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Abstract

Age-related changes in focal cortical morphology have been well documented in pre-

vious literature; however, how interregional coordination patterns of the focal corti-

cal morphology reorganize with advancing age is not well established. In this study,

we performed a comprehensive analysis of the topological changes in single-subject

morphological brain networks across the adult lifespan. Specifically, we constructed

four types of single-subject morphological brain networks for 650 participants (aged

from 18 to 88 years old), and characterized their topological organization using

graph-based network measures. Age-related changes in the network measures were

examined via linear, quadratic, and cubic models. We found profound age-related

changes in global small-world attributes and efficiency, local nodal centralities, and

interregional similarities of the single-subject morphological brain networks. The age-

related changes were mainly embodied in cortical thickness networks, involved in

frontal regions and highly connected hubs, concentrated on short-range connections,

characterized by linear changes, and susceptible to connections between limbic, fron-

toparietal, and ventral attention networks. Intriguingly, nonlinear (i.e., quadratic or

cubic) age-related changes were frequently found in the insula and limbic regions,

and age-related cubic changes preferred long-range morphological connections.

Finally, we demonstrated that the morphological similarity in cortical thickness

between two frontal regions mediated the relationship between age and cognition

measured by Cattell scores. Taken together, these findings deepen our understanding

of adaptive changes of the human brain with advancing age, which may account for

interindividual variations in behaviors and cognition.
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1 | INTRODUCTION

The human brain is a complex system that can be modeled as inter-

connected networks in vivo from multimodal magnetic resonance

imaging (MRI) data at different temporal and spatial scales. To date,

several nontrivial organizational principles are universally observed to

govern the networks for facilitating segregated and integrated infor-

mation processing, including small-worldness, rich-club structure, and

modular organization (Bullmore & Sporns, 2009; Liao et al., 2017;

Sporns & Betzel, 2016; van den Heuvel & Sporns, 2013). Moreover,

the nontrivial network architecture undergoes dynamic reconfigura-

tion across the human lifespan to accommodate behaviors and intelli-

gence (Cao et al., 2017; Zuo et al., 2017). However, the existing

knowledge on the brain network changes across the human lifespan is

mainly from network analyses of functional and diffusion MRI. Little

is known regarding age-related changes in morphological brain net-

works derived from structural MRI, which have become an important

way for brain connectome studies.

Historically, morphological brain networks are mainly derived

from population-based morphological covariance methods by calculat-

ing Pearson correlation in regional morphology (e.g., cortical thickness

or gray matter volume) across a cohort of participants (Bassett

et al., 2008; He et al., 2007). Despite successful application to studies

of age-related changes (Chen et al., 2011; Váša et al., 2018; Wu

et al., 2012), the population-based methods ignore inter-individual

variance, and thus fail to uncover detailed, continuous changes with

increasing age. By contrast, the recent advent of single-subject mor-

phological brain network approaches makes it possible to examine

age-related changes at a finer scale (Kong et al., 2015; Li et al., 2017;

Li et al., 2021; Seidlitz et al., 2018; Tijms et al., 2012; Wang

et al., 2016). Using the newly developed approaches, two previous

studies have explored early cortical development of the neonatal brain

(Fenchel et al., 2020; Galdi et al., 2020). More recently, two large sam-

ple studies further examined single-subject morphological brain net-

works across the adult lifespan (Shigemoto et al., 2023; Wang

et al., 2022). However, these studies constructed single-subject mor-

phological brain networks either based on a single morphological fea-

ture (i.e., gray matter volume) or by integrating multiple features into

a single model. It is thus still unclear how single-subject morphological

brain networks derived from different morphological features differ-

entially change with advancing age. Given our previous findings that

single-subject morphological brain networks constructed with differ-

ent morphological features exhibited distinct wiring patterns (Li

et al., 2021) and different sensitivities in uncovering disease-related

alterations (Lv et al., 2021), a better understanding of age-related

changes in the brain may benefit from a more comprehensive study of

different types of single-subject morphological brain networks.

In this study, we aimed to utilize single-subject morphological

brain network methods to systemically investigate age-related

changes in multiple morphological features for 650 participants (aged

from 18 to 88 years old) from a publicly available dataset of the Cam-

bridge Centre for Aging and Neuroscience (Cam-CAN). The single-

subject morphological brain networks were constructed with our

previous approaches established for four widely used morphological

features of fractal dimension (FD), gyrification index (GI), sulcal depth

(SD), and cortical thickness (CT) (Li et al., 2021). After topologically

characterizing each type of the single-subject morphological brain net-

works with graph-based approaches, age-related changes were exam-

ined via linear and nonlinear models at global, nodal, and connectional

levels. Finally, associations of the age-related changes in the single-

subject morphological brain networks were examined with individual

cognitive abilities measured by the Cattell scores.

2 | MATERIALS AND METHODS

2.1 | Participants and data acquisition

A total of 652 healthy participants were included in the large-scale

Cam-CAN collaborative research project, launched in October 2010

(http://www.mrc-cbu.cam.ac.uk/datasets/camcan/). This project

aimed to use epidemiological, cognitive, and neuroimaging data to

understand how individuals can best retain cognitive abilities into old

age (Cam-CAN et al., 2014; Taylor et al., 2017). Informed consent was

obtained from each participant and ethical approval for the proce-

dures for data collection and sharing was obtained from the Cam-

bridgeshire 2 (now East of England-Cambridge Central) Research

Ethics Committee. After excluding two participants according to our

quality control procedures (see below), a total of 650 participants

were included in the final analyses (age range, 18–88 years old; mean

age, 54.3 ± 18.6 years old; 320 males) (Figure 1). All participants were

cognitively healthy with a 24 or higher score on the Mini-Mental State

Examination, had normal or corrected-to-normal vision and hearing,

were free of MRI or MEG contraindications, and had no history of

drug or alcohol abuse or any neurological or serious psychiatric

conditions.

F IGURE 1 Histogram showing age and sex distributions of the
participants.
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The Cam-CAN project collected multiple modalities of neuroim-

aging data, among which high-resolution 3D T1-weighted structural

MRI images were used in this study. The images were scanned in a

Siemens Trio 3 T scanner with a 32-channel head-coil. Specifically,

the magnetization-prepared rapid gradient-echo sequence was used

to acquire individual structural MRI images with the following parame-

ters: repetition time = 2250 ms; echo time = 2.99 ms; inversion

time = 900 ms; flip angle = 9�; field of view = 256 � 240 �
192 mm3; voxel size = 1 � 1 � 1 mm3; acceleration factor = 2; and

acquisition time = 4 min and 32 s.

