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Abstract: The fruit fly Drosophila Melanogaster has become a model organism in the study 

of neurobiology and behavior patterns. The analysis of the way the fly moves and its 

behavior is of great scientific interest for research on aspects such as drug tolerance, 

aggression or ageing in humans. In this article, a procedure for detecting, identifying and 

tracking numerous specimens of Drosophila by means of computer vision-based sensing 

systems is presented. This procedure allows dynamic information about each specimen to be 

collected at each moment, and then for its behavior to be quantitatively characterized. The 

proposed algorithm operates in three main steps: a pre-processing step, a detection and 

segmentation step, and tracking shape. The pre-processing and segmentation steps allow 

some limits of the image acquisition system and some visual artifacts (such as shadows and 

reflections) to be dealt with. The improvements introduced in the tracking step allow the 

problems corresponding to identity loss and swaps, caused by the interaction between 

individual flies, to be solved efficiently. Thus, a robust method that compares favorably to 

other existing methods is obtained. 
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1. Introduction 

The Drosophila Melanogaster has become a powerful model system for analyzing the relationship 

between genes, neurons and behavior. Important research efforts carried out with this insect have 

allowed an understanding of many behaviors of medical interest such as substance abuse [1,2], 

aggressivity [3,4], sleep deprivation [5], ageing [6] and memory loss [7], among others. The wide range 

of genetic manipulations in the Drosophila makes this animal an ideal genetic system for analyzing the 

general principles of neuroscience. However, the analysis of the behavioral effects of these manipulations 

is hampered by the lack of effective methods to measure the flies’ behavior precisely and quantitatively.  

In this context, the approaches based on the use of computer vision-based sensors represent a 

promising strategy for the automated tracking and behavior characterization of the specimens under 

study. However, the results obtained with these sensors are highly dependent, not only on the quality of 

the image acquisition system, but also on many other aspects related to the interaction between the 

insects (overlapping, occlusions, trajectory crossing, collisions) and the presence of eventual optical 

artifacts (shadows, reflections). All this hinders the robust tracking of the flies through time.  

In this paper, a method for dealing with the above-mentioned effects, using an optimized strategy, is 

proposed in order to achieve an efficient, automated fly tracking. 

The paper is organized as follows. The related work is reviewed in Section 2. The proposed algorithm 

is presented in Section 3. Section 4 shows some experimental results. Finally, concluding remarks are 

given in Section 5. 

2. Related Work 

The study of the behavior of the Drosophila fly and other animals requires detailed observation, 

annotation and subsequent analysis of the data obtained. The number of individuals may range from a 

few to a great number (say, hundreds), depending on the experiment. Moreover, the individuals may be 

studied either alone or in groups, and with or without interaction. Frequently, video material is recorded 

for an ulterior, off-line analysis of the trajectories, aimed at obtaining confident results. 

Specimen observation and annotation is generally carried out by a human operator, which entails 

frequent errors, given that continued attention is required for long periods of time. 

For example, neurobiological research aimed at quantifying the motor decrease of specimens after a 

genetic modification is shown in [8]. To achieve this objective, specimens were measured at regular 

intervals, using a chronometer, through time periods ranging from a few hours to several days.  

This represents a considerable effort and, eventually, the resulting confidence may be compromised.  

In this context, computer vision sensing is a promising approach for the automated tracking and analysis 

of the behavior of Drosophila and other animals through time. 

The tracking of a moving element within a given scene requires a suitable discrimination between 

this element and the background, i.e., a suitable segmentation. Some common segmentation techniques 

are reviewed in [9,10], while some segmentation techniques based specifically on background modeling 

are discussed in [11].  
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Some practical examples of moving object segmentation upon background modeling are: video 

surveillance [12,13], motion capture [14,15], industrial quality control [16] and the multimedia, 

entertainment and cinema industry in [17,18]. 

Roughly speaking, background modeling techniques are aimed at obtaining an image of the scene 

without the moving objects. This may represent a challenging objective, given that the background 

appearance may vary through time (due to lighting changes), some elements of the scene may 

appear/disappear at (or during) a given time, quasi-stationary elements may also be present, etc. Different 

techniques aimed at obtaining robust and adaptive results under these circumstances have been proposed. 

These can be classified into: basic background models [19,20], statistic background models [11], fuzzy 

models [21,22], and models based on estimation [23,24]. The models can also be studied in terms of 

prediction [25], recursiveness [12], adaptability [26], or modality [27], etc.  

All these techniques share some common features: a background model is first obtained; then the 

model is initialized and updated throughout the experiment; the foreground is obtained; the elements in 

the foreground are discriminated on the basis of their size in the image; and the main features of the 

desired target element are chosen (color, shape, movement, texture, etc.). 

Once the target element has been detected, it must be tracked through the image sequence. Tracking 

methods have experienced a considerable advance in recent years, given their interest within the field  

of automatic video analysis. Some application examples are traffic monitoring [12,13], motion  

analysis [14,15], human-machine interaction [28], and many others.  

A review of tracking techniques can be found in [29,30]. They can be classified according to the way 

the shape and/or appearance of the objects is represented (points, geometric shape, silhouettes or 

contours, articulated models, templates, etc.) and the features to be tracked (color, shape, optical flow, 

texture, etc.). Silhouettes are used in [31] for tracking objects in a video surveillance application. Objects 

are represented as ellipses in [32], from which histograms modeling their appearance are obtained. 

