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Brown adipose tissue activity is modulated
in olanzapine-treated young rats by
simvastatin
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Abstract

Background: Prescription of second-generation antipsychotic drugs (SGAs) to childhood/adolescent has
exponentially increased in recent years, which was associated with the greater risk of significant weight gain and
dyslipidemia. Statin is considered a potential preventive and treatment approach for reducing SGA-induced weight
gain and dyslipidemia in schizophrenia patients. However, the effect of statin treatment in children and adolescents
with SGA-induced dyslipidemia is not clearly demonstrated.

Methods: To investigate the efficacy of statin interventions for reversing SGA-induced dyslipidemia, young Sprague
Dawley rats were treated orally with either olanzapine (1.0 mg/kg, t.i.d.), simvastatin (3.0 mg/kg, t.i.d.), olanzapine
plus simvastatin (O + S), or vehicle (control) for 5 weeks.

Results: Olanzapine treatment increased weight gain, food intake and feeding efficiency compared to the control,
while O + S co-treatment significantly reversed body weight gain but without significant effects on food intake.
Moreover, olanzapine treatment induced a slight but significant reduction in body temperature, with a decrease in
locomotor activity. Fasting plasma glucose, triglycerides (TG), and total cholesterol (TC) levels were markedly
elevated in the olanzapine-only group, whereas O + S co-treatment significantly ameliorated these changes.
Pronounced activation of lipogenic gene expression in the liver and down-regulated expression of uncoupling
protein-1 (UCP1) and peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α) in brown adipose tissue
(BAT) was observed in the olanzapine-only group. Interestingly, these protein changes could be reversed by co-
treatment with O + B.

Conclusions: Simvastatin is effective in ameliorating TC and TG elevated by olanzapine. Modulation of BAT activity
by statins could be a partial mechanism in reducing metabolic side effects caused by SGAs in child and adolescent
patients.
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Background
Prescription of second-generation antipsychotic drugs
(SGAs) to childhood/adolescent has exponentially in-
creased in recent years [1–3]. However, metabolic side
effects are highly prevalent in schizophrenia patient
treated with SGAs including olanzapine [4–6]. Several
studies indicate that youth are more susceptible to meta-
bolic side-effects of SGAs compared to adults [7–9]. In
our previous studies, we demonstrated that SGAs mark-
edly increase the expression of fatty acid- (such as Fasn
and Acc1) and cholesterol biosynthetic genes (such as
Hmgcs and Hmgcr, see for Abbreviations complete
names) in liver, mediated via activation of the sterol
regulatory element-binding proteins (SREBP1 and
SREBP2) [10–12]. In general, SREBP1 controls the ex-
pression of fatty acid biosynthesis genes, while SREBP2
mainly regulates cholesterol biosynthetic genes. The
SREBP-mediated activation of hepatic lipogenesis repre-
sents a new mechanism of psychotropic drug-induced
the metabolic side-effects.
Decreased energy expenditure is also a key contributor

to body weight gain and glucose-lipid metabolic disorder
under chronic SGA treatments [13–16]. Brown adipose
tissue (BAT), as an important player in lipid metabolism
in rodents, mediates the process of adaptive thermogen-
esis and plays important roles in maintaining energy
homeostasis [17]. BAT is rich in mitochondria with un-
coupling protein 1 (UCP1) in the inner mitochondrial
membrane, which uncouples the oxidative phosphoryl-
ation from ATP synthase, dissipating energy in the form
of heat instead of ATP. UCP1 gene transcription is
largely controlled through the cAMP-PKA signaling
pathway by noradrenaline released from the sympathetic
nerves, acting at β3-adrenergic receptors on the surface
of brown adipocytes. Notably, UCP1 expression in BAT
was reduced following chronic SGA treatment, leading
to a lower response to cAMP stimulus [13–15, 18].
Statins, 3-hydroxy-3-methylgutaryl-COA (HMG-CoA)

