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Abstract: Melt spinning machines must be set up according to the process parameters that result in the
best end product quality. In this study, artificial intelligence algorithms were employed to create a system
that detects abnormal processing parameters and suggests strategies to improve quality. Polypropylene
(PP) was selected as the experimental material, and the quality achieved by adjusting the melt spinning
machine’s processing parameter settings was used as the basis for judgement. The processing parameters
included screw temperature, gear pump temperature, die head temperature, screw speed, gear pump
speed, and take-up speed as the six control factors. The four quality characteristics included fineness,
breaking strength, elongation at break, and elastic energy modulus. In the first part of our study, we
applied fast deep-learning characteristic grid calculations on a 440-item historical data set to train a deep
learning neural network and determine methods for multi-quality optimization. In the second part,
with the best processing parameters as a benchmark, and given abnormal quality data derived from
processing parameter settings deviating from these optimal values, several machine learning and deep
learning methods were compared in their ability to find the settings responsible for the abnormal data,
which was randomly split into a 210-item training data set and a 210-item verification data set. The
random forest method proved to be the best at identifying responsible parameter settings, with accuracy
rates of single and double identification classifications together of 100%, for single factor classification
of 98.3%, and for double factor classification of 96.0%, thereby confirming that the diagnostic method
proposed in this study can effectively predict product abnormality and find the parameter settings
responsible for product abnormality.

Keywords: melt spinning machine; artificial intelligence; machine learning; random forest; deep
learning; neural network

1. Introduction

Modern synthetic fibers are mainly manufactured by three methods: dry spinning,
wet spinning, or melt spinning. Among them, melt spinning is the most commonly used in
the industry due to its low cost and the stability of the process [1,2]. However, due to the
wear and tear of equipment and the resulting maintenance or replacement of different parts
of the melt spinning process, product quality can be expected to deviate from the original.
Inability to achieve the preset best quality and abnormality of the process may also be
due to a number of other factors, such as the experience of the operator of the machine
and parameter settings, among other issues. Because of the above factors, the causes of
abnormality are also more difficult to analyze. Currently, the industry almost completely
relies on the expertise of technologists to solve the problem.

If a specialized analysis technique can be developed to explore the link between
abnormal quality and processing parameters, it will significantly enhance the maintenance
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of product quality, reduce abnormal analysis downtime, and stabilize process control. In
order to accomplish these goals, we present a set of techniques in this work that engineers
may use as criteria to determine whether product quality is declining and to quickly
identify the causes of it, enhancing product quality and lowering manufacturing costs.
Therefore, the goal of this study is to investigate the best melt spinning machine process
parameter settings and to pinpoint those that lead to improper processing. Since PP fiber
is currently one of the three major synthetic fibers that are mostly used in the production
of knitwear and plush items and are produced by melt spinning, this study selects PP as
the experimental material and samples from melt spinning machines as the research object.
A deep learning neural network [3] is used to find the optimal processing parameters
determinant of multiple quality characteristics and, in the case of quality changes, to
indicate which processing parameter changes are responsible for the abnormal quality
and thus solve the problem. We hope to provide the industry with a good and efficient
diagnostic method for the analysis of quality abnormalities.

The selection of machining parameters in the industry is based on the experience and
intuition of the engineer responsible for the machine. However, the trial-and-error process
adopted is error-prone and time-consuming, so it is not optimal for complex manufacturing
processes [3,4]. Chen et al. [5] used Taguchi parametric design methods combined with
neural networks to optimize processing parameter settings for plastic injection molding.
The experimental results showed that their neural network model not only effectively
reduces the time taken for optimal processing parameter setting, but also results in more
reliable product quality. The same approach is widely used in a number of different fields,
including computing, science, engineering, medicine, the environment, agriculture, mining,
weather prediction, business, and even art [6]. Majumdar and Majumdar [7] compared
three modeling approaches for forecasting the breaking elongation of ring spun cotton
yarns (mathematical, statistical, and artificial neural network models). The main reason
why neural networks can successfully predict product quality is that they have the ability
to learn any nonlinear mapping between input and output, and compared with traditional
regression and statistical models, the results are more definitive [8]. The larger the amount
of historical data, the more accurate the neural network can become [8,9].

Artificial intelligence has recently been integrated to the analytical tools of many re-
searchers in order to shorten experimentation times and lower costs. Although abnormality
diagnosis systems have been used in various industries, they are rarely met with in polymer
melt spinning processing. This is surprising, since in melt spinning, as in other production
processes, artificial intelligence classifiers can count different features and classify them
according to different characteristics, using decision tree, support vector machine, random
forest [10], or neural network rules, among others, to detect faults.