In addition to the structural MRI images, the standard form of the

Cattell Culture Fair, Scale 2 Form A was used in this study to examine

the associations of age-related changes in single-subject morphologi-

cal brain networks with cognition. The Cattell test is a pen-and-paper

test that consists of four nonverbal subtests: completing a sequence

of drawings (series completion subtest), picking a drawing that is dif-

ferent from other drawings (classification subtest), completing a

matrix of patterns (matrix subtest), and picking geometric designs that

fulfill a specific given condition (conditions subtest). After the four

subtests, each participant got a score ranging from 0 to 46.

2.2 | Quality control procedures

All structural MRI images were checked for quality control by semi-

automated scripts monitored by the Cam-CAN methods team (Taylor

et al., 2017). Further, we checked the results of image segmentation

via the modules “Slice Display” and “Surface Data Homogeneity” in

the CAT12 toolbox. One participant (sub-CC620821) failed in the tis-

sue segmentation. In addition, another participant (sub-CC320651)

was excluded due to failure in the extraction of vertex-wise GI.

2.3 | Preprocessing of structural MRI images

As in our previous studies (Li et al., 2021; Lv et al., 2021), all structural

MRI images were preprocessed using the CAT12 toolbox (version

r1113, http://www.neuro.uni-jena.de/cat/). There is a growing num-

ber of studies demonstrating that the CAT12 can be regarded as a

considerable alternative to FreeSurfer for accurate and reliable esti-

mates of CT (Ay et al., 2022; Righart et al., 2017; Seiger et al., 2018).

Particularly, the CAT12 offers a volume-based approach for estimat-

ing CT without extensive reconstruction of cortical surface, and thus

is timesaving. This feature is important for this study given our large

sample size. Briefly, after tissue segment of each structural MRI image,

CT was estimated using a fast and reliable projection-based thickness

method, and FD, GI, and SD were estimated based on spherical har-

monic reconstructions. Specifically, FD was calculated as the slope of

a logarithmic plot of surface area versus the maximum l-value (Yotter

et al., 2011), GI was computed as the absolute mean curvature

(Luders et al., 2006), and SD was defined as the Euclidean distance

between the central surface and its convex hull. The resulting vertex-

wise morphological maps were subsequently resampled into the

common fsaverage template, and smoothed using a Gaussian kernel.

Spatial smoothing is previously demonstrated to increase test–retest

reliability of single-subject morphological brain networks (Wang

et al., 2016). Specifically, according to the recommendations of the

CAT12 manual, individual CT maps were smoothed using a Gaussian

kernel with a 15-mm full width at half maximum (FWHM), while indi-

vidual FD, GI, and SD maps were smoothed using a Gaussian kernel

with a 25-mm FWHM. The usage of larger smoothing kernel sizes for

the FD, GI, and SD maps is due to the underlying nature of these fold-

ing measures that reflect contributions from both sulci and gyri.

Therefore, the filter size should exceed the distance between a gyral

crown and a sulcal fundus.

To test whether the different smoothing kernel sizes affected our

findings, we re-smoothed individual CT maps using a Gaussian kernel

with a 25-mm FWHM. High within-subject correlations were

observed for the resulting single-subject morphological brain net-

works (r = .532 ± .050). These findings imply limited effects of differ-

ent smoothing kernel sizes on our results given that all topological

attributes were calculated for binary networks in this study (see below

for details).

2.4 | Construction of single-subject morphological
similarity matrix

In this study, we constructed four types of single-subject morphologi-

cal similarity matrices for each participant based on different morpho-

logical indices (FD, GI, SD, and CT). In the matrices, nodes

represented brain regions and edges represented interregional similar-

ities in regional morphology.

2.4.1 | Definition of network nodes

To define nodes, we employed a widely used Destrieux atlas

(Destrieux et al., 2010) to divide the cerebral cortex into 148 regions

of interest (ROIs). Each ROI was a node in the morphological similarity

matrices. Our previous studies demonstrated that different choices of

parcellation atlas significantly affected the topological descriptions

of single-subject cortical morphological brain networks, and higher

resolution atlases yielded higher test–retest reliability (Li et al., 2021;

Yin et al., 2023). However, higher resolution atlases (i.e., more net-

work nodes) were accompanied with more computational demands. In

this study, we chose the Destrieux atlas, which provided an accept-

able trade-off between test–retest reliability and computational cost.

2.4.2 | Definition of network edges

To estimate edges between the nodes, we calculated interregional

morphological similarity in the distribution of regional morphology in

terms of the Jensen-Shannon divergence (JSD) (Li et al., 2021). The

JSD, a variant of Kullback–Leibler divergence (KLD), is a measure of
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the distance between two probability distributions. Our previous

studies have found that compared with the KLD, the JSD can yield

more test–retest reliable estimation for single-subject cortical mor-

phological brain networks (Li et al., 2021; Yin et al., 2023). First, for

each morphological index we extracted values of all vertices within

each ROI. Then, a probability density estimate was obtained for each

ROI and each morphological index using a normal kernel function

(MATLAB function, ksdensity). Each of the resulting probability den-

sity estimates was further converted to a probability distribution func-

tion (PDF). For two regional PDFs P and Q, the JSD is calculated as:

KLD P
���Q

� �
¼

Xn

i¼1

P ið Þ log PðiÞ
QðiÞ ,

JSD P
���Q

� �
¼1
2
KLD P

���1
2

PþQð Þ
� �

þ1
2
KLD Q

���1
2

PþQð Þ
� �

,

where n is the number of sampling points during the probability den-

sity estimate. According to our previous study (Wang et al., 2016),

n was set to 28 for each ROI no matter how many vertices the ROIs

included. Notably, the bilateral pericallosal sulci were excluded due to

a limited number of vertices in them. Finally, the morphological simi-

larity was defined as the square root of the JSD, followed by a sub-

traction from 1. After the procedures mentioned above, a total of four

146 � 146 morphological similarity matrices were obtained for each

participant. In the matrices, the value of interregional morphological

similarity ranged from 0 to 1, with 0 and 1 denoting that two regional

PDFs are completely different and exactly the same, respectively.