reductase inhibitors, are considered a potential prevent-
ive and treatment approach for reducing SGA-induced
weight gain and dyslipidemia in schizophrenia patients.
Atorvastatin [19], lovastatin [20], rosuvastatin [21], or
simvastatin [22] were reported to lower TC, LDL-C and
TG among dyslipidemic psychiatric patients. Statins
were found an obvious method for lowering cholesterol
and reducing risk in children with familial hypercholes-
terolemia [23, 24], although the effect of statins treat-
ment in children and adolescents with SGA-induced
dyslipidemia is not clearly demonstrated.
Statins are the most therapeutically effective as

cholesterol-lowering agents targeting HMG-CoA reduc-
tase. It was reported that atorvastatin had an inhibitory
effect on adipocyte differentiation which might contrib-
ute to pleiotropic actions of statins [25]. Additionally,

atorvastatin treatment could accelerate the hepatic up-
take of cholesterol-enriched lipoprotein remnants gener-
ated by BAT activation, thereby increasing the lipid-
lowering and anti-atherogenic effect [26]. However, to
date there has been little research elucidating whether
co-treatment of statins could have lipid-lowering effects
though intervening in BAT thermogenesis. Therefore,
the present study investigated the effect of simvastatin in
preventing olanzapine-induced weight gain and dyslipid-
emia in a young rat model. We propose that inhibition
of SREBP-controlled HMG-CoA reductase activation
represent an important statin-mediated mechanism of
the improvement of dyslipidemia induced by SGAs, and
the hypolipidemic effect of statin might be partly via ac-
tivating the function of BAT.

Methods
Animals, housing and drug treatment
Young female Sprague-Dawley (SD) (45-55 g, 3 weeks
old) rats were obtained from the Animal Resource Cen-
ter (China), housed at 22 °C, on a 12 h light-dark cycle,
and allowed ad libitum access to water and standard la-
boratory chow diet (3.9 kcal/g; 10% fat, 74% carbohy-
drate and 16% protein) for the duration of the
experiment. After a one-week habituation, rats were
trained to self-administer a sweet cookie dough pellet
0.3 g (30.9% cornstarch, 30.9% sucrose, 6.3% gelatin,
15.5% casein, 6.4% fiber, 8.4% minerals and 1.6% vita-
mins) without drugs for one week. All animal experi-
ments were performed in accordance with the National
Institute of Health Guide for the Care and Use of La-
boratory Animals (Publication No. 85–23, revised 1985),
and approved by experimental the Animal Ethics Com-
mittee of School of Pharmaceutical Sciences, Southwest
University, Chongqing, China. Minimising the number
of animals and their suffering was our general practice
throughout this study.
As shown in Fig. 1, 36 young rats were randomly

assigned to two groups (n = 18/group): olanzapine (1
mg/kg, Eli Lilly, USA) three times per day (t.i.d.), and ve-
hicle (t.i.d.) for 2 weeks treatment. The two groups were
then divided into four subgroups (n = 9) for a further 5
weeks’ treatment: (1) control (received a sweet cookie
dough pellet without drug, t.i.d.); (2) olanzapine-only (1
mg/kg, t.i.d.), (3) simvastatin-only (3 mg/kg, t.i.d., Merck,
USA) and (4) co-treatment of olanzapine and simva-
statin (O + S). Body weight, food intake and rectal
temperature were measured once every 2 days through-
out the experiment period. Blood was collected in EDTA
tubes under ether anesthesia on the 14th day and 48th
day, followed by centrifugation to isolate plasma which
was stored at − 80 °C freezer until assay.
After 7 weeks’ of drug treatment, rats were individually

housed and fasted for 10 h, and during the last 2 h of
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fasting, they were exposed to low temperature (16 °C).
At the end of the cold exposure, blood was collected and
interscapular BAT and liver were harvested, weighed
and frozen in liquid nitrogen. These tissue samples were
stored at − 80 °C freezer until assay.

Measurement of rectal temperature of rats
Before rectal temperature was formally measured, the
rats were adapted to the rectal probe (Yitainuo, Beijing)
for 10 days. During the measurement, the environment
was consistent with the rats’ living environment to avoid
a stress reaction in the rats. The measurement was con-
ducted gently at 9.30 am (2 h post treatment).