Objects are modeled through rectangles and the corresponding eigenvectors in [33]. Objects are 

characterized using points that are tracked throughout the image sequence in [34]. A general purpose 

tracking algorithm that operates on lidar data, instead of images, can be found in [35]. More recently, [36] 

developed another algorithm that is able to track a group of animals. In this case, several images of a 

recorded video are used to identify each individual by modeling its appearance. 

Concerning Drosophila, some representative works are [37,38], where the analysis of the behavior of 

specimens is addressed, and [39] where a complete analysis of the trajectories is performed. A tracking 

method for monitoring isolated specimens of Drosophila (and other animals) is presented  

in [40–42]; while a method for tracking groups of specimens interacting within a planar scene is 

presented in [29]. This is one of the most representative methods to date and has been used as the 

reference in the current work. Other works have focused on the 3D tracking of flies [43], with a high 

set-up cost, and [44], which uses 3D tracking of luminescent molecules of flies in a vial. Nonetheless, 

2D tracking is often preferred, given that it provides similar information at a lower set-up cost. More 

recently, [45] have proposed a simple image processing algorithm for targeting a single fly with a laser 

in order to manipulate the fly’s nervous system. 

Some of the methods cited above have been used widely, even in commercial systems, but are still 

open to improvement in some aspects. Concerning [40,41,45] the analysis of individuals interacting with 

each other within a group is not undertaken. Concerning [29], the tracking error could be improved 
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through a refined tracking strategy, as is proposed in the current work. In addition, that method is highly 

dependent on the fly plate, which results in a limited flexibility.  

With respect to systems that use some of the methods reviewed in this section, it is worth mentioning 

Noldus Ethnovision, BioTrack, Idtracker and C-Trax.  

Noldus Ethnovision [46] is a commercial system able to track several animals moving over a flat 

environment. The system can operate favorably in the case of large animals (such as mice, rats and 

others), given that multiple points on each specimen are used for tracking. However, in the case of 

Drosophila, the system cannot deal successfully with some common situations, such as track crossing 

and specimen occlusions. The system can track multiple individuals only when they do not interact.  

Biotrack [47], based on [35], is a multi-tracking software that can be used for free. It is a general 

purpose solution that can track several kinds of animals in a flat arena but deals partly with crossings 

and occlusions. 

Idtracker [48] is an open source software that uses an algorithm able to track individuals in a  

group [36]. Nonetheless, this software cannot make corrections in real time in order to avoid propagating 

identification errors. 

C-Trax [49] is a freely available software for Drosophila tracking, developed by Caltech (Californian 

Institute of Technology). This system suffers from eventual tracking errors (loss and swap of individual 

identities) derived from the selected tracking procedure, which uses a weakly characterized dynamic 

model, based on [29]. Moreover, the fly plate is shape-restricted and the fly tracking is not performed in 

real time. 

To summarize, the solutions proposed to date for Drosophila automated tracking suffer from several 

drawbacks. Some systems can track isolated flies, which severely limits the analysis of certain behaviors. 

Other systems can track several flies but cannot hold individual identities when two or more flies 

approach or overlap. Moreover, some practical restrictions are often present, such as a reduced flexibility 

to adapt to new experiments, or an inability to operate in real time and, in some cases, an important cost. 

In the present work, a new model for Drosophila tracking is proposed that allows several interacting 

specimens to be identified and tracked under noisy conditions and eventual specimen overlapping.  

The main advantages of the proposed method derive from the proposed tracking method. A tracking 

strategy based on the optimal Kalman filter, which minimizes the prediction error, thus significantly 

reducing the identity swaps, is proposed. In previous works, such as [29], obtaining detailed spatial 

information gained priority over obtaining a dynamic model of the flies. The current approach is also 

aimed at obtaining detailed spatial information. However, the use of this information is improved 

significantly by using the Kalman filter, which results in an improved prediction of the system’s state 

and, therefore, a significant reduction of the error rate (given that individual identities are better 

preserved though time). Furthermore, the proposed methodology is robust and adaptable: the method 

does not rely on a correct detection of the fly plate and even fly reflections at the plate boundaries are 

automatically removed. This confers the system a significant flexibility, given that different plates can 

be used without requiring any previous adaptation of the system. 
  



Sensors 2015, 15 19373 

 

 

3. The Algorithm 

The algorithm proposed in this paper operates in three main steps: pre-processing, processing  

and tracking. 

3.1. Preprocessing 

The images are converted into grayscale and processed through a Gaussian filter. Then, the plate is 

detected and a background model is computed. Finally, a shape model of the specimens is computed for 

their ulterior detection and tracking.  

3.2. Plate Detection 

The plate is the region of interest where the movement detection will be carried out. In the present 

work, the plate is detected by using a Canny filter [50] followed by a circle Hough transform [51].  

This is appropriate for circle-shaped plates, which is the most common case. Similar procedures could 

be applied for other plate geometries.  

3.3. Background Modeling 

In general, video processing systems seek to extract moving elements (foreground) from stationary 

elements (background) in the images [9,10]. This can be achieved by computing a proper model of  

the background.  