Sugumaran and Ramachandran [11] extracted and analyzed eigenvalues through
vibration signals and used a decision tree to select 3 excellent features that could identify
normal and abnormal eigenvalues from 11 eigenvalues. They then input them into fuzzy
classifiers, showing that they can be applied to fault diagnosis. Decision trees are used
not only for fault diagnosis, but also for other diagnostic purposes, like in medicine and
prediction of mechanical strength [12,13]. Zimmerman et al. [14] used a CART decision tree
for analysis and found that their CART-developed test, although less accurate than PCR,
had good sensitivity and good predictive performance for influenza.

The random forest method has further improved the accuracy of machine learning deci-
sion trees and has been widely used in the field of artificial intelligence classification in recent
years, having great advantages over other artificial intelligence algorithms. Nafees et al. [15]
integrated the linear model of random forest to create a study which aims to create modelling
tools for estimating the compressive and tensile strengths of plastic concrete. It is also widely
used in industrial diagnosis. Cerrada et al. [16] applied random forests and genetic algorithms
to do fault diagnosis and classification of gears. With a large number of features as input, the
accuracy rate was as high as 97%. Sanchez et al. [17] used a deep random forest to diagnose
failures of gearboxes and compared it with other machine learning algorithms such as support
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vector machines and the k-nearest neighbor algorithm, confirming that the random forest was
the best for their data. Beyond industry, random forest classification has also achieved very
good results in many other fields, such as medical analysis [18] and biological field [19]. In
the field of artificial intelligence, effective classifiers can be developed not only with random
forests, but also with the aforementioned neural networks. Artificial neural networks use
nonlinear activation functions and have weighted outputs from multiple neurons into deeper
neuron layers, with multiple layers connected in sequence to increase learning accuracy [20].
Ali et al. [21] studying the non-stationary nonlinear characteristics of rolling bearing vibration
signals, used a neural network to classify bearing defects. Their experimental results showed
that this method can reliably classify defects.

In this study, we proposed a set of methodologies that engineers may use as criteria
to determine whether product quality is deteriorating and to immediately assist them in
identifying causes, ultimately increasing product quality and lowering manufacturing costs.
As a result, the goal of this research is to find the best process parameter settings for melt
spinning machines and to identify those that cause anomalous processing.

2. Methods and Materials

The experimental method and artificial intelligence steps are shown in Figure 1,
including melt spinning experiment, data pre-processing, artificial intelligence classifier,
single and double anomaly identification, and classification results.
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2.1. Random Forest

The random forest is composed of decision trees, and each decision tree in the random
forest is not related [22]. After obtaining the random forest, when a new input sample
enters, each decision tree in the random forest makes a judgment to predict which class
the sample should belong to, and finally, each decision tree votes to predict which class
the sample belongs to. Although each decision tree in the random forest obtained by this
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algorithm is very weak, the combination of each decision tree works very well. This method
is also called ensemble learning [23]. Its calculation steps:

(1) Define a random sample of size n, and randomly select n data from the data set.
(2) From the selected n data, a decision tree is trained, d features are randomly extracted

for each node in the decision tree, and then the features are used to divide the node.
(3) Repeat steps 1~2 k times with improvements. The more commonly used improvement

is Adaboost.
(4) Summarize the predictions of all decision trees and decide the result of this classifica-

tion by voting majority or weighted voting.

AdaBoost is an algorithm that improves boosting [24] and is the most commonly used
one today. The idea is to increase the weight of the samples misclassified by the previous
decision trees so that each time a new decision tree is trained it can focus on training data
that is easily misclassified. Each decision tree uses weighted voting instead of the average
voting mechanism. Weak classifiers with higher accuracy have larger weights, and weak
classifiers with lower accuracy have lower weights.

First, a set of training data is given:

({(x1, y1), (x2, y2), . . . , (xn, yn)}) (1)

Assuming that the weight of the kth time is wi
k, the weight of each sample of the first

decision tree classifier is:
wi

1 =
1
n

(2)

First train the first decision tree classifier fk(x) with weights wi
k.