Open field test
Locomotor activity contributes to energy expenditure.
To determine whether olanzapine and/or simvastatin in-
fluenced the locomotor activity of rats, an open field test
was carried out between 09:00 am and 17:00 pm. Every
rat was placed in the center of a black rectangular area
(50 × 50 cm2, 50 cm high) on the 43rd day of the drug
treatment. The behavior of the rats was recorded from
the top by a video camera for 25 min. Locomotor activity
was analyzed by Noldus observer (Noldus Information
Technology, Netherlands). Total distance moved (cm)
was measured.

Plasma assay
Triglyceride, total cholesterol and glucose concentra-
tions were analyzed using the Assay Kits (Jiancheng,
China), which were described in detail in the previous
study [27].

Oil-red-O staining
Frozen liver and BAT of rats were sectioned 10 μm thick
using a cryostat section and fixed with 10% formalin for
30 min, respectively. Lipid droplets were detected by
Oil-Red-O (ORO) staining (Sigma-Aldrich, USA). Sec-
tions were stained for 15 min in ORO solution and
counterstained with hematoxylin (Sigma-Aldrich, USA)
for 30 s. The images were photographed by inverted
microscope (Olympus, Japan).

Quantitative real-time PCR (qRT-PCR)
Total RNA was extracted from tissue samples using Tri-
zol reagent (TianGen, China) and reversely transcripted
for cDNA synthesis with a Transcriptor First Strand
cDNA Synthesis Kit (Roche, Germany). Real-time PCR
was performed with the SYBR Green PCR Master Mix
(Applied Biosystems, USA). Gapdh and β-actin were
used as the endogenous control.

Western blot analyses
Protein samples were extracted from tissue homogenized
in Radio Immunoprecipitation Assay (RIPA) buffer with
Protease Inhibitor Cocktail (Dingguo, China). Aliquots
containing 10 μg of proteins were loaded onto a 10% so-
dium dodecyl sulfate–polyacrylamide gel, transblotted
onto a polyvinylidene difluoride membrane (Bio-Rad),
blocked with 5% BSA in Tris-buffered saline with 0.1%
Tween-20, and then incubated with the primary anti-
bodies for UCP1 (1:1000, Santa Cruz, sc-6529), peroxi-
some proliferator activated receptor gamma (PPARγ) (1:
1000, Santa Cruz, sc-6285), PPARγ coactivator 1-alpha
(PGC-1α) (1:1000, Santa Cruz, sc-13,067), and PR

Fig. 1 Outline of the experimental design
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domain containing 16 (PRDM16) (1:1000, Absin,
abs104818), PKA (1:1000, cell signaling technology,
4782S), p-PKA (pThr197) (1:1000, cell signaling technol-
ogy, 4781S) and β-ACTIN (1:2000, Santa Cruz, sc-47,
778). Protein visualization was used and the electroche-
miluminescence (ECL) detection reagents and films were
exposed on the chemiluminescence imaging system
(Tanon, China) analyzed using the Image-J. Relative pro-
tein expression was normalized with the expression level
of β-ACTIN.

Statistical analysis
All data were analyzed by the SPSS software (IBM ver-
sion 17.0, SPSS Inc., USA). Data were analyzed for nor-
mal distribution by the Kolmogorov-Smirnov test. One-
way ANOVAs were applied to analyze data of body
weight, food intake, and rectal temperature from Week
0 and 2, as well as food efficiency, white and brown adi-
pose tissue weight, locomotor activity, mRNA and pro-
tein expression. From Week 3 to 7, body weight gain,
food intake and body temperature were analyzed by
three-way repeated ANOVAs (OLANZAPINE×SIM-
VASTATIN×TIME as repeated factors). Pearson’s cor-
relation test was used to analyze the relationships

among the measurements. Multiple comparisons were
performed using post-hoc Dunnett t-tests for comparing
each drug treatment group with controls. A Mann-
Whitney U test was applied for the data without normal
distribution. Data were expressed as mean ± standard
error of the mean (SEM), and statistical significance was
accepted when p < 0.05.