In our case, the Simple Gaussian method (SG), with selective updating [9], has been used, given the 

unimodal nature of the background. Small changes of background pixel brightness are modeled through 

a unimodal Gaussian defined upon estimates of the brightness mean and deviation. In our case, median 

and median absolute deviation MAD [52] have been used for an increased robustness. A correction term 

is then applied to fit the correct data into one standard deviation: μ(ݔ, (ݕ = med I୲(ݔ, ,ݔ)ܫ(1) (ݕ (ݕ = c	MAD = c med൫I௧(ݔ, (ݕ − med(ݔ, ൯ (2)(ݕ

where x and y are the pixel coordinates, ݐ	 ∈ ሼ0, ∆,2∆, … , ܶ} and ܿ = 1.4826. This value ensures that the 

correct fraction of data is within one standard deviation around the median [52]. 

This provides a background model where the value of each pixel corresponding to the Gaussian 

determined by μ(x,y) and σ(x,y) is obtained. This model is updated periodically during the  

pre-processing step, so that only those pixels that do not belong to the background are revised. Thus, the 

background will remain stable for eventual lighting variations and/or image quality deficiencies, thus 

preventing phantom artifacts derived from static flies to emerge [24]. The update period will depend on 

the acquisition system quality.  
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3.4. Shape Model 

Once the background model is computed, the elements of interest in the images are obtained by 

subtracting the background (Section 3.2), and their areas ܣ௜	 are computed. The process is carried out 

throughout an image sequence to compute the corresponding mean μ஺௥௘௔௦ and variance σ஺௥௘௔௦ଶ , 

μ஺௥௘௔௦ =෍ܣ௜ܰ௜ୀே
௜ୀଵ  (3)

σ஺௥௘௔௦ଶ =෍ܣ௜ଶܰ − μ஺௥௘௔௦ଶ  (4)

where N is the number of elements. These two values will be used to determine whether each detected 

element corresponds to a fly or not upon a probabilistic criterion based on the element area, thus avoiding 

false positives. 

3.5. Processing: Element Detection and Segmentation 

The detection, segmentation and validation of the moving elements is addressed in the current  

step [9,53]. 

3.6. Background Subtraction 

The foreground, i.e., the moving objects, is obtained by subtracting the (μ௧, σ௧)	background model 

from the current image,  ݔ)݌, (ݕ = ൜255 − )௧ܫ ݌ ), )௧ܫ ݌ )– μ( ((݌ > ܰ σ௧(݌)0, )௧ܫ)) ݌ )– μ((݌))) ≤ 0  (5)

where ݌ are the pixel coordinates, 255 is the maximum value possible for the intensity of a pixel and 0 

is the minimum. The value of N depends on the quality of the data acquisition system, and N σt(p) is the 

front detection threshold, for {N = 0, 1,2,…n}. In our case, initially N = 10. The better the system we 

have, the smaller the required value (because of the lower background noise). This value is increased or 

decreased (with a hysteresis) during the validation phase to split or merge ellipses.  

Those pixels where the difference between the brightness value and the background model is under 

the front detection threshold are assumed to belong to the foreground (or to the background otherwise). 

An example is shown in Figure 1: the input frame (Figure 1a) and the result after background 

subtraction (Figure 1b). (Background is displayed in black (0) and foreground in light gray  

(255 −  .((	݌	)௧ܫ
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(a) 

 
(b) 

Figure 1. Example of foreground detection. (a) Input frame; (b) Detected foreground. 

It is worth mentioning that images have been acquired using backlighting. Pixels by the center of the 

flies are darker than the surrounding pixels and the pixel brightness increases as the pixel approaches the fly 

boundary. This will allow the fitting of the fly brightness by 2D Gaussians, and subsequently, to 2D ellipses. 

The elements detected in the image are first classified according to their area, ݐℎ݉݅݊ < ܣܧܴܣ ⇒  ݁ݏ݈ܽܨ⇒݁ݏ݅ݓݎℎ݁ݐܱ ݁ݑݎܶ
(6)

In this expression, thmin is the threshold value that is set to μ஺௥௘௔௦ − ܿσ஺௥௘௔௦, , where μ஺௥௘௔௦ and σ஺௥௘௔௦ are the values computed in Equations (3) and (4). This threshold, set to c = 15, is used to clean 

the foreground (in order to obtain a foreground mask free of noise). Moreover, the c value selected 

should be large enough to deal with image noise. In general, the more noise-free the acquisition system 

is, the larger c should be (in our case c = 15). It is worthwhile noting that this cleaning process could be 

done at the validation step, but it is actually done in the processing step to reduce the computing effort 

of the validation step. 

3.7. Segmentation 

The connected components in the foreground are then fitted to ellipses so that these components can 

be classified for subsequent tracking [28,31]. The parameters of the ellipses are computed, resulting in 

a list ݁ݏ݌݈݈݅ܧ	ݏݎ݁ݐ݁݉ܽݎܽ݌ = ሼ(ݔ, ,ݕ θ, ܽ, ܾ)} (7)

where ݕ ,ݔ, are the coordinates of the center of each element, θ is the orientation (within ±π), a is half 

the major axis and b half the minor axis. A, b and θ are computed upon the covariance matrix of the 

Gaussian model, which is obtained from the mean and covariance values, the pixels being weighted by 

their difference to the background level. Adding weight to each pixel is important because this weight 

allows connected components to be split in the validation phase: the front detection threshold is increased 

in a Region Of Interest (ROI) around the fly; therefore, the area of the fly decreases. This can be 

appreciated in Figure 2, where the levels of a given ROI around a fly (after subtracting the background 

and computing the absolute value) and the results corresponding to two threshold values, 50 and 70, are 

shown. The area decreases significantly as the threshold increases.  
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(a) (b) (c) 

Figure 2. The area of a given fly decreases as the front threshold increases. (a) Values in an 

ROI around a fly (after subtracting the background and computing the absolute value);  

(b) Result corresponding to a threshold value of 50; (c) Result corresponding to a threshold 

value of 70. 