2.5 | Network analysis

2.5.1 | Threshold selection

Before topological characterization of the morphological similarity

matrices derived above, a sparsity-based thresholding procedure was

used to convert the matrices to binary networks. Compared with

weighted networks, binary networks are demonstrated to yield higher

test–retest reliability for graph-based topological measures of human

brain networks (Wang et al., 2011; Wang et al., 2016; Yin

et al., 2023). Sparsity is defined as the ratio of the number of actual

edges divided by the maximum possible number of edges in a net-

work. The sparsity-based thresholding method thus ensures the same

number of edges across participants and in each type of morphologi-

cal brain networks. Owing to the lack of a definitive way to select a

single sparsity, we thresholded each matrix to generate a series of

binary networks in a consecutive sparsity range from 0.04 to 0.4 with

an interval of 0.02. The lower limit of the sparsity range was deter-

mined to ensure that the resulting binary networks were estimable for

the small-world attributes (Watts & Strogatz, 1998). That is, the aver-

age degree over all nodes should be larger than 2 � log(N), where

N denoted the number of nodes (i.e., 146 in this study) in the net-

works. The upper limit of the sparsity range was empirically chosen to

guarantee that the resulting binary networks had sparse properties

(Achard & Bullmore, 2007; Wang et al., 2009).

2.5.2 | Network parameter calculation

We calculated four global (clustering coefficient, Cp; characteristic

path length, Lp; local efficiency, Eloc; global efficiency, Eglob) and three

nodal centrality (degree, ki; efficiency, ei; nodal betweenness, bi) mea-

sures to topologically characterize the morphological brain networks

at each sparsity. Formulas, usages, and explanations of these mea-

sures can be found elsewhere (Rubinov & Sporns, 2010; Wang

et al., 2011). Since all network measures were calculated as functions

of the sparsity, we further computed the area under the curve (AUC;

i.e., the integral over the entire sparsity range) for each measure to

provide a summarized scalar for subsequent statistical analyses. All

the network analyses were performed with the GRETNA toolbox

(Wang et al., 2015).

2.5.3 | Definition of hubs

For each participant, brain hubs were first defined as regions with

values in the top 10% for each nodal centrality measure of each type

of morphological brain network. By counting the times of each region

as a hub among all participants, 12 (3 nodal centrality measures � 4

morphological indices) hub probability maps were then obtained. For

each hub probability map, regions with values in the top 10% of the

probability were identified as group-level brain hubs.

2.6 | Statistical models for detecting age-related
changes

The general linear model was used to explore age-related changes

in morphological brain networks. Specifically, for each type of mor-

phological brain network, three models were used to separately

examine linear, quadratic, and cubic age-related changes in morpho-

logical similarity between each pair of ROIs, each global network

measure, each nodal centrality measure of each ROI, the mean of

each nodal centrality measure across group-level hubs, and the

mean of each nodal centrality measure across group-level non-hubs

as follows:

Y¼ β0þβ1�ageþβ2� sex,

Y¼ β0þβ1�ageþβ2�age2þβ3� sex,

Y¼ β0þβ1�ageþβ2�age2þβ3�age3þβ4� sex:

To determine the best-fitting model, the Akaike's information cri-

terion (AIC) was used (Akaike, 1974; Hurvich & Tsai, 1989), which was

calculated as:
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AIC¼2h�2ln L̂
� �

,

where h is the number of estimated parameters in a model, and L̂ is

the maximum value of the likelihood function for the model. A smaller

AIC value means a better trade-off between the goodness of fit and

the number of estimated parameters. If a quadratic model was deter-

mined, the peak point of age was calculated as:

Agepeak ¼
�β1
2β2

:

If a cubic model was determined, the inflection point of age was

calculated as:

Ageinflection ¼� β2
3β3

:

When β22�3�β1�β3 > 0, the stationary points of age were fur-

ther calculated as:

Agestationary ¼
�β2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β22�3β1�β3

q

3β3
:

For each type of morphological brain networks, the false discov-

ery rate (FDR) procedure was used to correct for multiple compari-

sons for analyses of interregional morphological similarity (across

connections), global network organization (across measures), and local

network organization (across regions and nodal centrality measures).

The above procedures were also used to examine the age-related

changes in local morphology (i.e., regional mean of each morphological

feature).

2.7 | Effects of anatomical distance on age-related
changes in single-subject morphological brain
networks

To examine whether the age-related changes in morphological brain

networks were dependent on anatomical distance, we first calculated

an interregional anatomical distance matrix for each participant. The

anatomical distance between two regions was approximately com-

puted as the mean Euclidean distance across all pairs of vertices

belonging to the two regions. The individual anatomical distance

matrices were then averaged to generate a group-level anatomical dis-

tance matrix, based on which we compared the distances between

morphological connections with and without age-related changes.

Given the huge differences in the numbers of the two sets of connec-

tions (FD network: 1154 vs. 9431; GI network: 518 vs. 10067; SD

network: 2125 vs. 8460; CT network: 3588 vs. 6997; see Results), we

performed the following statistical analyses. We separately selected

1154, 518, 2125, and 3588 edges from the group-level anatomical

distance matrix randomly and calculated their mean distances. This

procedure was implemented 100,000 times to generate four empirical

null distributions, each of which was used to determine a two-tailed

p-value, indicating the deviation of the real observation (i.e., mean

anatomical distance across the connections showing age-related

changes) of each type of morphological brain network from chance

operations. Similar analyses were also performed for morphological

connections showing age-related linear, quadratic, and cubic changes,

respectively.

2.8 | Effects of cortical modules on age-related
changes in single-subject morphological brain
networks

To examine whether the age-related changes in morphological brain

networks were susceptible to specific cortical modules, we first

assigned each ROI to one of the seven modules (Thomas Yeo

et al., 2011): default mode network (DMN), frontoparietal network

(FPN), dorsal attention network (DAN), ventral attention network

(VAN), limbic network (LN), visual network (VN) and somatomotor

network (SMN). To achieve this, we calculated the proportions of ver-

tices belonging to different modules for each ROI, and an ROI was

assigned to the module with the highest proportion if the proportion

was larger than 50% and was at least 20% more than the second-

highest proportion. The ROIs failing to meet the criteria were

excluded from this analysis (27). Subsequently, we counted the num-

bers of morphological connections showing significant age-related

changes within each and between each pair of modules. To determine

whether the observed numbers statistically deviated from chance

operations, we randomly selected the same numbers of morphological

connections 100,000 times and recorded their distributions in the

context of the seven modules. Based on the resulting empirical null

distributions, a one-tailed p-value was finally obtained for each mod-

ule and each pair of modules, which indicated whether the morpho-

logical connections showing age-related changes were selectively

involved in specific modules or between specific pairs of modules.