Results
Body weight gain
As shown in Fig. 2a, from Week 0 to Week 2, there was
significant interaction between the TIME and OLANZA-
PINE factors (F7, 238 = 13.23, p < 0.001). Olanzapine
treatment significantly increased body weight gain com-
pared to vehicle treatment from day 8 (Fig. 2a, p < 0.05).
Three-way repeated ANOVAs (OLANZAPINE × SIMVA-
STATIN× TIME as repeated measures) showed significant
main effects of TIME (F16, 512 = 17.78, p < 0.001). There
was a significant interaction between the OLANZAPINE
and SIMVASTATIN factors (F1, 32 = 12.17, p < 0.05) for
the last 5 weeks. As shown in Fig. 2a, in the olanzapine-
only group, continuous olanzapine treatment significantly
increased body weight gain compared to the control
throughout the 5 weeks’ treatment (Fig. 2a, p < 0.05),

Fig. 2 Effects of olanzapine and/or simvastatin treatment on (a) body weight gain, (b) body temperature, (c) food intake and (d) feeding
efficiency of rats over the experiment period. Rats were administrated orally with olanzapine (1 mg/kg, t.i.d), simvastatin (3 mg/kg, t.i.d), co-
treatment (O + S) or control (vehicle) for 7 weeks. Data are presented as mean ± SEM (n = 9 per group). *p < 0.05, **p < 0.01 vs. control, #p < 0.05
vs. olanzapine-only group. O + S, co-treatment with olanzapine and simvastatin
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whereas the O + S co-treatment group had a lower weight
gain compared with the olanzapine-only treatment group
after 4 weeks’ co-treatment (Fig. 2a, p < 0.05).

Body temperature
Olanzapine treatment significantly decreased body
temperature compared to vehicle from day 12 (Fig. 2b,
p < 0.05). During the last 5 weeks, there was a significant
interaction between the OLANZAPINE factor and TIME
factor (F16,512 = 2.1, p < 0.05). Body temperature was still
significantly lower in the olanzapine-only compared to
the control (Fig. 2b, p < 0.05). It was interesting that the
O + S co-treatment group increased body temperature at
a borderline significance compared with the olanzapine-
only group from day 40 (p = 0.083).

Food intake and feeding efficiency
During the first 2 weeks (Day 0–14), there was a signifi-
cant interaction between the TIME and OLANZAPINE
factors (F7, 238 = 446.87, p < 0.001). Compared to the
control group from day 12, a significant increase in food
intake was observed in the olanzapine group (Fig. 2c,
p < 0.05). From week 3 to week 7, the two groups were
divided into four subgroups. In the olanzapine-only
group, a significant increase in food intake was observed
(p < 0.05). Moreover, feeding efficiency (grams of weight
gained/grams of food consumed) was significantly ele-
vated by olanzapine treatment compared with the con-
trol group (p < 0.05). However, no significant difference
in food intake was detected between the O + S co-
treatment group and olanzapine-only group (Fig. 2c).

Furthermore, O + S co-treatment was not effective in de-
creasing feeding efficiency (grams of weight gained/
grams of food consumed) compared to the olanzapine-
only treatment (Fig. 2d).

Fat deposits
As shown in Fig. 3a, compared with control, BAT weight
was significantly higher in olanzapine-treated rats (p <
0.05). Histological analysis of BAT revealed significant
difference in adipocyte size or number between
olanzapine-only group and control (Fig. 3b and c, p <
0.01). It is important that combination with simvastatin
treatment reduced lipid droplet content in BAT (approx.
-60%, p < 0.05), with a decrease of relative BAT weight
as compared to olanzapine-only group (approx. -15%;
p = 0.093, Fig. 3b and c).