Assuming that L decision tree classifiers are trained, when training the kth one:

ak = 0.5 ∗ In(
1− εk

εk
) (3)

wi
k+1 =

{
wi

k ∗ eak i f fk(xi) 6= yi
wi

k ∗ e−ak i f fk(xi) = yi
(4)

The εk is the error of the kth decision tree classifier.
Finally, fL(x) decision tree classifiers are obtained, and the results of all decision tree

classifiers are weighted to vote:

H(x) = sign(
L

∑
K=1

ak fk(x)) (5)

2.2. Neural Network

A neural network mimics the human brain, in a structure consisting of thousands of
interconnected neurons. A neuron can be connected to multiple neurons in its rear layer
for output, and multiple neurons in a front layer for reception. Neurons and perceptron’s
are mathematical functions that multiplies input data from the input layer (×1, ×2 . . . )
by a weight (w1, w2 . . . ) and adds a bias (b) to the weighted inputs (hidden layer). The
result is then put via an activation function (f ) to introduce nonlinearity to the network.
All incoming data points receive a weight, are multiplied and added together, and passed
to a non-linear activation function. An example of a single-layer neural network-like
architecture is shown in Figure 2.
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The output of each neuron:
a = f (wp + b) (6)

After calculating the loss between the output layer of the neural network and the
correct value, the neural network will modify the neural network parameters through the
back-propagation algorithm. Since neural networks are inherently nonlinear, consisting of
multiple inputs and multiple outputs, they are suitable for modeling complex nonlinear
systems.

In order to find the smallest loss function, the training of neural network often uses
the gradient descent algorithm to achieve optimization.

wi = wi−1 − γ
∂L
∂W

(7)

where W is the weight parameter; γ is the learning rate; L is the loss function. ∂L
∂W is the

gradient of the loss function to the weight parameter.

2.3. Activation Functions

Activation functions are functions that are used in neural networks to compute the
weighted total of input and biases, which is then used to determine whether or not a
neuron can activate [25]. They are used to control the outputs of our neural networks in a
variety of areas, including object recognition and classification, as well as other domains, to
name a few, with early research findings demonstrating unequivocally that good activation
function selection improves neural network computing results. ReLU, Mish, and Sigmoid
Functions are the activation functions employed in this work.

2.4. Optimization Techniques

Optimization is one of the important aspects of deep learning, as it helps a model
train better when the weights are modified, so that it can reduce the loss error and also
handle the dimensionality problem during back propagation. Ruder [26] investigated the
convergence time, number of fluctuations, and parameter update rate of multiple stochastic
gradient descent-based optimization algorithms, including SGD and SGD with momentum,
Adam, and RMSProp, using varying numbers of iterations and particular values of the test
function.

2.5. Materials

PP is an outstanding textile material which is purchased from polyacrylic polymer
Globalene 6331 (LCY Chemical Corp., Taipei, Taiwan). The chemical structure is shown in
Figure 3. It features abrasion resistance, flexibility, high strength resistance, light weight,
strong antistatic character, good chemical resistance, and a low cost. Acid and alkali
resistance, water repellency, quick drying, bacteria repellency, below thermal conductivity,
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warmth retention, low glass transition point, low temperature resistance, low energy
consumption, low CO2 emission, decomposability, no dyeing wastewater pollution, and
oil absorption are among its advantages over PET, Nylon 6, and Nylon 66 fibers. PP fiber
is now widely utilized and has gained economic relevance in the production of home
furnishings and industrial uses. The PP fiber is one of three primary synthetic fibers and is
generally made via melt spinning. In the vertical or horizontal screw extruder, the acrylic
resin is heated and molten, then extruded by nozzle through the metering pump and cooled
to fiber in the air [27,28].
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3. Experiment Plan

In this study, a melt spinning machine was used as the research machine, and PP
was used as the material. The melt spinning machine uses heating to make the material
appear in a molten state. The material was then conveyed through the screw and the gear
pump, so that it is continuously extruded through the spinning nozzle, and wound into a
drum through the roller. Since the melt spinning machine includes feeder, screw heating
zone, gear pump, spinning nozzle, and take up system, as shown in Figure 4, the screw
temperature, gear pump temperature, die head temperature, screw speed, gear pump
speed, and take-up speed are designed as process parameters to discuss the quality of the
fiber process. At the same time, a group of neural networks was trained using historical
experimental data to predict the multiple characteristics of quality on the basis of various
processing parameter values.
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Half the quality characteristics obtained were used as input feature values for the
training of a quality abnormality classifier. After training, the other half were input as test
samples to confirm whether the classifier could identify processing parameters responsible
for the quality abnormality. Assuming the identification was successful, the diagnosis
system for the melt spinning machine was complete.