In this way, if there are two flies close to each other, initially detected as a single object, this object 

can be split into the two flies by means of increasing the foreground threshold in the validation phase. ܹ݅ = | (݅݌)ܫ − ܼ(8) (݅݌)σ/|(݅݌)ߤ =෍ܹ݅௜  (9)

μ = 1ܼ෍ܹ݅ ܲ݅௜  (10)

In this expression ሼ1݌, …,2݌ .  are the coordinates of the pixels of a given connected element {݅݌

within the image; ܹ݅ is the normalized difference from (݅݌)ܫ to the average brightness of this pixel 

within the background model, μ(݅݌); Z is the sum of these differences; and μ their average value.  

This allows the covariance matrix,  ෍= 1ܼ෍ܹ݅( ܲ݅ − μ)(ܲ݅ − μ)்௜  (11) 

to be obtained, which, in turn, corresponds to 

෍= ்ܴ ൮2ܽ 00 2ܾ൲
ଶ ܴ (12)

where ܴ = ቀ θݏ݋ܿ θ݊݅ݏ−θ݊݅ݏ θቁ (13)ݏ݋ܿ

The eigen decomposition ∑ = ܽ :provides a and b, and θ is obtained from R ܷܦ்ܷ = 2ඥܦଵଵ (14)ܾ = 2ඥܦଶଶ (15)θ = (16) (θ/cosθ݊݅ݏ)݃ݐܿݎܽ
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The ellipse center location	(ݔ,  .corresponds to the central pic of the Gaussian distribution (ݕ

3.8. Validation 

In this step, undesirable artifacts in the images are filtered. In particular, weakly connected 

components (derived from nearby flies) will be split into the corresponding specimens and spurious 

artifacts will be removed.  

The problem is formulated in terms of a probabilistic model: the fly locations that best explain the 

current frame are searched. In particular, the set of ellipse locations that maximizes  (ܫ|ܺ)݌ ߙ (ܺ)݌ (17) (ܺ|ܫ)݌

is searched, where X is the said set and I is the actual frame.  

In general, the location of the different flies may be assumed to be independent, which leads to  

the formulation 

(ܺ)݌ =ෑ݌(ݔ௜)ே
௜ୀଵ  (18) 

(௜ݔ)݌ = ݁ሼି|஠௔೔௕೔௕ି ஜಲೝ೐ೌೞ|/஢ಲೝ೐ೌೞ} (19) 

where ݌(ݔ௜)  is the likelihood term associated to a normal distribution model of each fly i, for  

i = {1, 2, 3...N} (N being the total number of flies), μ஺௥௘௔௦ and σ஺௥௘௔௦ are the shape model parameters, 

and πܽ௜ܾ௜ is the area of the ellipse corresponding to fly i. 

Finding an analytical solution to this problem would be impractical because p(X│I) has local maxima 

and X is a discrete set. Therefore, a heuristic strategy has been used. When a connected component has 

a weak probability, the number of ellipses is increased or decreased to obtain an improved probability. 

More specifically, in order to find the connected components corresponding to a given fly, the ellipse 

enclosing this fly to a large probability (in relation to ݌(ݔ௜)) has to be computed. This probability may 

be low because the area is either too large or too small. If the area is too large, this connected component 

may correspond to several nearby specimens. On the contrary, if the area is too small, this component 

would correspond to a spurious artifact. The foreground detection threshold will then be increased, in 

the former case, or decreased in the latter. The new elements appearing after this threshold tuning will 

be assumed to correspond to actual flies if their ݌(ݔ௜) is high enough, or to a spurious artifact otherwise. 

It is worthwhile noting that the number of flies can either be introduced by the user or established by 

the system automatically in the pre-processing step. If the value is established by the system, it can 

change if another fly is detected in the tracking phase. In any case, we seek to maximize the probability 

of P(X/I) by maximizing the probability of ݌(ݔ௜) in the validation phase. Summarizing, knowing the 

number of flies can be useful but is not required by the algorithm. 

An example of the validation process is shown in Figure 3. The detected element in Figure3b 

corresponds to two actual flies, as can be seen in Figure 3c. 
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(a) 

 
(b) (c) 

Figure 3. Example of the validation process. (a) Input frame, where two flies are in touch 

(encircled in red); (b) Elements found before validation; (c) Elements after validation, where 

the two flies have been properly separated. 

3.9. Reflections 

The plate border may be highly reflective. Therefore, a method for avoiding spurious elements 

corresponding to reflections (that would be tracked in an ulterior step) should be used. In our case, a 

circumference-shaped mask at the plate boundary has been used (see Figure 4). Elements entirely within 

this circumference are masked out.  

 

Figure 4. Mask for dealing with reflections at the plate boundary. 