Locomotor activity
There was a significant effect of the OLANZAPINE fac-
tor on distance moved (F1, 32 = 9.02, p < 0.05). The
olanzapine-only group had significantly less distance
moved than the control group (p < 0.05). It is important
that the rats with simvastatin treatment had a significant
increase in the total distance moved over the control
group (p < 0.05) (Fig. 4a and b). There were negative cor-
relations between total distance and body weight gain
(r = − 0.334, p < 0.05). However, no significant difference
in locomotor activity was detected between the O + S
co-treatment group and olanzapine-only group.

Fig. 3 Olanzapine and simvastatin co-treatment reduced fat accumulation in the adipose tissue. a Mass of BAT; b Lipid droplet content in BAT; c
Representative images of randomly selected sections of BAT stained for Oil red O in rats. Scale bars, 100 μm. Excessive lipid accumulation in BAT
could indicate a phenotypic switch of BAT. O + S, co-treatment with olanzapine and simvastatin; BAT: brown adipose tissue. *p < 0.05 vs. control,
#p < 0.05 vs. Olanzapine-only group
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Serum biochemical parameters
As shown in Table 1, olanzapine led to higher levels of
triglycerides, total cholesterol and glucose (all p < 0.05)
than the control. When the two groups divided into four
groups, the chronic olanzapine-only treatment further
induced triglycerides, total cholesterol and glucose to re-
main at higher levels (all p < 0.05, Table 2). The
simvastatin-only group significantly reduced triglycerides
and total cholesterol compared to the control group (all
p < 0.05, Table 2). Co-treatment of olanzapine and sim-
vastatin reversed the levels of triglyceride, total choles-
terol and glucose to normal levels when compared with
the olanzapine-only group (all p < 0.01, Table 2). There
was a positive correlation between body weight gain and
triglycerides (r = 0.487, p < 0.01).

mRNA expression levels in the liver
As presented in Fig. 5a, Srebp2 (Fig. 5a, 1.71-fold in-
crease, p < 0.05) and its target genes hmgcr (Fig. 5b,
2.70-fold increase, p < 0.05) and hmgcs (Fig. 5c, 1.94-fold
increase, p < 0.05) were significantly up-regulated by
olanzapine. In addition, there was also an upregulation
of hepatic Srebp1 mRNA expression in olanzapine-
treated rats compared to controls (Fig. 5d, 2.6-fold, p <
0.05). Consistent with the alteration of Srebp1, mRNA
expression of Fasn, but not Acc1, was significantly in-
creased by olanzapine treatment (Fig. 5e, 2.1-fold, p <
0.05). As an HMG-CoA reductase inhibitor, simvastatin
significantly affected mRNA expression of Hmgcr (0.69-
fold decrease, p < 0.01). Consequently, O + S co-
treatment significantly reduced Srebp1, Hmgcr and Fasn
transcriptional levels increased by olanzapine. However,

an increase of Srebp2 and hmgcs mRNA expression was
observed in O + S co-treatment group. Histological ana-
lysis of liver revealed that olanzapine-only treatment sig-
nificantly promoted accumulation of lipid droplets in the
liver, whilst the O + S co-treatment decreased lipid drop-
lets (Fig. 5g and h, p < 0.01). As shown in Fig. 5g and h,
a significantly lower positive ORO staining was observed
in the O + S co-treatment group than the olanzapine-
only group (∼45.51% reduction, p < 0.01).

Protein and mRNA levels of thermogenic gene in brown
adipose tissue
Compared to the control, olanzapine treatment dramat-
ically decreased the protein levels of UCP1 (− 59%, p <
0.01, Fig. 6a and e) and PGC-1α (− 26%, p < 0.05, Fig. 6c
and e) in the BAT, but not PRDM16. However, there
was a significant increase in PPARγ expression in the
olanzapine-only treatment group (+ 42%, p < 0.01, Fig.
6b and e). The O + S co-treatment significantly increased
UCP1 expression compared with olanzapine-only treat-
ment (+ 48%, p < 0.05, Fig. 6a and e). The UCP1 protein
level was negatively correlated with body weight gain
(r = − 0.516, p < 0.01).
Consistent with changes in protein levels, there was a

significant decrease of Ucp1 (− 45%, p < 0.05, Fig. 6f) and
Pgc-1α (− 40%, p < 0.05, Fig. 6h) mRNA expression in
the olanzapine-only group compared with the control.
mRNA expression of Pparγ was significantly increased
by olanzapine treatment compared with the control
group (+ 40%, p < 0.05, Fig. 6g). Compared to the
olanzapine-only group, O + S co-treatment upregulated
Ucp1 (+ 88%, p < 0.01, Fig. 6f) and Pgc-1α (+ 43%, p <