The FDR procedure was used to correct for multiple comparisons.

2.9 | Association of age-related changes in single-
subject morphological brain networks with cognition

For morphological measures showing age-related changes, we com-

puted their Pearson correlations with the Cattell scores after remov-

ing the effects of sex via general linear models. However, the

correlations may be driven by age-related effects, since we found a

significantly negative quadratic trajectory with the increase of age for

the Cattell scores. Thus, we re-computed the correlations after

removing additional effects of age. This allows identifying morphologi-

cal measures that can account for significant variance in the Cattell

scores that was independent of age-related changes (Kievit

et al., 2014; Madden et al., 2008). The FDR procedure was used to
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correct for multiple comparisons at each analysis level of local mor-

phology, interregional morphological similarity, global and local net-

work organization.

3 | RESULTS

3.1 | Age-related changes in global measures of
single-subject morphological brain networks

Significant age-related changes in global network organization of mor-

phological brain networks were observed only for the CT networks

(p < .05, FDR corrected; Figure 2).

3.1.1 | CT networks

Clustering coefficient (p < .001) and local efficiency (p < .001)

decreased linearly with the increase of age, while characteristic path

length (� � shape: p = .004; inflection point: 54; stationary points:

41 and 67) and global efficiency (inverted � � shape: p = .006;

inflection point: 54; stationary points: 41 and 67) showed cubic age-

related trajectories.

3.2 | Age-related changes in nodal centrality
measures of single-subject morphological brain
networks

Significant age-related changes in nodal centrality measures were

observed for all types of morphological brain networks, particularly

the SD and CT networks (p < .05, FDR corrected; Figures S1). In gen-

eral, the changes were mainly characterized by linear changes, and

involved in frontal and temporal regions regardless of the type of mor-

phological brain networks.

3.2.1 | FD networks

Significant age-related changes (linear: 35, 77.8%; quadratic: 8, 17.8%;

cubic: 2, 4.4%) were observed on at least one nodal centrality measure

of 26 regions for the FD networks (frontal: 9, 34.6%).

F IGURE 2 Age-related changes in global network measures. Significant age-related changes were observed only in the CT networks. Shades
denote 95% confidence intervals of model fitness. Black stars denote stationary points of age in cubic models. CT, cortical thickness.
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3.2.2 | GI networks

Significant age-related changes (linear: 19, 70.4%; quadratic: 5, 18.5%;

cubic: 3, 1.1%) were observed on at least one nodal centrality measure

of 15 regions for the GI networks (temporal: 5, 33.3%).

3.2.3 | SD networks

Significant age-related changes (linear: 46, 74.2%; quadratic: 9, 14.5%;

cubic: 7, 11.3%) were observed on at least one nodal centrality mea-

sure of 36 regions for the SD networks (frontal: 7, 19.4%; limbic:

7, 19.4%; insula: 6, 16.7%).

3.2.4 | CT networks

Significant age-related changes (linear: 75, 55.6%; quadratic:

38, 28.1%; cubic: 22, 16.3%) were observed on at least one nodal cen-

trality measure of 73 regions for the CT networks (frontal: 27, 37.0%).

All age-related changes in nodal centrality measures are further

summarized in Figure 3 and Table S1. We noted that (1) both linear

increases and decreases with age were observed for each type of mor-

phological brain networks; (2) quadratic and cubic age-related changes

were mainly found in the CT networks, and the regions were mainly

involved in the insula and limbic regions (e.g., the cingulate gyrus and

parahippocampal gyrus); and (3) several regions were consistently

found to show age-related changes in multiple nodal centrality mea-

sures and different types of morphological brain networks, such as the

left suborbital sulcus, the posterior-ventral part of the right cingulate

gyrus, the inferior circular sulcus of the left insula, the right anterior

cingulate cortex, and the right parahippocampal gyrus.

3.3 | Age-related changes in hubs of single-subject
morphological brain networks

Figure 4 (the first three rows) shows the hub probability map for each

nodal centrality measure of each type of morphological brain networks

over all participants. We found that hub probabilities exhibited very

high spatial correlations across different nodal centrality measures for

the same type of morphological brain networks (r = .874 ± .097) while

low correlations were observed between different types of morpholog-

ical brain networks (r = .342 ± .107) (Figure 5). Accordingly, hub

regions with the highest probabilities (15, 10%) differed largely

between different types of morphological brain networks (Figure 4, the

fourth row and Table S2). Nevertheless, we noted that several regions

of the lateral sulcus were consistently identified as hubs for all types of

morphological brain networks. Another interesting finding was that

several regions (e.g., the left horizontal ramus of the anterior segment

of the lateral sulcus and left orbital part of the inferior frontal gyrus)

acted as hubs across most participants for the SD networks (maximum

probability: 96.8% for degree, 96.0% for efficiency and 83.2% for

betweenness), in contrast to the other three types of morphological

brain networks (maximum probability: 26.8% � 56.3%).

For age-related changes in the hubs, significant results were

observed only for the FD and CT networks (Figure 6).

3.3.1 | FD networks

The mean nodal degree (p = .013; inflection point: 52; stationary

points: 36 and 67) and efficiency (p = .005, inflection point: 53; sta-

tionary points: 37 and 68) showed a � �shape curve while the mean

nodal betweenness (p = .005, inflection point: 55; stationary points:

38 and 71) showed an inverted � � shape curve as age increased for

the hubs of the FD networks. For the non-hubs, the mean nodal

degree (p = .013, inflection point: 52; stationary points: 36 and 67)

showed an inverted � � shape curve as age increased.

3.3.2 | SD networks

The mean nodal efficiency exhibited a U-shape relationship with age

for the non-hubs of the SD networks (p = .003, peak point: 46).

3.3.3 | CT networks

The mean nodal degree (p < .001) and efficiency (p < .001) increased line-

arly while the mean nodal betweenness (p < .001) decreased linearly with

age for the hubs of the CT networks. For the non-hubs, the mean nodal

degree (p < .001) and efficiency (p = .002) decreased linearly with age.