It is worth noting that the plate may not be accurately detected in some situations. In fact, some image 

acquisition conditions may hinder this detection. In the current work, the automatic detection of the plate 

may be manually disabled (when the detection accuracy is not satisfactory). In spite of this, the proposed 

algorithm can deal with reflections in an ulterior step, as will be discussed in Section 4.3. 

3.10. Tracking Algorithm 

The tracking process is aimed at keeping the flies’ identities throughout the image sequence. Each fly 

is assigned an identity that should be preserved during the experiment. To this end, deterministic 

approaches could be used, but these approaches are largely sensitive to noise and other circumstances 

that may result in the loss of some fly identities (e.g., fly overlap or fusion). In the present work, a 

probabilistic approach has been used that employs a dynamic model for predicting the position of every 

fly at time t from the current information at t-1, using a prediction-correction Kalman filter. This results 

in an increased robustness against identity losses or swaps. 
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3.11. Kalman Filter 

The Kalman filter [54,55] is an optimal, recursive algorithm that uses a stochastic dynamic model of 

normal-distributed variables and the Bayes theorem. An estimation of the current position is computed 

upon information from previous states and then refined in such a way that the expected error is minimized. 

In the present work, a Kalman filter is started at any new element occurrence in the image sequence. 

The filter will allow the element location to be predicted, along with the corresponding uncertainty. Then, 

the real location is searched within a region around the predicted location, according to the said uncertainty. 

The approach has been implemented through what we have called a tracker. A tracker is an object 

that contains all the data concerning the element location and shape, and the parameters and equations 

related to the Kalman filter. Each validated element is assigned a tracker. 

The filter is defined by 

ܺ௧ = ۈۈۉ
ۇ ݓߠݕܸݔݕܸݔ ۋۋی

ۊ
 (20)

ܣ = ۈۈۉ
1ۇ 0 dݐ 0 0 00 1 0 dݐ 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 1 d0ݐ 0 0 0 0 1 ۋی

(21) ۊۋ

where ܺ௧ is the state vector at time t; ݔ, ,ݔܸ ;are the element position coordinates ݕ  are the linear 	ݕܸ

velocity components; θ is the orientation (within ±π); and ݓ is the angular velocity.  

A is the transition matrix that relates the previous state, at t − 1, to the current state, at t, subjected to 

process noise ω௧ିଵ:  ܺ௧ = ௧ିଵܺܣ + ω௧ିଵ (22)

The state predicted in this way is updated upon the vector of measures ܼ௧,  
ܼ௧ =

ۈۉ
ۇۈ
ܼ௫ܼ௬ܼ௏௫ܼ௏௬ܼఏܼ௪ ۋی

ۊۋ = ௧ܺܪ + ௧ (23)ݒ

This vector combines the measures of the selected state variables, ܼ௫ ܼ௬ is the measured position, ܼ௏௫ ܼ௏௬ is the element velocity, ܼ஘	is the element orientation (with respect to the previous one; ranged 

within ±π), and ܼ௪ is the angular velocity. Moreover, H is the 5 × 5 identity matrix that relates the state 

to the prediction, and	ݒ௧  is the measuring error. ω௧  and ݒ௧  are assumed to be independent, Gaussian  

and zero-centered.  

The angular and linear velocities that feed the Kalman filter are not computed by directly deriving 

the element position and orientation (which could lead to large errors, especially when low image 

resolution or frame rate is used). Instead of this, an algorithm is used to smooth the data before feeding 
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it to the filter. This algorithm uses a moving average filter with a weight term. The larger the error is, 

the larger the correction provided by the algorithm will be.  

In a first step, the current state is predicted using all previous information. In a second step, the state 

prediction is corrected using the actual data measured by the system so that the error is minimized. The 

prediction-correction depends on the difference between the predicted state and the measured one and 

on the filter gain, which, in turn, depends mainly on the measure uncertainty [56]. Figure 5 shows an 

example where measured, predicted and corrected positions are displayed for a given trajectory. 

 

Figure 5. Trajectories generated by a tracker (corresponding to fly number 3 in this example) 

after several prediction cycles. The measured trajectory is displayed in blue; the predicted 

one in red; and the corrected one in white. 

3.12. Identity Assignments 

The element locations predicted by the Kalman filter feed the identity assignment stage. This stage is 

a maximization and minimization problem. Many algorithms can be used for solving this kind of 

problems [57]. In the current work, the Hungarian optimization method, which allows the assignment 

problems to be solved in ܱ(݊ଷ) time, has been selected. The assignation problem is modeled through an 

n × n cost matrix, where the costs are ݐݏ݋ܥ	 = 12πσ௫σ௬ ݁൤ି ଵଶቀ௫ିஜೣఙೣ ቁ ି ଵଶ൬௬ିஜ೤ఙ೤ ൰൨
 (24)

In this expression, μ௫, μ௬ are the element coordinates predicted by the Kalman filter at t − 1; x, y are 

the actual element coordinates at t; and σ௫, σ௬ are the prediction errors of x, y. Thus, the probability that 

a given element at frame t corresponds to a given element at t − 1 is computed and the Hungarian 

algorithm provides the identity assignments. It is a maximization problem, and each fly will be assigned 

the tracker corresponding to the highest probability.  