Fig. 4 Effects of olanzapine and/or simvastatin treatment on locomotor activity. a Total distance moved in the open field test as at the 43rd day
of olanzapine and/or simvastatin treatment. b Locomotor activity in the open field test was traced by Noldus observer. *p < 0.05, **p < 0.01
vs. control

Table 1 Average triglyceride, total cholesterol and glucose levels (mmol/l) in the plasma on the 14th day of olanzapine treatment
(n = 18)

Group Triglyceride (mmol/l) Total Cholesterol (mmol/l) Glucose (mmol/l)

Control 0.73 ± 0.02 2.28 ± 0.03 7.39 ± 0.11

Olanzapine 1.02 ± 0.06** 2.40 ± 0.04* 7.74 ± 0.13*

Abbreviations: *p < 0.05, **p < 0.01 vs. control
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0.05, Fig. 6h) expression, but not Pparγ and Prdm16
gene (Fig. 6g and i).
To further assess whether simvastatin could enhance

the expression of UCP1 through the PKA-dependent
pathway, we detected the expression of proteins of the
cAMP-dependent protein kinase (PKA) and phosphory-
lated PKA (p-PKA). A decrease in p-PKA was observed
in BAT from olanzapine-treated rat (− 48%, p < 0.05,
Fig. 7b and d), although we did not detect a significant
increase of proteins related to the PKA signaling

pathway between the O + S co-treatment and the
olanzapine-only groups.

Discussion
In the past two decades, a number of clinical trials have
proven that SGAs administration (particularly olanza-
pine and clozapine) causes significant weight gain and
dyslipidemia in childhood/juveniles [3]. Consistent with
clinical reports, this study revealed that olanzapine (1
mg/kg, t.i.d) led to a significant increase in body weight

Table 2 Average triglyceride, total cholesterol and glucose levels (mmol/l) in the plasma on the 48th day of olanzapine and/or
simvastatin treatment (n = 9)

Group Triglyceride (mmol/l) Total Cholesterol (mmol/l) Glucose (mmol/l)

Control 0.85 ± 0.06 2.45 ± 0.03 7.38 ± 0.02

Olanzapine 1.27 ± 0.04** 2.74 ± 0.06** 7.95 ± 0.18*

Simvastatin 0.59 ± 0.06* 2.22 ± 0.10* 7.35 ± 0.03

O + S 0.84 ± 0.03## 2.43 ± 0.05## 7.47 ± 0.03##

Abbreviations: O + S, co-treatment with olanzapine and simvastatin. *p < 0.05, **p < 0.01 vs. control, ##p < 0.01 vs. olanzapine

Fig. 5 Effects of olanzapine, simvastatin treatment and simvastatin treatment combined with olanzapine on hepatic lipid levels. Hepatic mRNA
expression of cholesterol biosynthesis and fatty acid synthesis-related genes: Srebp2 (a), Hmgcr (b), Hmgcs (c), Srebp1(d), Fasn (e) and Acc1 (f). g
Lipid level of liver. The data from ORO staining. h Representative images of randomly selected sections of the liver stained for Oil red O in rats.
Scale bars, 100 μm. Values are means ± SEM. *p < 0.05; **p < 0.01 vs. control; #p < 0.05, ##p < 0.01 vs. olanzapine-only group
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gain, BAT mass, food intake, feeding efficiency, and that
it elevated the circulating triglycerides, total cholesterol
and glucose in young rats. Our data further revealed that
olanzapine treatment reduced locomotor activity and
body temperature, furthermore it down-regulated pro-
tein levels and transcriptional expression of the crucial
thermogenic genes involved in UCP1 and PGC-1α. In
addition, we found that co-treatment with simvastatin
improved olanzapine-induced dyslipidemia, inhibited
transcriptional levels of Hmgcr, Srebp1 and Fasn, and re-
versed the decreased levels of UCP1 and PGC-1α in
BAT by olanzapine treatment. The results suggest that,
besides its well-known effects in targeting “HMG-CoA

