not abrupt,
and although logging curves show certain trends with coal
texture, there is an overlap in numerical values, which affects coal
texture identification. To reduce the impact of overlap, a set of
optimal discriminant vectors is determined based on Fisher
discriminant analysis, which serves as the discriminating feature
set for samples. The physical meaning of this feature set is that
the pattern samples are projected onto these optimal
discriminant vectors, and samples of the same class are
concentrated, while samples of different classes are separated,
such that the ratio of interclass scatter to intraclass scatter is
maximized (Figure 3).
For an unknown sample set, it can also be classified by its

distance or variance from known samples, ensuring high
discrimination accuracy. The method is as follows.

A set ofN d-dimensional samples x1, x2,···, xn, which belong to
two different classes, i.e., there are N1 samples belonging to the
sample subset X1 of class w1 and N2 samples belonging to the
sample subset X2 of class w2. Define the intraclass scatter matrix
Sw and interclass scatter matrix Sb of the samples, respectively

S x m x m( )( )
i X X

i iw
1

2
T

i

=
= (4)

S m m m m( )( )b 1 2 1 2
T= (5)

where m xi N X X
1

i i
= , (i = 1, 2) mi is the class mean. The

intraclass scattering matrix Sw is a symmetric semipositive
definite matrix and Sw is usually nonsingular when N > d. The
interclass scattering matrix Sb is also a symmetric semipositive
definite matrix and its rank is at most 1 since Sb is actually the
outer product of two vectors.
The Fisher linear separability criterion requires maximizing

the Fisher criterion function, i.e., finding a projection vector that
maximizes the separation of the projected samples. The Fisher
criterion function can be expressed as

J w
w S w
w S w

( )
T

b
T

w
=

(6)

This expression is often referred to as the generalized Rayleigh
quotient. The Lagrange multiplier method can be used to find w,
such that J(w) takes a great value. Let the denominator be a
nonzero constant, i.e., letwTSww = c ≠ 0, and define the Lagrange
function as

L w w S w w S w c( , ) ( )T
b

T
w= (7)

where λ is the Lagrange multiplier, and the partial derivative of w
yields

Table 1. Electrical Imaging Correction of Coal Texture of the No. 15 Coal Seam in the Shouyang Block (Taking CS-6 and CS-7
Wells as Examples)
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L w
w

S w S w
( , )

b w=
(8)

Letting the partial derivative be zero, we have

S w S w 0b w = (9)

If Sw is nonsingular, left multiplication of both sides by Sw−1
yields

S S w ww
1

b = (10)

Equation 10 is the eigenvalue of the general matrix Sw−1Sb. For
binary classification problem, there is no need to truly calculate

the eigenvalues of matrix Sw−1Sb. Substituting eq 5 into the above
equation yields

S m m m m w w( )( )w
1

1 2 1 2
T = (11)

Since (m1 − m2)Tw is a scalar quantity, let it be α, we get

w S m m( )w
1

1 2=
(12)

where α/λ is a scalar factor that does not change the direction of
the axis and is made to be 1. Then, we have

w S m m( )w
1

1 2= (13)

Figure 4. Electrical imaging identification map of coal texture in well CS-6 (the depth is 1234−1237.6 m).
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The w obtained from eq 13 allows the Fisher criterion function
J(w) to take a great value, which is the best projection direction
from the d-dimensional space to the one-dimensional space.

■ PRACTICAL APPLICATION IN THE SHOUYANG
BLOCK

Coal Texture Correction. Coal core photos of seven wells,
CS-1, CS-2, CS-3, CS-4,CS-5, CS-6, and CS-7, were used to
identify and correct the coal texture. Some of the findings are
presented in Table 1 and Figures 4−7. Electrical imaging logging
images were used to accurately restore the fractured coal core to
its original position and to identify the coal texture. Additionally,
the gangue in the coal seam can also be identified.
Coal Texture Logging Interpretation Chart Establish-

ment. Compensated density (DEN), natural γ (GR), deep
lateral resistivity (RD), and acoustic time difference (AC) were
used as the source data for the coal texture logging interpretation
chart based on the characteristics of these logging curves. After
normalization preprocessing, Sym8 wavelet was used for three-
level decomposition of the DEN and GR curves, and Sym6
wavelet was used for four-level decomposition of the AC and RD
curves based on the wavelet analysis toolbox in Matlab. The
formula is as follows