Usually, the described algorithm leads to a unique assignment: each element in the image is assigned 

a single tracker that will store the element’s properties for the next algorithm’s progress. However, 

eventually, more than one tracker may be assigned to a given element (there are fewer elements than 

trackers). This happens when two or more elements have merged or overlapped. In this case, the 

procedure below is used. 
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3.13. Tracking 

When an element in the foreground has been assigned more than one tracker, a further segmentation 

of this element into as many sub-elements as assignments is first explored. This segmentation is carried 

out upon the image information at time t.  

In concrete, a validation algorithm is applied, using a threshold value higher than that of the 

segmentation phase, in order to split the connected component (if possible). The algorithm knows that 

there are two flies in this area and tries to find them. If the flies do not appear by means of the validation 

algorithm, then the Kalman filter gives an optimal estimation of the position to the tracker.  

If the fly follows a path (does not stop), then it will be found by the tracker by means of the Kalman 

filter estimation. To be precise, when the assignment is unique, the measure uncertainty is small and the 

tracker weights the current measure to a higher value than the Kalman prediction. On the contrary, if the 

assignment is not unique, the uncertainty becomes large and the tracker weights the locations provided 

by the Kalman filter to a higher value than the current measure. 

If the fly being tracked, and another fly (or flies) of the cluster, stops and cannot be split by the 

validation algorithm, the tracker waits for the fly to appear and the assignment is carried out upon the 

last known position using the k-means and the maximization expectation algorithms. This strategy, along 

with the information coming from the other trackers, allows the correct assignment to be established. 

When a fly being tracked disappears, the tracker initially uses the information provided by the Kalman 

filter to find it. If the fly does not appear after a number of frames, the tracker will be waiting for the fly 

to appear at the last known position, during a given time. (If the fly was a newly detected object, its 

tracker is simply removed). If other trackers have not missed their flies, then the fly is assigned to the 

tracker when it reappears. Otherwise, if any other tracker has missed its fly, the fly that has appeared is 

assigned to a close tracker in the identity assignation phase (by the expectation maximization algorithm). 

The procedure is completed by some heuristic strategies that are applied to particular cases. In sum, 

each time a new tracker is generated (a new element is detected), it is removed if the corresponding 

element either remains static in the image for a long time (e.g., some plate features detected as elements) 

or it disappears in the next frames (it was a spurious element or a reflection). Similar strategies are used 

for the case of a fly moving near the plate boundary, thus disappearing and appearing in close frames, 

and for reflections that may happen near the plate boundary. 

An example is shown in Figure 6, where four flies have been tracked for a given time period. The 

trackers hold their corresponding element without suffering from undesired identity changes. 

 

Figure 6. Example of trajectories corresponding to four flies (colored in blue, red, green and purple). 
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4. Results and Discussion 

In this section, a number of sequences are analyzed that show the behavior of the proposed approach 

under different situations: usual situations, overlaps, fusions, reflections and poor image quality.  

4.1. Acquisition System 

The proposed method is robust for common situations and for sensing hardware. Image sequences 

have been obtained using a simple image acquisition system equipped with a common webcam and a 

LED light spot. A circle-shaped region of the images (that does not necessarily correspond exactly to 

the plate) is processed. Video sequences have been recorded in a common laboratory, during the day, 

under daylight conditions. Videos are affected by significant noises of different natures. Sequences of  

5000 frames have been acquired and processed. 

Ambient light makes obtaining a precise background model more difficult, given that the sensed 

brightness varies within a wide range. An example is shown in Figures 7 and 8. Figure 7 shows the plate 

under front-lighting (without ambient light screening) and the obtained background model. This model 

suffers from a large variation in brightness which hinders the detection of moving elements.  

This variation can be seen in Figure 8, where the brightness of a background pixel (located at the center 

of the red line in Figure 7a) has been plotted against the frame number (within 1 to 5000). ܰ	σ lines have 

also been drawn (for N = 0,1,2,3,4).  

 
(a) (b) 

Figure 7. (a) Plate under front-lighting, without ambient light screening (the colored lines 

will be explained later); (b) Obtained background model. 

The result obtained using a back-lighting scheme with ambient light screening is shown in Figure 9. 

The corresponding brightness variation has been plotted in Figure 10 (in this case, for a  

500 frame sequence). 

In this case, a precise background model can be obtained, thus allowing a good segmentation of the 

flies at a lower computational effort (given that a low-frequency background model update will be 

required). Therefore, this sensing set-up has been selected for subsequent experiments. 
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Figure 8. Brightness of a single background pixel against the frame number, in the presence 

of ambient light. (The pixel is located at the midpoint of the red line displayed by the plate 

center in Figure 7.) ±N σ lines (for N = 0, 1,2,3,4) have been also plotted, in blue, green, 

garnet, yellow and red, respectively. It can be seen that ambient light hampers obtaining a 

precise background model. 

(a) (b) 

Figure 9. (a) Plate under back-lighting with ambient light screening (the colored lines will 

be explained later); (b) Background model. 