reductase”, simvastatin co-treatment may ameliorate
olanzapine-induced dyslipidemia through inhibiting
SREBP-controlled HMG-CoA reductase activation, and
modulating the transcriptional responses of thermogenic
genes, at least in part, to increase energy expenditure via
upregulation of UCP1.
Consistently with previous studies, our results showed

that olanzapine treatment significantly increased body
weight gain, total cumulative food intake and enhanced
feeding efficiency [13, 28]. Food intake was positively
correlated with body weight gain, suggesting weight gain
may be due to enhanced energy intake [29]. Our findings
further confirmed that olanzapine treatment reduced

Fig. 6 Effects of olanzapine and/or simvastatin treatment on protein levels of UCP1 (a), PPARγ (b), PGC-1α (c) and PRDM16 (d), and mRNA
expression of Ucp1 (f), Pparγ (g), Pgc-1α (h) and Prdm16 (i) in BAT. The representative bands of Western blots are shown in (e). The data were
normalized by taking the average value of the control group as 100% and expressed as mean ± SEM. *p < 0.05 vs. control, #p < 0.05, ##p < 0.01
vs. olanzapine-only group

Fig. 7 Olanzapine inhibits UCP1 expression via reducing the activation of the PKA pathway in BAT: PKA(a), p-PKA(b), the ratio of p-PKA/PKA(c)
and (d) quantification of the bands. The data were normalized by taking the average value of the control group as 100% and expressed as
mean ± SEM. *p < 0.05 vs. control, #p < 0.05, ##p < 0.01 vs. olanzapine-only group
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voluntary locomotor activity and body temperature [14,
18]. However, Lord et al. found that olanzapine in-
creased energy expenditure when mice were fed a com-
pounded high-fat diet [30]. It is well known that BAT
plays a crucial role in maintaining energy homeostasis in
response to cold temperature and excess nutrition
(adaptive thermogenesis). Therefore, a high fat diet
could stimulate adaptive thermogenesis of mice [31, 32].
Future studies should elucidate whether the different
eating habits could alter different aspects of energy
homeostasis under SGAs administration. Importantly,
the accumulation of lipid droplets and decreased protein
levels of UCP1 and PGC-1α in BAT were observed in
the olanzapine-only group, suggesting a reduction of
BAT activation. It is known that UCP1 gene is directly
regulated by PRDM16, which can be recruited to the
UCP1 gene enhancer through interactions with PGC-1a
[33]. In addition, the thermogenic activities could be
stimulated through the cAMP-PKA signaling pathway by
β-adrenergic receptors–mediated activation [34].
Olanzapine-only treatment greatly inhibited PKA phos-
phorylation in our study, which could down-regulate the
protein expression of UCP1 and further reduce the
thermogenic ability of BAT. Data from the present study
have further revealed that reduced energy expenditure,
in particular thermogenesis and locomotor activity,
could contribute to sustained body weight gain caused
by long-term SGA treatment, especially in the child-
hood/adolescent period [35].
Currently available statins, lovastatin, simvastatin, flu-