3.1. Materials Analysis

PP was selected as the experimental material in the study because of its characteristics,
namely, easy processing, mechanical strength, strong elasticity, resistance to staining,
lightness, and low price. Before the experiment, it was necessary to find its melting point
and thermal cracking point to plan settings for the machine. To learn the temperature of the
thermal cracking point, a thermogravimetric analyzer was used, with a thermal differential
analyzer used to measure its melting point. A thermogravimetric analysis diagram and
differential scanning calorimetry (DSC) diagram are shown in Figures 5 and 6. It can be
seen that the thermal cracking point of PP is about 400 ◦C, so this temperature was not
exceeded during the experiment, as it risked contaminating the machine. The melting
point is about 166 ◦C. Therefore, the temperature was kept above this level during the
experiment. Temperatures lower than this temperature also risked damaging the machine.
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3.2. Multi-Quality Characteristic Prediction
3.2.1. Experimental Data

A total of 440 historical melt spinning measurement records were used as data in
the study. There were six processing parameters, namely, screw temperature, gear pump
temperature, die head temperature, screw speed, gear pump speed, and take-up speed. The
corresponding quality characteristics were fineness, breaking strength, elongation at break,
and modulus of resilience. These 440 samples were randomly split into a 330-item training
data set and a 110-item validation data set, using the k-fold cross-validation method to
produce the best model for subsequent analysis when the model was finally optimized.

3.2.2. Data Processing

Due to the different units of measurement of all the input independent variables, the
output dependent variables, and the different value size characteristics, comparability was
impaired. To solve this problem, the data was first normalized for this experiment. The
range of processing parameters of the original independent variables is shown in Table 1.

Table 1. The range of melt spinning machine processing parameters.

Range Screw
Temperature

Gear Pump
Temperature

Die Head
Temperature Screw Speed Gear Pump

Speed Take-Up Speed

Lowest 160 ◦C 200 ◦C 210 ◦C 5 rpm 15 rpm 300 rpm

Highest 200 ◦C 240 ◦C 250 ◦C 10 rpm 25 rpm 700 rpm

3.2.3. Neural Network Training

A neural network was used for the prediction of the multiple quality characteristics.
The input variables were the processing parameters of the melt spinning machine: screw
temperature, gear pump temperature, die head temperature, screw speed, gear pump speed,
and take-up speed. The output variables were the corresponding quality characteristics:
fineness, breaking strength, elongation at break, and modulus of resilience.

The architecture of the neural network is shown in Figure 7. The number of hidden
layers and the number of neurons in each layer of the neural network were variables used
to find the best results using the grid search method.
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In order to avoid the problem of over-fitting in neural networks, this study added
the dropout method between hidden layers for regularization. However, the experimental
results showed that the use of dropout regularization in the neural network only slightly
improved the prediction of values. In order to normalize output values in the range 0 to 1,
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the output layer adopted the sigmoid function as shown in Equation (8). The activation
function of the remaining layers was different from the commonly-used ReLU activation
function [29]. The novel Mish function was used instead [30], as shown in Equation (9).
The experimental process is shown in Figure 8.

sigmoid(x) =
1

1 + e−x (8)

Mish(x) = xtanh(ln(1 + ex)) (9)
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As can be seen from Figure 8, the Mish function behaves differently than the commonly-
used ReLU and sigmoid functions [31]. It can effectively and quickly converge the loss,
and it is less prone to the problem of network weakening when the loss increases in a long
iteration.

3.2.4. Evaluation Criteria and Training Results

In order to evaluate the performance of the neural network, the study adopted the
commonly-used statistical standards, mean absolute error (MAE) and root mean squared
error (RMSE), as evaluation methods. The formulas are shown in Equations (10) and (11).
The lower the value, the better the performance of the neural network.

MAE =
1
n∑N

i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (10)

RMSE = ∑N
i=1

√
(ŷi − yi)

2/N (11)

where N represents the quality characteristic quantity, and ŷi and yi represent the predicted
value and the actual value, respectively.

The mean absolute error and root mean square error of the training results for the vali-
dation data sets with neural network grid search are shown in Tables 2 and 3, respectively.
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Table 2. Mean absolute error of validation data sets for neural network grid search.

No. of Hidden Layers

Neurons in Each Layer

20 30 40 50

2 0.084 0.079 0.088 0.085

3 0.078 0.078 0.079 0.080

4 0.076 0.074 0.073 0.074

5 0.075 0.075 0.075 0.077

Table 3. Root mean square error of validation data sets for neural network grid search.