3.4 | Age-related changes in interregional
morphological similarities

We found that the mean morphological similarity matrices across par-

ticipants in each age bin (Figure S5) were largely comparable regard-

less of the type of single-subject morphological brain networks as

evaluated by both visual check and quantitative spatial correlation

analysis (FD networks: r = .826 ± .044; GI networks: r = .720 ± .064;

SD networks: r = .977 ± .009; CT networks: r = .766 ± .096)

(Figure 7). Nevertheless, significant age-related changes were

observed in numerous connections (p < .05, FDR corrected; Figures 8

and S6). The age-related changes were mainly characterized by linear

changes, and exhibited an anatomical distance-dependent and

module-specific patterns.

3.4.1 | FD networks

Significant age-related changes were observed on 1154 morphological

connections of the FD networks (linear: 1000, 86.7%; quadratic:

117, 10.1%; cubic: 37, 3.2%).
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3.4.2 | GI networks

Significant age-related changes were observed on 518 morphological

connections of the GI networks (linear: 393, 75.9%; quadratic:

101, 19.5%; cubic: 24, 4.6%).

3.4.3 | SD networks

Significant age-related changes were observed on 2125 morphological

connections of the SD networks (linear: 1301, 61.2%; quadratic:

644, 30.3%; cubic: 180, 8.5%).

3.4.4 | CT networks

Significant age-related changes were observed on 3588 morphological

connections of the CT networks (linear: 2196, 61.2%; quadratic:

1038, 28.9%; cubic: 354, 9.9%).

3.4.5 | Distance-dependent age-related changes in
morphological similarities

For all types of morphological brain networks, the age-related changes

in interregional morphological similarities preferred connections with

short-range anatomical distances (p < .05; Figure 9). Further analyses

revealed that the preference was mainly observed for the age-related

linear and quadratic changes, while the age-related cubic changes pre-

ferred connections with long-range anatomical distances (Table S3).

3.4.6 | Module-specific age-related changes in
morphological similarities

Module-specific age-related changes in morphological similarities

were found for the FD and GI networks. For the FD networks, age-

related changes were preferentially susceptible to connections linking

the LN and VAN (p = .003, FDR corrected), and the LN and FPN

(p = .001, FDR corrected). For the GI networks, age-related changes

were preferentially susceptible to connections linking the LN and

VAN (p = .002, FDR corrected). When considering different statistical

models, we found that only connections that changed linearly with

age exhibited the preferential susceptibility for both the FD networks

(LN-VAN: p = .004; LN-FPN: p = .002; VAN-FPN: p = .003; all FDR

corrected) and GI networks (LN-VAN: p = .002, FDR corrected;

Figure 10).

3.5 | Cognitive relevance of age-related changes in
single-subject morphological brain networks

After controlling for the effects of sex, the Cattell scores were found

to significantly correlate with nodal centrality of 52 regions

(FD networks: 13; GI networks: 2; SD networks: 17; CT networks: 24;

p < .05, FDR corrected; Figure S7). The regions mainly concentrated

on frontal cortex, and the correlations were mainly characterized by

higher nodal centralities for higher Cattell scores. For interregional

morphological similarity, massive positive correlations were observed

for each type of morphological brain networks (FD networks: 776; GI

networks: 262; SD networks: 1186; CT networks: 2027) (p < .05, FDR

corrected; Figure S8). Of note, negative correlations were also found

for many connections of the SD networks. No significant correlations

were found between global network measures and the Cattell scores.

After controlling for additional effects of age, only one correlation

survived with the Cattell scores: interregional CT similarity between

the left superior frontal gyrus and superior part of the precentral sul-

cus (r = .173, p < .001) (Figure 11, left).

3.6 | Age-related changes in local morphology

Significant age-related changes in local morphology are shown in

Figure S9 (p < .05, FDR corrected). In general, the age-related changes

were mainly characterized by linear changes, and involved in frontal

and temporal cortex regardless of the morphological indices.

3.6.1 | FD

Significant age-related changes (linear: 43, 75.4%; quadratic:

14, 24.6%) were observed on the FD of 57 regions (frontal:

23, 40.4%; temporal: 9, 15.8%).

3.6.2 | GI

Significant age-related changes (linear: 25, 61.0%; quadratic:

14, 34.1%; cubic: 2, 4.9%) were observed on the GI of 41 regions

(frontal: 15, 36.6%; temporal: 8, 19.5%).

F IGURE 3 A summary of regions showing age-related changes in nodal centralities. The top-left panel shows the number of regions (y-axis)
that exhibit age-related changes at different frequencies (x-axis) among different nodal centrality measures of different types of single-subject
morphological brain networks. The top-right panel shows the regions that are mostly affected by age (frequency ≥ 4) with the corresponding age-
related trajectories depicted in the bottom panel. Red diamonds denote the peak points of age in the quadratic models, and stars denote
stationary points of age in the cubic models. ki , nodal degree; ei, nodal efficiency; bi, nodal betweenness; CT, cortical thickness; FD, fractal
dimension; GI, gyrification index; SD, sulcus depth.
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3.6.3 | SD

Significant age-related changes (linear: 37, 84.1%; quadratic: 7, 15.9%)

were observed on the SD of 44 regions (temporal: 11, 25.0%; dividing

sulci: 11, 25.0%).

3.6.4 | CT

Significant age-related changes (linear: 51, 71.8%; quadratic:

17, 23.9%; cubic: 2, 4.2%) were observed on the CT of 71 regions

(frontal: 27, 38.0%; temporal: 12, 16.9%).

All age-related changes in local morphology are further summa-

rized in Figure S10. We noted several interesting phenomenon: (1) for

linear age-related changes, most regions increased with age for the GI

(20/25, 80.0%), while decreased with age for the other three indices

(FD: 42/43, 97.7%; SD: 36/37, 97.3%; CT: 50/51, 98.0%); (2) quadratic

and cubic age-related changes were mainly found in the insula and

limbic regions (FD: 6, 42.9%; GI: 5, 31.3%; SD: 5, 71.4%; CT: 11, 55%);

and (3) several regions were consistently identified to show age-

related changes in multiple morphological indices, such as the right

superior frontal gyrus, left posterior-ventral part of cingulate gyrus,

triangular part of bilateral inferior frontal gyri and inferior segment of

circular sulcus of the bilateral insula.