s k d k d k d k a1 1 2 2 3 3 3 3= × + × + × + × (14)

s k d k d k d k d k a1 1 2 2 3 3 4 4 4 4= × + × + × + × + ×
(15)

where s′ represents the reconstructed logging curve; ki and ki′ are
the high-frequency and low-frequency wavelet compensation
coefficients for the i-th level, respectively; and di and ai represent
the high-frequency and low-frequency wavelet coefficients for
the i-th level, respectively.
As the noise decreases with the increasing decomposition

level,32 the first-level high-frequency wavelet coefficients with
high noise content are removed. Meanwhile, the highest level
high-frequency wavelet coefficients that exhibit the original
curve style are compensated to highlight the curve amplitude
and retain other levels of high-frequency wavelet coefficients.
The improved formulas are as follows

s d k d a2 3 3= + × + (16)

s d d k d a2 3 4 4= + + × + (17)

Taking the DEN curve as an example, appropriate high-
frequency wavelet compensation coefficients are selected for
reconstruction (Figure 8), which increases the curve amplitude
while preserving the original curve shape. In this study, k = 3 is

Figure 5. Electrical imaging identification map of coal texture in well CS-6 (the depth is 1237.6−1239.8 m).
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selected as the compensation coefficient for the RD curve, k = 4
is selected as the compensation coefficient for the DEN and AC
curves, and k = 7 is selected as the compensation coefficient for
the GR curve (Figure 9). The overall trend of the curves
corresponds well to the original signal curves, and the curve
amplitudes are increased, effectively improving the logging
vertical resolution.
For the reconstructed curves, 176 sampling points were

extracted from the undeformed coal, cataclastic coal, granulated
coal, and interbedded gangue at a sampling interval of 0.05 m to
serve as data samples for the coal texture logging interpretation
chart. Based on Fisher discriminant analysis, different coal
texture logging data sample sets were assigned values (Table 2).
The logging curves were used as the composition parameters of
the vector matrix. SPSS software was used to perform Fisher

discriminant analysis on the independent variables of
undeformed coal, cataclastic coal, granulated coal, and gangue,
respectively, to obtain the nonstandardized discrimination
coefficients and discrimination functions (Table 3). The results
are as follows

F 4.3203 DEN 0.0104 AC 0.0068 GR

0.0034 RD 18.3341
1 = × + × ×

+ × (18)

F 18.7134 DEN 0.0200 AC 0.0154 GR

0.0010 RD 38.3838
2 = × + × + ×

+ × (19)

The characteristic values of typical discrimination functions
are shown in Table 4. The characteristic value of F1 is 23.149,
with a variance of 64.3% and a typical correlation of 0.979. The

Figure 6. Electrical imaging identification map of coal texture in well CS-7 (the depth is 1089.6−1092.9 m).
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characteristic value of F2 is 11.311, with a variance of 31.4% and a
typical correlation of 0.959. The cumulative variance contribu-
tion rate of functions F1 and F2 is 95.7%, indicating that the
characteristic vectors of the characteristic values of these
functions can represent the classification information of this
type of function.
By inputting sample data of different coal textures into

functions F1 and F2, the values of F1 and F2 for different coal
textures can be obtained. By plotting these values on a two-
dimensional coordinate systemwith F1 as the horizontal axis and
F2 as the vertical axis, the coal texture logging interpretation
chart can be obtained (Figure 10). The individual data points
representing different coal textures on the chart overlap only
slightly, indicating that the sample coal texture classification is
effective.
If the classification result of the coal texture logging

interpretation chart is not ideal or the chart cannot clearly

determine the specific classification of unknown samples, the
classification functions can be used. In this study, four
classification functions for different coal textures were further
obtained through Fisher discriminant analysis (Table 5).
The coefficients and constants of the classification functions

for different coal textures are obviously different. By substituting
the data of unknown samples into the classification functions
represented by different coal textures and according to the
principle of maximummembership degree, the function with the
maximum calculated value is assigned to the corresponding coal
texture classification. The classification functions for different
coal textures are as follows

undeformed 2294.730 DEN 9.894 AC

1.530 GR 0.097 RD 3822.519

= × + ×
× + ×

(20)

