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Abstract
Objectives: The aim of this study was to evaluate thermal effects of ceramic and 
metal implant drills during implant site preparation using a standardised bovine 
model.
Material and Methods: A total of 320 automated intermittent osteotomies of 10- 
and 16-mm drilling depths were performed using zirconium dioxide-based and stain-
less steel drills. Various drill diameters (2.0/ 2.2, 2.8, 3.5, 4.2 mm ∅) and different 
cooling methods (without/ with external saline irrigation) were investigated at room 
temperature (21 ± 1°C). Temperature changes were recorded in real time using two 
custom-built multichannel thermoprobes in 1- and 2-mm distance to the osteotomy 
site. For comparisons, a linear mixed model was estimated.
Results: Comparing thermal effects, significantly lower temperatures could be de-
tected with steel-based drills in various drill diameters, regardless of drilling depth 
or irrigation method. Recorded temperatures for metal drills of all diameters and 
drilling depths using external irrigation were below the defined critical temperature 
threshold of 47°C, whereas ceramic drills of smaller diameters reached or exceeded 
the harmful temperature threshold at 16-mm drilling depths, regardless of whether 
irrigation was applied or not. The results of this study suggest that the highest tem-
perature changes were not found at the deepest point of the osteotomy site but were 
observed at subcortical and deeper layers of bone, depending on drill material, drill 
diameter, drilling depth and irrigation method.
Conclusions: This standardised investigation revealed drill material and geometry to 
have a substantial impact on heat generation, as well as external irrigation, drilling 
depth and drill diameter.
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1  | INTRODUC TION

During the past decades, implant-supported treatment solutions 
have become a predictable and viable option for prosthetic reha-
bilitation of toothless and partially edentulous patients. In this re-
spect, titanium dental implants have been well documented over a 
long period of time and are widely accepted as the gold standard in 
contemporary dental implantology (Buser et al., 2012; Chiapasco 
et al., 2020; Chrcanovic et al., 2020; Ducommun et al., 2019; Jung 
et  al.,  2012; Pjetursson et  al.,  2012). Regardless of the reported 
success rates for dental implants, the implications of implant fail-
ure can be both medically and financially challenging (Mardinger 
et  al.,  2008). Hence, a variety of factors (biological, iatrogenic, 
mechanical and patient-associated complications) resulting in 
peri-implant diseases and therefore affecting implant success 
have been investigated (Esposito et al., 1998a; Lang et al., 2000; 
Schwarz, 2000). Biological failures have been described as early 
versus late implant losses, depending on whether failure to 
achieve or to maintain already established osseointegration was 
observed (Esposito et  al.,  1998a). While clinical and diagnostic 
criteria for peri-implant diseases have been described in detail in 
the past (Heitz-Mayfield, 2008; Renvert et al., 2018), the contri-
bution of factors to early and late implant failures (such as surgi-
cal trauma, chronic marginal infection, implant overload and poor 
bone quality) remains controversial (Esposito et al., 1998b; Piattelli 
et al., 2003). Recently, discussion on titanium-based failures due 
to hypersensitivities and allergies became a focus of attention 
(Fage et al., 2016; Pigatto et al., 2009; Sicilia et al., 2008; Siddiqi 
et al., 2011), significance supporting this theory remains still un-
proven (Javed et al., 2013).

However, greyish peri-implant soft tissue discolouration with 
titanium implants may pose a challenge in aesthetically sensitive 
areas, especially in combination with a mucosal thickness of less 
than 2  mm (Benic et  al.,  2017; Cosgarea et  al.,  2015; Ioannidis 
et al., 2017; Jung et al., 2008). The rising criticism of titanium and 
the fact that an increasing number of patients is requesting entirely 
metal-free dental reconstructions have led to ceramic oral implants 
being considered as promising alternative to titanium (Andreiotelli 
et al., 2009; Sivaraman et al., 2018; Spies et al., 2019). Aluminium 
oxide (Al2O3, alumina), a ceramic material for dental implants in-
troduced at a similar time as titanium implants (Sandhaus, 1968, 
1971; Schulte & Heimke,  1976), was eventually withdrawn from 
the market due to an increased risk of implant fractures (Ananth 
et  al.,  2015; Andreiotelli et  al.,  2009; Hobkirk & Wiskott,  2009; 
Kohal et  al.,  2004). Zirconium dioxide (ZrO2, zirconia), however, 
shows favourable physicochemical properties (high bending 
strength and fracture toughness) depending upon its composition 
and processing (Piconi & Maccauro, 1999; Sivaraman et al., 2018) 
as well as high biocompatibility similar to titanium (Benic, Thoma, 
et  al.,  2017; Bormann et  al.,  2012; Gahlert et  al.,  2012; Janner 
et al., 2018; Roehling et al., 2019). Although long-term results for 
zirconia implants are still missing and elevated heat generation was 
reported in vitro during implant insertion with zirconia implants 