Out of the regions showing significant age-related changes in

their morphology, 125 were significantly correlate with the Cattell

scores after controlling for the effects of sex (FD: 51; GI: 29; SD: 42;

CT: 71; p < .05, FDR corrected; Figure S7). These correlations were

mainly characterized by higher morphological values for higher Cattell

scores. After controlling for additional effects of age, only two correla-

tions survived with the Cattell scores: CT of the left anterior Heschl's

gyrus (r = .152, p < .001) (Figure 11, middle) and SD of the right

F IGURE 4 Hub probability maps. A hub probability map was calculated for each nodal centrality measure of each type of single-subject
morphological brain network as the frequency of a region acting as a hub across all participants (first three rows). Regions with values in the top
10% of the probability were identified as group-level brain hubs, which were further summarized across nodal centrality measures (fourth row).
CT, cortical thickness; FD, fractal dimension; GI, gyrification index; SD, sulcus depth.
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horizontal ramus of the anterior segment of the lateral sulcus

(r = .140, p < .001; Figure 11, right).

4 | DISCUSSION

In this study, we investigated age-related changes in single-subject

morphological brain networks for healthy adults across 18–88 years

old. Compared with regional morphology, much more changes were

found in network-level measures, and the changes exhibited charac-

teristic patterns that depended on multiple factors, including the mor-

phological features used for network construction, nodal locations

and roles, anatomical distances, and cortical modules.

4.1 | Age related changes in global organization of
single-subject morphological brain networks

We found significant age-related changes in global topological organi-

zation only for the CT networks. Specifically, clustering coefficient

and local efficiency declined linearly with the increase of age. Both

clustering coefficient and local efficiency are measures of functional

segregation, that is, the ability for specialized processing occurring

among densely interconnected brain regions. Thus, our findings indi-

cate continually decreased functional segregation of the CT networks

during the age-related process. This is consistent with previous stud-

ies of single-subject morphological brain networks based on gray mat-

ter volume, which found a negative correlation for clustering

coefficient and local efficiency with age (Kong et al., 2015; Shigemoto

et al., 2023). However, using the same method as this work, a recent

study found that clustering coefficient of CT networks showed an

inverted U-shaped age-related trajectory (Wang et al., 2022). This dis-

crepancy may be due to differences between the current study and

previous one in the statistical model used (linear, quadratic, and cubic

vs. quadratic) and/or in the data homogeneity with respect to site (sin-

gle vs. multiple) and field strength (3 T vs. 1.5/3 T).

Beyond age-related linear decline in functional segregation, we

found that functional integration as indexed by characteristic path

length and global efficiency exhibited cubic age-related trajectory.

Functional integration is the ability of the brain to rapidly integrate

specialized information from distributed brain regions. Thus, our

results suggest a fluctuant change in functional integration of the CT

networks across the adult lifespan: decreasing between ages 18 and

41, then increasing between ages 41 and 57, and finally decreasing

until age 88. Notably, the cubic age-related changes are first reported

since none of previous studies utilized the cubic model to examine

the age-related changes in single-subject morphological brain net-

works (Kong et al., 2015; Shigemoto et al., 2023; Wang et al., 2022).

Moreover, findings from the previous studies were different or even

opposite possibly due to different statistical models and network con-

struction methods. Accordingly, more studies are needed in the future

to systematically explore age-related changes in single-subject mor-

phological brain networks.

4.2 | Age-related changes in local organization of
single-subject morphological brain networks

We found significant age-related changes in multiple brain regions

that were mainly located in frontal regions. This was also the case for

our findings of age-related changes in local morphology. Previous

studies found that structural and metabolic changes with age predom-

inantly occurred in (pre)frontal cortices (Alexander et al., 2006; Allen

et al., 2005; Jernigan et al., 2001; Shaw et al., 1984; Sowell

et al., 2003; Ziegler et al., 2012). Similar findings were observed for

brain network studies of development and aging (Shah et al., 2018;

Váša et al., 2018; Zhao et al., 2015). Thus, our results are consistent

with previous studies, which provide new evidence from single-

subject morphological brain networks for the frontal susceptibility to

age. The frontal lobe is engaged in a variety of higher cognitive func-

tions, such as working memory, executive function, and problem solv-

ing. Thus, the frontal susceptibility to age may explain the reason for

cognitive decline in elderly populations (Park et al., 2003). In addition,

frontal regions have been found to be disproportionately implicated in

different brain diseases. For example, patients with Alzheimer's dis-

ease patients were found to show reduced nodal efficiency predomi-

nantly located in frontal regions (Lo et al., 2010). This implies the

caution to avoid possible confounding effects from normal age-related

changes in frontal alterations in age-related brain diseases.

In addition to the frontal susceptibility, we found that age-related

changes were mainly observed for hub regions, which exhibited differ-

ential age-related trajectories from non-hubs. The existence of highly

F IGURE 5 Spatial similarities of hub probability maps between
different nodal centrality measures of different types of single-subject
morphological brain networks. ki, nodal degree; ei, nodal efficiency; bi,
nodal betweenness; CT, cortical thickness; FD, fractal dimension; GI,
gyrification index; SD, sulcus depth.
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connected hubs is a universal finding for human brain networks (van

den Heuvel & Sporns, 2013). Hubs play a critically important role in

enabling efficient neuronal signaling and communication in the brain

(van den Heuvel et al., 2012), but meanwhile they are associated with

high wiring costs and metabolic demands (Liang et al., 2013; Tomasi

et al., 2013; van den Heuvel et al., 2012), which render them points of

vulnerability in brain disorders (Crossley et al., 2014). In the domain of

development and aging, hubs are also found to be the main brain

regions to manifest age-related changes in structural and functional

brain networks (Betzel et al., 2014; Cao et al., 2014; Zhao

et al., 2019). Consistent with these findings, our results further sup-

port the vulnerability of hubs to age-related changes. Compared with

non-hubs, hubs are more densely interconnected, forming a rich-club

organization (van den Heuvel & Sporns, 2011). Previous studies of

structural brain networks found that connections of hubs were dispro-

portionately influenced by development and aging (Baker et al., 2015;

Li et al., 2023). In parallel, a recent study found that genes played a

preferential role in shaping the connections between hubs

(Arnatkeviciute et al., 2021). We thus speculate that genes may be an

important factor in accounting for the vulnerability of hubs to age-

related changes. It should be noted that how to define hubs is an

ongoing research topic (Wang et al., 2018), and different types of

hubs were found to exhibit distinct age-related trajectories of their

connections (Zhang et al., 2021). Accordingly, more studies are

F IGURE 6 Age-related changes in hubs and non-hubs. Colored scatterplots indicate significant age-related changes. Black diamond denotes
the peak points of age in the quadratic model, and black stars denote stationary points of age in the cubic models. CT, cortical thickness; FD,
fractal dimension; GI, gyrification index; SD, sulcus depth.
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required in the future to deepen our understanding of the roles and

categories of hubs and how hubs emerge, develop, mature and degen-

erate through the whole lifespan. Interestingly, we found that several

regions were consistently identified as hubs in the SD networks for

most participants, indicating that the key roles of these regions are

stable across the adult lifespan. In the future, it is important to explore

whether the roles of this specific set of regions are altered in neurode-

velopmental and neurodegenerative disorders.