No. of Hidden Layers

Neurons in Each Layer

20 30 40 50

2 0.104 0.102 0.105 0.104

3 0.101 0.101 0.102 0.102

4 0.098 0.095 0.093 0.096

5 0.097 0.097 0.098 0.101

It is observed from Tables 2 and 3 that the mean absolute error and the root mean
square error can be reduced by increasing the number of neurons and the hidden layers.
However, if the number of these two is increased too much, it will lead to overfitting, so
that the error in the validation dataset increases. After using the grid search method [32]
to obtain the optimal number of hidden layers and neurons in the neural network, we
added dropout regularization between the hidden layers in the neural network to reduce
the problem of overfitting, as shown in Figure 9.
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Despite trying to reduce overfitting in the neural network through the use of dropout
regularization, the experimental results showed it only slightly reduced errors in predicted
numerical values in the validation data set. Then, we used three algorithms to improve
gradient descent for the final optimization of the neural network, namely SGDM [33],
RMSProp [34], and Adam [35]. In order to solve the common problem of the basic gradient
descent falling into a local optimal solution and not being able to escape, we made use of
the SGDM gradient descent method with momentum.

Vi = βVi−1 − γ
∂L
∂W

(12)

Wi = Wi−1 + Vi (13)

The above equation is the SGDM gradient descent formula with momentum. Com-
pared with the basic SGDM gradient descent method, directional velocity V and momentum
β are added.

Starting by testing with a smaller number of iterations, as shown in Figure 10, we
found that the RMSProp algorithm reduced error rapidly at the beginning, but its perfor-
mance declined after a larger number of iterations. The Adam algorithm and the SGDM
algorithm, on the other hand, behaved similarly and converged effectively on a smaller
error rate. Therefore, the number of iterations was extended in the experiment, and only
the performance of the Adam algorithm and the SGDM algorithm was compared. The
results are shown in Figure 11.
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Figure 11. The comparison of Adam and SGDM algorithm.

After 1000 iterations, the Adam algorithm and the SGDM algorithm had quite similar
training curves, with mean absolute errors of 0.0713 and 0.0709, and root mean square
errors of 0.0917 and 0.0905, respectively. Although there was not much difference between
the two, the SGDM algorithm reduced the loss slightly more effectively than the Adam
algorithm. The detailed optimal training process is shown in Table 4.

Table 4. Best training results of neural network classes.

Basic Neural
Network ReLU Mish Dropout Adam RMSProp SGDM MAE RMSE

T T T 0.075 0.097

T T T 0.073 0.091

T T T T 0.071 0.092

T T T T 0.072 0.093

T T T T 0.071 0.091

(Notes: T stands for use).

Finally, the quality characteristic values predicted by the neural network are shown in
Table 5 as a figure between 0 and 1 calculated by the sigmoid function. The results show
that the neural network effectively predicted the multiple quality characteristic values that
particular processing parameter settings would produce. Not only could expected results
be predicted before an experimental run, but the search for optimization parameters could
also be further carried out.
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Table 5. The outputs of the neural network.

No.

Quality
Fineness Breaking

Strength
Elongation at

Break
Modulus of
Resilience

1 0.3756 0.4750 0.7792 0.3485

2 0.4911 0.6983 0.1402 0.9094

3 0.6038 0.1909 0.6664 0.8443

4 0.7908 0.1200 1 0.7692

5 0.1688 0.3887 0 0.5886

6 0.7128 1 0.2288 0.1552

7 0.6479 0.5397 0.0466 0.7645

8 0.4227 0 0.7121 0.5876

9 0.5020 0.6814 0.5338 0.6714

10 0.1160 0.4072 0.6850 1

11 0.4236 0.5923 0.7031 0

12 0.9014 0.5112 0.4281 0.9307

13 0.1014 0.8892 0.8902 0.9345

14 0.7915 0.7402 0.6798 0.4314

15 0 0.2648 0.1486 0.4834

16 0.4965 0.3988 0.7897 0.6255

17 1 0.6118 0.5782 0.6722

18 0.1556 0.5548 0.5080 0.5609

19 0.1875 0.9408 0.7626 0.8439

20 0.0891 0.8904 0.8377 0.9105

As can be seen from Figures 12–15, the neural network model could successfully
and effectively predict the effect of various combinations of processing parameters on the
corresponding fineness, breaking strength, elongation at break, and modulus of resilience
quality characteristics.
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set after normalization.

Compared with the traditional Taguchi analysis method, which requires the setting up
of orthogonal arrays, carrying out main effect analysis, analysis of variance, confirmatory
tests, and undertaking other time-consuming steps [5], the neural network model conducts
self-training and learning with past historical data, meaning it can analyze the data more
efficiently.