Figure 7. Electrical imaging identification map of coal texture in well CS-7 (the depth is 1092.9−1095.9 m).
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cataclastic 2259.783 DEN 9.608 AC

1.474 GR 0.109 RD 3672.487

= × + ×
× + ×

(21)

granulated 2374.496 DEN 9.995 AC

1.562 GR 0.139 RD 4092.448

= × + ×

× + ×
(22)

gangue 2527.016 DEN 10.01 AC

1.276 GR 0.109 RD 4321.99

= × + ×

× + ×
(23)

Cross-Validation and Application. Based on the four
classification functions mentioned above, the 176 sets of data
used in the Fisher discriminant analysis were further substituted

Figure 8. Schematic diagram of DEN curve reconstruction for different k values.

Figure 9. Schematic diagram of reconstruction curves of the No.15 coal seam in the Shouyang Block.
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into the above formula to obtain the discriminant classification
results of the initial samples (Table 6) for cross-validation. The
results show that the classification function correctly classified
99.4% of the original known cases.
By utilizing eqs 24, 25, and Table 7, it is possible to calculate

the precision and recall rates for each coal texture.

precision
TP

TP FP
=

+ (24)

recall
TP

TP FN
=

+ (25)

where TP represents the successful prediction of a positive
sample as positive, FP represents the incorrect prediction of a
negative sample as positive, and FN represents the incorrect
prediction of a positive sample as negative.
Equations 26 and 27 were employed to conduct a composite

assessment of the individual coal texture. The macro-precision
and macro-recall produced by this classification chart were both
0.996.

P P P P
macro precision

4
undeformed cataclastic granulated gangue=

+ + +
(26)

R R R R
macro recall

4
undeformed cataclastic granulated gangue=

+ + +
(27)

To further verify the practicality of the coal texture logging
interpretation method mentioned above, interpretation analyses
were performed on theNo. 15 coal seam of CS-8 and CS-9 wells,
and the results were compared with the core description results
obtained on site. The well logging parameters of these two wells
are not involved in the model building phase and are
representative. As shown in the core photos corrected by
electrical imaging logging in Figure 11, the coal textures of the
No. 15 coal seam in the CS-8 well from top to bottom are
cataclastic coal and undeformed coal, while in CS-9 well, the coal
textures are recognized as undeformed coal, cataclastic coal,
granulated coal, cataclastic coal, and undeformed coal,
respectively, with argillaceous gangue (mudstone) developing
inside the undeformed coal at the bottom.
Figures 12 and 13 show the projection of the logging data at

different depths on the coal texture discrimination chart for
these two wells. Based on the recognition of the discrimination
map and the calculation results of the classification function, the
coal texture of the No. 15 coal seam in the CS-8 well was divided.
Only one point representing cataclastic coal identified by the
core falls into the granulated coal area on the chart and one point

Table 2. Statistical Result of Logging Parameters Grouped by
Different Coal Textures

classification parameters mean value
standard
deviation

number of
effective cases

undeformed DEN 1.411 0.075 59
AC 440.776 9.570 59
GR 37.872 21.715 59
RD 1038.757 254.033 59

cataclastic DEN 1.385 0.045 58
AC 420.673 16.741 58
GR 47.163 13.672 58
RD 2199.849 291.569 58

granulated DEN 1.355 0.026 48
AC 439.038 6.874 48
GR 32.414 9.861 48
RD 4507.013 362.758 48

gangue DEN 2.139 0.168 11
AC 343.889 47.488 11
GR 214.714 107.143 11
RD 619.838 406.156 11

total DEN 1.433 0.196 176
AC 427.621 28.530 176
GR 50.498 52.359 176
RD 2341.095 1464.664 176

Table 3. Typical Discriminant Function Coefficient of
Logging Parameters

function

parameter F1 F2
DEN 4.3203 18.7134
AC 0.0104 0.0200
GR −0.0068 0.0154
RD 0.0034 0.0010
constant −18.3341 −38.3838

Table 4. Characteristic Value of Typical Discriminant
Function of the No. 15 Coal Seam Texture in the Shouyang
Block

function
characteristic
values

variance
percentage, %

cumulative
percentage, %

typical
correlation

F1 23.149 64.3 64.3 0.979
F2 11.311 31.4 95.7 0.959

Figure 10. Interpretation chart of coal texture for the No. 15 coal seam
in the Shouyang Block.