4.3 | Age-related changes in interregional similarity
of single-subject morphological brain networks

Numerous interregional morphological similarities were identified to

show significant age-related changes, which were mainly involved in

short-range connections regardless of the type of morphological brain

networks. Short-range connections between nearby regions are

thought to predominate in brain networks, which are responsible for

F IGURE 7 Spatial similarities of mean morphological similarity matrices between different age bins. CT, cortical thickness; FD, fractal
dimension; GI, gyrification index; SD, sulcus depth.

F IGURE 8 The number of morphological connections showing age-related changes within and between modules. CT, cortical thickness;
DAN, dorsal attention network; DMN, default mode network; FD, fractal dimension; FPN, frontoparietal network; GI, gyrification index; LN,
limbic network; SD, sulcus depth; SMN, somatomotor network; VAN, ventral attention network; VN, visual network.
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specialized or modular information processing (Zhang, 2011). Thus,

our findings suggest changes in the extent of functional segregation

as general and major age-related changes in single-subject morpholog-

ical brain networks. This is consistent with previous studies reporting

that age-related changes are associated with altered modularity of

functional brain networks (Onoda & Yamaguchi, 2013; Song

et al., 2014). For brain development, a previous structural brain net-

work study of preterm-born and full-term neonates found that edge

strength of short-range exhibited faster developmental rates than that

of long-range connections (Zhao et al., 2019, p. 201). These findings

suggest important roles of short-range connections in brain develop-

ment and aging. Anatomical distance is an important determinant of

the formation of brain network topology (Vértes et al., 2012), which is

conceptualized as an economic trade-off between minimizing wiring

costs through reducing connection distance and maximizing efficiency

by adding expensive but beneficial long-range connections

(Bullmore & Sporns, 2012). However, compared with well-studied

long-range connections, the roles of short-range connections are

worse understood in the context of brain development and aging,

which, however, are recently argued to be as neuroscientifically and

clinically important as the long-range connections (Ouyang

et al., 2017). It should be noted that the preference for short-range

connections was mainly due to age-related linear and quadratic

changes in interregional morphological similarity. For age-related

cubic changes, a preference for long-range connections was observed.

These findings suggest differential roles of anatomical distance in

morphological connections showing different age-related trajectories.

More insights into these interesting findings can be obtained by

examining other types of brain networks with respect to the relation-

ship between anatomical distance and age-related trajectories.

In addition to the anatomical distance-dependent age-related

changes, we characterized the distribution of morphological similari-

ties showing age-related changes in the context of cerebral modular

architecture. We found that the morphological similarities showing

age-related changes were selectively involved in connections between

specific pairs of modules (LN-VAN, LN-FPN and VAN-FPN). The LN is

central for processing and regulating emotion (Dalgleish, 2004); the

FPN is mainly dedicated to cognitive control (Zanto &

Gazzaley, 2013); the VAN interrupts and resets attention to behavior-

ally salient stimuli (Corbetta et al., 2008). These processes are not iso-

lated but rather interact with each other in a complicated manner. For

example, there is a large amount of evidence for the key roles of

attentional orienting and cognitive control in emotion regulation

(Viviani, 2013). In particular, a recent study found that age-related loss

of inter-network functional connectivity was primarily driven by func-

tional connectivity reductions in frontal and parietal association corti-

ces (Hrybouski et al., 2021). Moreover, age-related changes in

between-network functional connectivity of the FPN were found to

F IGURE 9 Distance-dependent age-related changes in interregional morphological similarities. For all types of single-subject morphological
brain networks, the morphological similarities showing significant age-related changes were mainly involved in connections with short-range
anatomical distances. CT, cortical thickness; FD, fractal dimension; GI, gyrification index; SD, sulcus depth.
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predict cognitive performance (Grady et al., 2016), and the FPN medi-

ated the associations of other networks with cognition (E. E. Shaw

et al., 2015). Based on these findings, we speculate that the prefer-

ence of age-related changes for the connections between specific sets

of functional systems, in particular those linking the FPN, may be

responsible for individual variation in cognition.

4.4 | Distinct age-related changes in different
types of single-subject morphological brain networks

We found that different types of single-subject morphological brain

networks exhibited distinct patterns of age-related changes in their

topological organization at multiple levels. The distinction was

F IGURE 10 Module-specific
age-related changes in
interregional morphological
similarities. (a) Functional modules
from Yeo's 7-networks atlas.
(b) Assignation of regions in the
Destrieux atlas to the functional
modules from Yeo's 7-networks
atlas. (c) Susceptibility of age-

related changes to connections
liking specific pairs of functional
modules. Age-related linear
changes in interregional
morphological similarities were
susceptible to connections
between the LN and VAN, LN and
FPN, and VAN and FPN for the
FD networks, and connections
between the LN and VAN for the
GI networks. CT, cortical
thickness; FD, fractal dimension;
GI, gyrification index; SD, sulcus
depth.
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embodied in not only the presence or absence of age-related

changes but also the trajectories when age-related changes were

commonly observed. This is as expected since different morphologi-

cal features possess distinct cellular mechanisms, genetic origins

and/or developmental/aging trajectories. For example, CT and GI,

which are thought to separately capture the laminar structure

(Adler-Wagstyl & Lerch, 2018) and complexity of cerebral cortex

(Yotter et al., 2011), were previously reported to show strongest

age-related changes in frontal and parietal regions, respectively,

across adult lifespan (Hogstrom et al., 2013). Nevertheless, it seems

that the distinct patterns cannot be explained by age-related differ-

ences in the morphological features themselves since poor

correspondences were found in the regions with age-related

changes between local morphology and nodal centralities of single-

subject morphological brain networks. It is particularly noteworthy

that the age-related changes appear predominantly concentrated on

the CT networks, in which global and more regional and connec-

tional changes were observed. These findings suggest that CT

single-subject morphological brain networks are more vulnerable to

age-related changes. However, our previous study found that CT

single-subject morphological brain networks performed worse than

the other three types of networks with respect to test–retest reli-

ability (Li et al., 2021). Thus, more studies are warranted to validate

our results.