It was the aim of this study to obtain optimal processing parameters for minimum
fineness and maximum breaking strength, elongation at break, and modulus of resilience.
Therefore, because of the high speed at which deep learning neural networks could be
calculated (one data prediction does not require one millisecond), the grid search method
was used to exhaustively find the best combination of processing parameters with a mean
square error minimum for fineness and a maximum one for breaking strength, elongation
at break and modulus of resilience. The result of the search was that when the screw
temperature is 180 ◦C, the gear pump temperature is 220 ◦C, the die head temperature is
240 ◦C, the screw speed is 7.5 rpm, the gear pump speed is 15 rpm, and the take-up speed is
700 rpm, the output quality characteristic is that the fineness is 243 Denier (D), the breaking
strength is 3.4 N/mm2, the breaking elongation is 643%, and the elastic energy modulus is
9.13 N/mm2, as shown in Table 6.

Table 6. Predicted quality data for optimal processing parameters.

Fineness (dB) Breaking
Strength (dB)

Elongation at
Break (dB)

Modulus of
Resilience (dB)

Predication
value 0.183 0.872 0.947 0.935

Denormalized
value 243 3.4 643 9.13

3.3. Creating Historical Data and Abnormal Samples

Having obtained the best parameters with the neural network grid search method,
this set of processing parameters was used as experimental parameters to produce one
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data set made up of 20 normal samples, as shown in Table 7. Then, to produce two more
abnormal experimental data sets, for the first with one abnormal parameter setting and the
second with two abnormal settings, one or two processing parameters were changed in
sequence, as shown in Table 8. Therefore, for the first single-factor abnormal samples for
the A setting there, the value was Abnormal 1 and for the second samples it was Abnormal
2, with the remaining processing parameters staying the same. For two-factor abnormal
samples, two processing parameters were changed at a time, with the others staying the
same. Therefore, for ones where the A and B settings were changed, at the same time, they
were Abnormal 1 and then they were Abnormal 2. The remaining processing parameters
were changed according to this same rule.

Table 7. Twenty data samples with the best parameters.

Best Parameter Data

Samples

Quality Fineness
(Diner)

Breaking
Strength
(N/mm2)

Elongation at
Break

(%)

Modulus of
Resilience
(N/mm2)

1 236 3.1 641.972 9.03

2 237 2.8 648.305 9.40

3 237 3.4 648.357 9.39

4 231 2.8 644.224 9.28

5 241 3 648.265 9.45

6 249 3.6 635.923 9.52

7 227 2.9 642.845 8.74

8 231 3.6 641.218 8.82

9 232 3.6 646.801 9.30

10 238 3.5 645.216 9.36

11 241 3.5 643.506 9.03

12 231 3.5 640.725 9.48

13 236 3 641.378 9.03

14 247 3.4 646.776 9.49

15 251 2.8 643.393 9.79

16 245 3.5 642.942 8.99

17 240 2.7 641.155 9.54

18 240 3.6 642.811 9.20

19 234 3.6 640.911 9.04

20 257 3.6 646.926 8.87

Table 8. Abnormal sample processing parameter settings.

A B C D E F

Screw
Temperature

(◦C)

Gear Pump
Temperature

(◦C)

Die Head
Temperature

(◦C)

Screw
Speed
(rpm)

Gear
Pump
Speed
(rpm)

Take-
Up

Speed
(rpm)

Normal 180 220 240 7.5 15 700

Abnormal 1 190 200 220 5 20 300

Abnormal 2 200 210 230 10 25 500

In this study, for both normal and abnormal data sets, the generation of 20 samples was
taken as a standard, so a total of 20 samples were produced for the best parameters, There
were twenty samples for each single-factor abnormal processing parameter (both Abnormal
1 and Abnormal 2), and 20 samples for each two-factor abnormal sample pairing (both
Abnormal 1 and Abnormal 2). A total of 20 normal samples, 120 (=6 × 20) single-factor
abnormal samples, and 300 (=15 × 20) two-factor abnormal samples were obtained.
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3.4. Abnormal Processing Parameter Classifier Model Training

In order to determine which processing parameters cause quality characteristic abnor-
malities, and to improve the process yield of the melt spinning machine, the 420 samples of
the abnormal data sets and 20 of the normal data set were applied to train an artificial intel-
ligence classifier, using the neural network to generate quality characteristic predictions.
Input feature xi, as shown in Equation (14), was the differences between the four quality
characteristics yi (fineness, breaking strength, elongation at break, elastic energy modulus)
actually obtained in the abnormal sample data and the corresponding ŷi predictions of the
neural network quantity, as shown in Table 9. The output was one-hot encoded classifica-
tion results for the processing parameters of screw temperature, gear pump temperature,
die head temperature, screw speed, gear pump speed, and take-up speed, as shown in
Table 10.

xi = (ŷi − yi)x (14)

Table 9. Quality data for 10 abnormal samples.