vastatin, atorvastatin, and rosuvastatin have been ap-
proved for children≥10 with familial hypercholesterolemia
by FDA [36, 37]. Simvastatin is offered as a disintegrating
oral tablet, which may be of use in the pediatric popula-
tion. Therefore, following the FDA guideline, 3.0 mg/kg
(t.i.d) of simvastatin was chosen for co-treatment with
olanzapine in present study (≈30mg of drug for a patient
in 1 day) [38]. Young rats that received simvastatin-only
treatment for 34 days showed nonsignificant changes in
body weight gain, food intake and body temperature when
compared with the control group. It was worth noting that
co-treatment with simvastatin might reduce body weight
gain induced by olanzapine treatment. In clinical studies,
statins were associated with a very small reduction in body
weight [39, 40], but a significant decrease in triglycerides,
total cholesterol, LDL cholesterol, and non-high-density
lipoprotein (non-HDL) cholesterol was observed [21].
HMG-CoA reductase is the target of statin therapy. We
confirmed previous findings that simvastatin decreased
mRNA expression of Hmgcr in the liver, consequently
lowered plasma TC levels [41, 42]. In addition, co-
treatment with simvastatin further reduced dyslipidemia
development in liver through down-regulating mRNA ex-
pression levels of fatty acid synthesis-related genes, such

as Srebp1 and Fasn. It was interesting that a significant in-
fluence on olanzapine-induced inhibition of BAT thermo-
genesis was observed in O + S co-treatment group,
especially the protein expression and the transcriptional
levels of UCP1 and other core regulators of browning
(PGC-1α), which was relevant with reduced weight gain
and increased energy expenditure [43]. Our data showed
that UCP1 protein levels were negatively correlated with
body weight gain (r = − 0.516, p < 0.01). Thus, we
hypothesize that simvastatin might impact on the thermo-
genesis of BAT to further improve lipid metabolic dis-
order. Surprisingly, the effects of co-treatment on body
temperature was not detected from initial interventional
treatment with simvastatin, it only occurred after 4 weeks’
co-treatment. Although fatty acids provide the main fuel
for BAT thermogenesis, there is a high glucose require-
ment to maintain the Krebs cycle [44]. Since O + S co-
treatment did not effectively reduce plasma glucose levels,
this could explain why the thermogenic effect of simva-
statin was causing body temperature to rise slowly.
Our study has some limitations. First, only the female

rats were used. Clinically, female patients have a much
higher risk than males for SGA-induced weight gain and
other metabolic side-effects [45–47]. Endocrine factors
may influence gender specificity of metabolic adverse ef-
fects caused by antipsychotics. For instance, the ovarian
hormone estradiol plays an important role in
olanzapine-induced hyperphagia in female rats [48].
Moreover, the olanzapine-induced weight gain model
has been consistently established and validated in female
rats in our and other laboratories [28, 29, 49, 50]. How-
ever, a recent report showed that female mice were com-
pletely protected against acute olanzapine-induced
hyperglycemia [51]. Many factors would be involved in
the effects of olanzapine on the balance of energy, in-
cluding gender, race, even species. Second, we did not
detect whether simvastatin treatment would alter the
clearance/degradation of olanzapine in this study. Al-
though a few meta-analyses clarified that adjunctive
therapy with statins could improve psychiatric symp-
toms, either negative symptoms or positive symptoms
[52], there was drug-drug interactions between com-
bination of antipsychotic with cardiovascular medica-
tions used in schizophrenia [53]. Particular attention
should be paid to evaluate harmful interactions be-
tween antipsychotics and cardiovascular medications.
Also, in our study, housing of rat below their thermal
neutral zone (29–31 °C) could result in activation of
thermogenesis to defend their core temperature,
which limits the clinical translatability of the results
[54, 55]. It is a limitation although there was a con-
trol housed at room temperature (22 °C). It could be
more consistent with human biology when rats are
housed at thermoneutrality.
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Conclusions
In summary, simvastatin could potentially help to ameli-
orate metabolic abnormalities associated with long-term
olanzapine treatment. The hypolipidemic effect of sim-
vastatin might be partly via activating the function of
BAT. These findings support a potential mechanism of
simvastatin in ameliorating olanzapine-induced weight
gain through mediation of energy expenditure. Due to a
high risk of interactions and related adverse effects, par-
ticular attention should be paid while using cardiovascu-
lar medications with antipsychotics [53, 56]. Future
studies evaluating a combination of atypical antipsy-
chotics with statins may help to tilt the balance of bene-
fit over risk ratio in favor of greater benefits with
currently prescribed antipsychotics.
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