F IGURE 11 Relationships of the Cattell scores with interregional morphological similarity and local morphology. Before and after controlling
for effects of age, individual Cattell scores were consistently found to show positive correlations with interregional CT similarity between the left
superior frontal gyrus and superior part of the precentral sulcus, cortical thickness of the left anterior transverse temporal gyrus, and sulcus depth
of the right horizontal ramus of the anterior segment of the lateral sulcus. CT, cortical thickness.
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4.5 | Linear changes dominate age-related changes
in single-subject morphological brain networks

In this study, we employed linear, quadratic, and cubic models to

explore age-related trajectories of single-subject morphological brain

networks. We found that the age-related changes in nodal centrality

measures and interregional morphological similarities of the morpho-

logical brain networks as well as local morphology were all dominated

by linear changes with advancing age. Previous studies on healthy

adults found that the total gray matter volume decreases linearly with

age (Allen et al., 2005; Ge et al., 2002; Good et al., 2001). The global

linear decrease may be the reason why gray matter volume of almost

all regions of the cerebral cortex exhibited negative correlations with

age (Ziegler et al., 2012), and might also be a potential source of the

linear dominated age-related changes in morphological brain networks

observed in this study. Nevertheless, we noted nonlinear age-related

changes in the insula and several limbic regions, such as the cingulate

gyrus and parahippocampal gyrus. This is consistent with previous

studies showing nonlinear effects of age on CT in the insula and cin-

gulate gyrus (Hogstrom et al., 2013), gray matter volume in the para-

hippocampal gyrus (Curiati et al., 2009), and functional connectivity of

the insula (Zuo et al., 2010). In the future, more comprehensive ana-

lyses of these nonlinear age-related changes are required by integrat-

ing different approaches and measures derived from multimodal

MRI data.

4.6 | Single-subject morphological brain networks
account for interindividual differences in cognition

We found that individual Cattell scores were correlated with numer-

ous nodal centralities and interregional morphological similarities of

the single-subject morphological brain networks that exhibited

significant age-related changes. Our previous study found that single-

subject cortical morphological brain networks could explain interindi-

vidual variance in behaviors and cognition, and predict individual

behavioral and cognitive outcomes (Li, Li, et al., 2022). Using a differ-

ent method to construct single-subject morphological brain networks,

a recent work found that individual general intelligence can be pre-

dicted by nodal degree of single-subject morphological brain networks

(Seidlitz et al., 2018). These findings collectively indicate that single-

subject morphological brain networks are functionally relevant, and

provide a promising means to reveal neural substrates of behaviors

and cognition. A deeper understanding of the functional relevance of

single-subject morphological brain networks may benefit from future

studies that explore their plastic changes associated with skill learning

and expertise. In addition to the phenotypic associations, single-

subject morphological brain networks were further demonstrated to

be related to brain-wide gene expression, and cytoarchitecture and

chemoarchitecture of the brain (Li, Li, et al., 2022; Seidlitz

et al., 2018), suggesting their neurobiological substrates. Interestingly,

we found that after controlling for the effects of age, the Cattell

scores were still correlated to interregional CT similarity between the

left superior frontal gyrus and superior part of the precentral sulcus.

This finding suggests a mediating role of the particular morphological

connection in the relationship between age and cognition. Thus, an

interesting topic in the future is to test whether age-related decline in

cognition can be postponed through neuromodulation targeted at

brain structures involved in this connection.

4.7 | Limitations, methodological considerations,
and future directions

First, four morphological indices were calculated with the CAT12 tool-

box to construct single-subject morphological brain networks. It is not

clear whether similar age-related changes could be found when other

methods or toolboxes are used to estimate the morphological indices.

Second, this study examined age-related changes in most commonly

used network measures. Besides these measures, future studies are

warranted to explore how other organizational principles of single-

subject morphological brain networks (e.g., modular composition and

rich-club architecture) change with the increase of age. Third,

although we found numerous age-related changes in single-subject

morphological brain networks, the R2 of the statistical models were

relatively small. This implies that there may exist other factors exert-

ing influence on single-subject morphological brain networks

(e.g., experience-based plasticity and environmental contributions).

How these factors interact with age to collectively influence single-

subject morphological brain networks deserves further study. Fourth,

previous studies found that regional size affected to some extent

nodal centrality measures of single-subject morphological brain net-

works (Li et al., 2021; Seidlitz et al., 2018). Thus, it is important for

future studies to examine age-related changes in single-subject mor-

phological brain networks by using approximately equally-sized par-

cellation of brain regions. Fifth, this study examined age-related

changes in single-subject morphological brain networks. By combina-

tion with other MRI modalities, it is important to examine the extent

to which our findings are similar or dissimilar to those revealed by

functional and structural brain networks. Finally, our findings of age-

related changes in single-subject morphological brain networks have

important clinical implications for neurodevelopmental and neurode-

generative disorders, which are increasingly demonstrated to be char-

acterized by deviation from normal developmental and aging

trajectories of brain network topology (e.g., Li, Huang, et al., 2022).

Particularly, a previous study analyzed structural MRI data from

484 healthy participants, and found a newtork of mainly higher-order

regions that linked development, aging, and vulnerability to disease

(Douaud et al., 2014). Thus, it is an important topic for future studies

to explore atypical development and aging of single-subject cortical

morphological brain networks in various neurodevelopmental and

neurodegenerative disorders.

5 | CONCLUSIONS

In conclusion, this study systematically examined age-related changes

in single-subject morphological brain networks across the adult
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lifespan, and found that the changes were mainly embodied in CT net-

works, characterized by linear changes, concentrated on frontal

regions and hubs, involved in short-range connections, and suscepti-

ble to connections between the LN, VAN, and FPN. Compared with

regional morphology, network-level analysis better characterized age-

related changes in the brain. These findings are helpful for under-

standing interindividual differences in behaviors and cognition.
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