Sets

Quality Fineness
(dB)

Breaking
Strength

(dB)

Elongation at
Break
(dB)

Modulus of
Resilience

(dB)
1 224 2 643.791 8.97

2 249 2.8 655.667 7.66

3 562 1.8 591.197 9.14

4 598 2.9 642.068 6.99

5 316 2.2 520.831 8.92

6 283 3.3 531.791 6.09

7 551 2.8 645.044 8.73

8 347 3.1 647.541 8.96

9 254 3.2 606.269 9.60

10 296 2.2 638.988 8.93

Table 10. Classification results for the corresponding abnormal samples of Table 9.

Sets

Processing Parameter
Screw

Temperature
Gear Pump

Temperature
Die Head

Temperature Screw Speed Gear Pump
Speed

Take-Up
Speed

1 0 1 0 0 0 0

2 1 0 0 1 0 0

3 0 0 0 1 1 0

4 0 0 0 0 0 1

5 0 1 0 0 1 0

6 1 0 0 0 0 1

7 0 0 1 0 0 0

8 0 0 0 1 0 0

9 1 0 0 0 0 0

10 0 1 1 0 0 0

When training the classifier, if all the data are directly classified as the result of one
or two factors, errors are likely because some values are too close to allow abnormal
processing parameter settings to be correctly judged. In order to improve the accuracy of
the classifier, it was necessary to divide the abnormal samples into one-factor or two-factor
groups first, and then treat them separately. Therefore, this study needed to use a total of
three classifiers to make predictions. When the classifier was classified as single or double,
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the output was a single or two-factor abnormality; when a single-factor classification was
used, the output was the corresponding abnormal processing parameter type; when a two-
factor classification was used, the output was the corresponding two abnormal processing
parameter types.

Because relevant studies in the literature have achieved outstanding performance
with a number of different classifiers, this study compared these commonly-used machine
learning methods with the results found here. Classification methods such as decision
trees, random forests, support vector machines, and neural network methods such as deep
learning are all possible bases for comparison. Since each of these classifier methods have
many hyper parameters to be adjusted, the grid search method was used to find the best
parameter combination of each method. A random forest architecture diagram is shown in
Figure 16.
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3.4.1. Single and Double Identification

For determining the difference for each sample between the actual four quality charac-
teristics of the abnormal sample data, and the four quality characteristics predicted by the
neural network quantity, an array of 4 values was used as the input feature of the classifier.
There were 420 abnormal samples and 20 normal samples in the data set. The data set was
randomly divided into a 220-item training data set and a 220-item verification data set.
First, the training data set was used to construct a model, and then the verification data set
was used for testing. The purpose of the verification data set was to determine whether the
melt spinning abnormal diagnosis system could adequately detect processing parameters
responsible for abnormalities or not. Training also used grid search and cross-validation
to find the best settings for each classifier. Evaluation of the classifier used the detection
success rate, which is the ratio of the number of samples correctly identified to the total
number of samples in all the validation data sets, as shown in Equation (15). The larger the
value, the better. The detection success rates of various classification methods are shown
in Table 11. The success of the random forest classification method can be seen in the
confusion matrix in Figure 17, where 0 means no abnormality, 1 means a single abnormality,
and 2 means a double abnormality. In the validation data set, the method was the best
at identifying single and double abnormalities, and there were no lack of abnormalities,
single abnormalities, and double abnormalities in the 220 samples which it missed. All
predictions were correct. As for grid search hyperparameters, a random forest with eight
decision trees and a maximum depth of four worked best.

Detection success rate =
Correct number of samples to be tested

All sample numbers (15)
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Table 11. Comparison of single and double identification and classification methods.

Method Single and Double Identification Detection Success Rate

Decision tree 98.5%

Radom forest 100%

Support vector machine 98.1%

Neural network 98.1%
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identification.

3.4.2. One-Factor Classification

Single-factor abnormal discrimination can be carried out after single-double iden-
tification is performed and has indicated there is one abnormal parameter setting. In
development of the study’s classifier, there were a total of 120 samples, 60 were randomly
selected for training, and the other 60 formed the verification data set. The results for single-
factor classification, shown in Table 12, were similar to the single-double identification
ones, and the use of random forest classification was again the best. From the confusion
matrix in Figure 18, where 0 to 5 represent screw temperature, gear pump temperature, die
head temperature, screw speed, gear pump speed, and take-up speed, respectively, it can
be seen that only one gear pump speed abnormality in the 60-item verification data set was
misjudged as an abnormal screw temperature, so the detection success rate was as high as
98.3%. Identification by the random forest classifier of which processing parameter caused
the abnormality worked very well. As for grid search hyperparameters, the random forest
with twelve decision trees and a maximum depth of four performed best.

Table 12. Comparison of single factor classification methods.