4.2. Specimen Crossing and Collisions 

Figure 11 shows the behavior of the system when two specimens merge. (Each fly has been labelled 

a different number and color.) Flies 1 and 2 (encircled in red) and flies 7 and 10 (encircled in yellow) 

are close to each other at t (Figure 11a), so the corresponding blobs merge. Flies 1 and 2 are going to 

overlap and flies 7 and 10 have already overlapped. The instantaneous speeds, their moving average and 

the Kalman filter outputs are displayed in red, blue and green, respectively. 
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Figure 10. Brightness of a background pixel against the frame number, without ambient 

light. (The pixel is located at the midpoint of the red line in Figure 9, and ± N σ lines have 

also been plotted.) A precise background model can be obtained in this case. 

  
(a) (b) (c)

Figure 11. Tracking fly interactions (encircled in yellow and red). Frames at t, t + 1 and  

t + 2 are shown in (a–c), respectively. The instantaneous speeds, their moving average and 

the Kalman filter outputs are displayed red, blue and green, respectively. The identity of the 

flies is preserved after the interactions thanks to the optimal filter combined with  

the Hungarian. 

In the next frame (Figure 11b), at t + 1, flies 1 and 2 are overlapped and flies 7 and 10 have already 

separated. Finally, in the last frame (Figure 11c), at t + 2, the two fly couples have separated completely. 

It can be seen that the Kalman filter combined with the Hungarian prevent fly identities from being lost 

or swapped during the whole sequence, i.e., the flies are tracked correctly, as expected. 
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4.3. Reflections 

Heuristic strategies have been incorporated to the general procedure to deal with some special 

situations that may occasionally happen. 

An example is shown in Figure 12. As mentioned in a previous section, the automatic plate detection 

implemented in this work can be manually disabled when an accurate detection is not possible. 

Unfortunately, some undesired reflections may appear in this case at the plate boundary. Fly 9 is near 

the boundary at frame t (Figure 12a). A fly reflection artifact that has not been removed in the  

pre-processing step appears in the image, at frame t + 1 (encircled in blue, in Figure 12b). This artifact 

is assigned a new tracker, tracker 11. Each time a new tracker becomes active, its stability is tested during 

a few frames (say 50 frames for a 15 fps rate). Then, undesired situations are detected, such as: the 

tracker loses its fly or the tracker is assigned a fly that has already been assigned another tracker. In this 

example, the new tracker has been active for too short a time. Therefore, it has been removed 

automatically and is no longer considered in subsequent frames (Figure 12c). The same procedure can 

deal with similar situations, such as spurious artifacts caused by poor image quality.  

 
(a) (b) 

 
(c) 

Figure 12. Fly reflection at the plate boundary. (The instantaneous speeds, their moving 

average and the Kalman filter outputs are displayed red, blue and green, respectively.) 

Frames at t, t + 1 and t + 2, in (a–c) respectively, show that the fly reflection (encircled in 

blue) is correctly removed by the algorithm. 

4.4. Quantitative Results 

The results corresponding to six videos of eight Drosophila interacting within a Petri plate, sized at 

90 mm in diameter and 6mm in height, are reported. The average fly population was 0.12 flies/cm2.  

The videos were recorded in the afternoon, coinciding with the peak activity of the flies, at a temperature 

of 28 °C. 

Some situations were tested during the experiments, such as a plate being placed partially outside the 

image or fly food being present in the images. Moreover, different error rates were quantified. The 
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obtained results are reported in Table 1. The experimental conditions are described in Table 2  

(along with the conditions corresponding to another method taken as reference). 

Table 1. Tracking error corresponding to six test videos. The first column shows the video 

id. The second and third columns show the total number of frames and the number of frames 

with two or more flies close to each other (occlusion) reported by the software, respectively. 

Columns 4 to 6 show the number of errors. The last columns report the errors with respect 

to occlusions and fly density (and time), respectively. 

Video 
Number of Frames Errors Error Frequency 

Total With Occlusion  Swap Lost Spurious Error/Occlusions (%) Error/ρ/t (%)

1 4095 1782 0 1 0 0.84 3.05 
2 5025 2181 2 0 0 1.37 4.97 
3 5012 1533 2 0 0 1.95 4.98 
4 5022 2366 1 0 0 0.63 2.48 
5 5044 1834 0 0 0 0 0 
6 5005 2024 3 0 0 2.2 7.4 

Table 2. Comparison between the sensing systems used in the experiments. 

 (Current Work) Reference [29] 

Lighting 
Backlight LED 800 lumens  

(with ambient light screening) 
Cenital LED 480 lumens  

(with ambient light screening) 

Optics 
1280 × 720 

Microsoft® LifeCam Cinema™
1280 × 1024-pixel, firewire camera (Basler A622f) 

equipped with an 8 mm lens (PENTAX) 

Resolution 4 pix/mm 4 pix/mm 

FPS 15 20 

Plate radius 4.5 cm 12.5 cm 

Videos 1, 2, 3, 4, 5 i, ii 

Total population (N) 8 50 

Population density (ρ) 0.12 flies/cm2 0.106 flies/cm2 

The video id number and the number of frames are annotated in the first and second columns of  

Table 1, respectively. The number of frames with occlusion (reported by the software), i.e., the number 

of frames in which two or more flies are merged in a single blob, is shown in column 3.  

The tracking errors are reported in columns 4, 5 and 6. Column 4 refers to identity swaps; column 5 

to identity losses; and column 6 to spurious artifacts not removed by the algorithm. These figures have 

been determined manually by watching the processing results.  