Table 5. Classification Function Coefficients of the No. 15
Coal Seam with Different Coal Texture in the Shouyang
Block

coal texture classification

logging
parameters undeformed cataclastic granulated gangue

DEN 2294.730 2259.783 2374.496 2527.016
AC 9.894 9.608 9.995 10.010
GR −1.530 −1.474 −1.562 −1.276
RD 0.097 0.109 0.139 0.109
constant −3822.519 −3672.487 −4092.448 −4321.99
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representing undeformed coal falls into the gangue area,
indicating an accuracy rate of 97.1% when compared with the
core identification results. For the No. 15 coal seam in CS-9 well,
two points representing cataclastic coal falls into the granulated
coal area, and only one point representing undeformed coal falls
into the cataclastic coal area. Moreover, a point representing
gangue and a point representing cataclastic coal fall into the
undeformed coal area, resulting in an accuracy rate of 93.2%, and
its macro-precision and macro-recall values are 0.919 and 0.916,
respectively. Therefore, the established coal texture identifica-
tion chart and classification function can be effectively applied to
predict and analyze unknown samples.

■ CONCLUSIONS
This study systematically establishes a coal texture interpreta-
tion method, including core depth correction, core reposition-
ing, coal texture correction, wavelet transformation (decom-

position and reconstruction), Fisher discriminant analysis,
determination of the classification function, and the establish-
ment of the coal texture logging interpretation chart. This
method effectively improves the vertical resolution of logging
curves and the accuracy of coal texture prediction.
The wavelet decomposition and reconstruction method can

preserve the effective information of thick layers without
distortion while magnifying the information of thin layers and
eliminating noise. In the wavelet reconstruction formula for the
No. 15 coal seam in the Shouyang Block, k = 3 is selected as the
compensation coefficient for the deep resistivity curve, k = 4 as
the compensation coefficient for the density and sonic time
difference curve, and k = 7 as the compensation coefficient for
the natural γ curve.
Using Fisher discriminant analysis, a coal texture discrim-

ination chart for the No. 15 coal seam in the Shouyang Block is
established. The classification accuracy is 99.4%, and it can
effectively distinguish undeformed coal, cataclastic coal,
granulated coal, and gangue. The effectiveness of the chart is
verified using the No. 15 coal seam in wells of CS-8 and CS-9,
with accuracy rates of 97.1 and 93.2%, respectively. Overall, the
built coal texture logging interpretation chart and classification
function through Fisher discriminant analysis can be effectively
applied to the precise prediction of coal textures.

Table 6. Classification Results of Coal Texture of the No. 15 Coal Seam in the Shouyang Block

prediction results

classification undeformed cataclastic granulated gangue total

original sample undeformed 59 0 0 0 59
cataclastic 0 58 0 0 58
granulated 0 0 48 0 48
gangue 0 0 0 11 11

percentage, % undeformed 100 0 0 0 100
cataclastic 0 100 0 0 100
granulated 0 0 100 0 100
gangue 0 0 0 100 100

cross-validation sample undeformed 58 1 0 0 59
cataclastic 0 58 0 0 58
granulated 0 0 48 0 48
gangue 0 0 0 11 11

percentage, % undeformed 98.3 1.7 0 0 100
cataclastic 0 100 0 0 100
granulated 0 0 100 0 100
gangue 0 0 0 100 100

Table 7. Statistical Table of TP, FN, and FP of the Coal Body
Structure

TP FN FP

classification undeformed 58 1 0
cataclastic 58 0 1
granulated 48 0 0
gangue 11 0 0

Figure 11. Verification of coal structural identification results with core photos of CS-8 (left) and CS-9 (right).
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Figure 12. Projection discrimination of coal texture of the No. 15 coal seam of well CS-8 and its comparison with core discrimination results (the chart
is the same as Figure 10).

Figure 13. Projection discrimination of coal texture of the No. 15 coal seam of well CS-9 and its comparison with core discrimination results (the chart
is the same as Figure 10).
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