Method Single Factor Classification Detection Success Rate

Decision tree 95.0 %

Radom forest 98.3 %

Neural network 96.8 %
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3.4.3. Two-Factor Classification

Finally, a two-factor abnormality classifier was developed with a total of 300 samples,
150 randomly selected for the training data set and 150 for the verification data set. The
experimental results are shown in Table 13. It can be seen that the random forest classifier
performed much better than the decision tree and neural network ones. Its confusion
matrix is shown in Figure 19, with 0 to 4 representing the combination of screw temperature
and the remaining 5 abnormal processing parameters, 5 to 8 representing the combination
of gear pump temperature and the remaining 4 abnormal processing parameters, 9 to 11
representing the combination of die temperature and the other three abnormal processing
parameters, 12 and 13 representing the combination of the screw speed and the other two
abnormal processing parameters, and 14 representing the abnormal processing parameter
combination of the gear pump speed and the take-up speed. It can be observed that only
6 misjudgments were made of verification data set samples, and the detection success
rate was as high as 96.0%. These 6 misjudged samples were made up of a combination
of different abnormal processing parameters, with no parameter appearing in more than
one sample, indicating that model overfitting is not a problem. As for the grid search
hyperparameters, the random forest with twenty-four decision trees and a maximum depth
of six worked best.

Table 13. Comparison of two-factor classification results.

Method Two-Factor Classification Detection Success Rate

Decision tree 91.8%

Radom forest 96.0%

Neural network 89.3%

It can be concluded that the random forest achieved the best accuracy rate, with results
similar to those in the literature. With comparatively few data samples, it also exhibited
greater anti-overfitting resistance. This study’s random forest classifier was compared with
the use of the decision tree classifier and the four values obtained by the RAM method
as input features in their ability to identify abnormal processing parameters. As can be
seen from the final overall accuracy rate in Table 14, the results for both are outstanding.
However, using the deep learning neural network and random forest classifier of this study
to do abnormal processing parameter detection avoids the need to compute Hotelling’s
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T2 for abnormal product detection first, by directly classifying the data on the basis of the
results obtained from the deep learning neural network. To use the decision tree with the
RAM method too much process calculation is required [36,37]. For example, supposing
there is some bias in the calculation of Hotelling’s T2 at the beginning. This will lead to
indirect errors in the RAM method and the feature input of the decision tree, resulting in
misjudgment of the final detection result. In addition, the calculation time required for the
final abnormal processing parameter detection in this study is only 0.08 s, meaning it is
more efficient in comparison.
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Table 14. Overall classification accuracy comparison.

Single and
Double

Identification

One-Factor
Classification

Two-Factor
Classification

This research 100% 98.3% 96.0%

Decision tree + RAM method 98.60% 98.3% 95.3%

4. Conclusions

This study applied a deep learning neural network and random forest from machine
learning in artificial intelligence to the optimal quality prediction of multiple quality parame-
ters and quality abnormality diagnosis of melt spinning machines. It included six processing
parameters and four qualities. The conclusions are as follows.

(1) The deep learning neural network is used for experiments, 440 pieces of historical
data are trained, and multiple quality optimization parameters are searched by using
the characteristic grid of deep learning rapid calculation. The deep learning neural
network was used to generate quality predictions, trained on a 440-item historical
data set, and multiple quality optimization parameters were searched for using rapid
deep-learning characteristic grid calculations. Compared with the traditional Taguchi
analysis method, the neural network model conducts self-training and learning using
past historical data, which means the research can proceed faster, analysis is more
efficient, and conclusions are more robust, because a calculation error in one step will
not affect the overall detection system.
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(2) This research compared several artificial intelligence machines learning and deep
learning classifiers that have obtained outstanding results in the related literature, and
finally selected the random forest as being the best, because its classifier belongs to
ensemble learning, and the classifier is resistant to overfitting. Its ability to detect the
cause of quality problems was better than that of other classifiers. As an indication the
success rate of single and double identification was 100%, the success rate of single
factor classification was 98.3%, and the success rate of double factor classification was
96.0%. It can be seen that the proposed method offers an effective way to identify the
problematic machine settings, causing problems in quality control after the engineer
has measurements of the abnormality so that the settings can be quickly modified to
improve production yield.

(3) This study applied the methods of artificial intelligence to the development of an
abnormal processing PP fiber melt spinning parameter identification system which
can quickly find abnormal settings and reduce unnecessary cost and waste. In the
future, different online detection systems matching the capabilities of this system for
various other kinds of material will be added to the resources available to production
engineers seeking to apply the developed identification system for its functions of
selection and evaluation.
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