The last two columns refer to the identity swaps with respect to the number of fly interactions and the 

number of errors (identity losses plus identity swaps) with respect to the fly population density and the 

video length (in seconds), respectively. Both results are given in %. 

It can be seen that the system behaves suitably concerning fly occlusions and identity losses. In sum, 

the worst case corresponds to video sequence 6 (the last row in Table 1). This is a 5005-frame video 

sequence and there are 2024 frames with overlapping situations. However, only three overlapping 

situations have resulted in identity swaps. Moreover, there has been no identity loss.  
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The proposed method has also been compared to a state of the art one. The work [29] has been 

selected, given that it is considered a reference paper on Drosophila tracking. Quantitative comparison 

is a challenging issue, given that the sensing systems used in that work are different from ours. Moreover, 

environmental conditions such as temperature, time of day, humidity, etc., significantly influence the 

behavior of the flies. Therefore, the variability from one experiment to the other may be large.  

Assuming the said variability, the obtained results are reported in Tables 3 and 4. Table 3 shows the 

processing time (in frames), the number of occlusions and the error rates corresponding to two video 

sequences taken from the supplementary Table 1 of [29]. In concrete, we have taken the videos presented 

in rows 5 and 6 (labeled i and ii in the present work). These videos have been selected because their fly 

density is similar to ours (while the fly density in the other videos of that work is lower). It is worthwhile 

noting that the fly density is a cardinal aspect, given that the larger this density is, the more interactions 

there will be between flies. Moreover, the error rates have been computed in a different way with respect 

to the said paper: Error/Occlusions has been computed by considering both the number of losses and 

swaps (given that, in our opinion, an identity loss is also a tracking error and should be considered as 

such); and the error in the last column has been computed with respect to the fly population density 

instead of the number of flies used in the reference method. What is more, we have computed the error 

using the time (in seconds) because the frame rate is different in the compared experiments. In fact, this 

frame rate is lower in our case, which results in more tracking difficulty. Finally, we have reported the 

error rate in %, which is an easily understandable measure. 

Table 3. Error frequency. Figures have been estimated from the data shown in the reference 

paper, according to the criteria described in the current section. 

Supplementary Table 1 [29] Number of Frames Errors Error Frequency 

Video Total With Occlusion Swap Lost Spurious Swap/Occlusions (%) Error/ρ/t (%) 

i 6123 2135 0 2 0 1.87 6.16 

ii 6587 4545 1 0 0 0.44 3.08 

Table 4. Comparison between the error frequency for the two methods. 

Video 
t(s) Error  

(Swap + Lost)

Error Frequency 

Total with Occlusion Error/Occlusions (%) Error/ρ/t (%)

i, ii [29] 6355 334 3 0.898 4.4 

1,2.3,4,5,6 (Proposed method) 1946 984 8 0.813 3.4 

Table 4 shows a quantitative comparison between the two methods for a number of experiments 

(using the error rates defined above). It can be seen that the error frequency with respect to the number 

of occlusions is similar for both methods. This error quantifies the behavior of the pre-processing step. 

However, the error frequency with respect to the population density and the time is clearly lower in 

the case of the proposed method. This error quantifies the behavior of the fly tracking. Therefore, from 

the obtained results, we can deduce that the use of the Kalman filter and the other improvements 

proposed in the current paper result in significant progress.  
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Some execution examples of the proposed method, operating in real time, can be downloaded  

at [58]. Some further material (source code, software libraries, demos and documentation) can be 

downloaded at [59]. 

A valuable feature of this method is that it can work in real time. Processing takes only about 7 to  

15 ms per frame in a (modest) Intel Pentium 4, 3 GHz computer. Moreover, the algorithm is designed in 

such a way that the pre-processing phase and the tracking phase could be executed in parallel in a dual 

core architecture.  

5. Conclusions 

In this paper, an automatic system for tracking Drosophila melanogaster movements has been 

presented. The proposed method deals efficiently with problems derived from limited image quality and 

the interaction among flies.  

The limited image quality results in the modification of the aspect of the flies that, in turn, hinders 

their detection and would cause identity losses during tracking. The described pre-processing and 

processing steps deal suitably with these problems and allow an accurate foreground to be obtained with 

low computational effort. Shadows, reflections and phantoms are also avoided. Thus, the cost of the 

required system hardware is kept low as far as both the acquisition system and the computing resources 

are concerned. 

Moreover, the proposed tracking algorithm allows an accurate prediction of the system state to be 

obtained with respect to other existing algorithms, thus resulting in a significantly reduced rate of fly 

identity losses and swaps. Moreover, the method has been completed with some heuristics that deal with 

problems that may eventually happen, such as spurious artifacts and fly reflections at the plate border. 

Furthermore, the correct tracking does not require an accurate detection of the plate, which eases the 

method adaptation to different experiments. The whole procedure—pre-processing, processing and 

tracking real time—can operate in real time. 

The method allows detailed and precise information on the flies to be obtained concerning both their 

dynamics and their behavior. The distance travelled by each fly, the instant and average velocities, the 

number of jumps etc., can be readily computed from the obtained data. Furthermore, the different flies 

can be classified by their level of activity (throughout different time periods) or the time they have stayed 

in a given activity level, or by a given plate region. The average behavior of all the flies in the experiment 

can also be computed.  

This notable amount of data is useful for analyzing the behavior of the flies in a great number of 

different experiments. 
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