when compared to titanium implants (Zipprich et al., 2019), prom-
ising clinical data investigating the outcome of one-piece zirconia 
implants after an observation period of 5 years have been recently 
obtained (Balmer et al., 2020). Newly developed two-piece zirco-
nia implants, which are supposed to overcome problems caused 
by challenging abutment angulations (Wenz et al., 2008), showed 
a similar screw-retained stability in vitro (artificial ageing process) 
when compared to a conventional titanium-based connection 
(Joos et al., 2020).

Regardless of the dental implant used, an atraumatic and deli-
cate surgical preparation technique is considered to be a key pre-
requisite for successful osseointegration (Albrektsson et  al.,  1981; 
Eriksson & Adell,  1986). Therefore, thermal bone injury has been 
discussed in-depth as a cause for bone tissue necrosis, followed by 
impaired microcirculation, activation of bone marrow macrophages 
and consequently implant failure (Augustin et al., 2012; Eriksson & 
Albrektsson, 1983, 1984; Eriksson et al., 1982; Esposito et al., 1998b; 
Piattelli et al., 1998; Trisi et al., 2014; Yoshida et al., 2009). Eriksson & 
Albrektsson identified the temperature threshold for bone survival 
to be between 44 and 47°C with an exposure time of less than 1 min 
(Eriksson & Albrektsson, 1983, 1984); however, an exact threshold 
for osteonecrosis remains still unclear (Augustin et al., 2012; Oliveira 
et al., 2012; Yoshida et al., 2009). Numerous factors have been re-
ported to influence heat generation during implant bed preparation, 
such as drill diameter (Strbac, Giannis, et  al.,  2014; Strbac, Unger, 
et al., 2014), drill design and geometry (Cordioli & Majzoub, 1997; 
Oh et  al.,  2011; Sannino et  al.,  2015), drill load (Abouzgia & 
James, 1997), sharpness and drill wear (Salimov et al., 2020; Scarano 
et  al.,  2007), surgical technique used (Frösch et  al.,  2019; Lajolo 
et  al.,  2018; Lucchiari et  al.,  2016), irrigation (Gehrke et  al.,  2018; 
Harder et al., 2013; Strbac et al., 2015) and bone density (Yacker & 
Klein, 1996). Moreover, drill material has been suggested to affect 
temperature increase during osteotomy (Hochscheidt et  al.,  2017; 
Oliveira et  al.,  2012; Scarano et  al.,  2020; Sumer et  al.,  2011). 
Conventional rotary preparation with metal burs is still the most 
commonly used procedure in dental implantology.

However, as a result of the above-mentioned focus on freedom 
from metal, the fact that metallic contamination of bone due to drill-
ing procedures (Hobkirk & Rusiniak, 1978) and surface corrosion of 
steel drills after contact with disinfecting liquids has been reported 
(Scarano et al., 2019) and the introduction of mixed ceramics with 
improved mechanical properties (Gaertner et  al.,  2005; Piconi & 
Maccauro, 1999) may lead to an increasing use of ceramic burs for 
implant site osteotomies.

The clinical use of ceramic implant drills is still a topic of dis-
cussion, and scientific evidence regarding thermal performance is 
scarce and controversial. This study aims to investigate temperature 
changes with different implant drill materials and various irriga-
tion methods in standardised bovine specimens in order to expand 
knowledge regarding future implant procedures. Our investigation 
was based on the working hypothesis that ceramic implant drills 
would provide for beneficial temperature effects when compared to 
stainless steel drills.
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2  | MATERIAL AND METHODS

2.1 | Bone specimens and implant drills

In the present in vitro study, temperature measurements during drill-
ing procedures were recorded using artificially manufactured bone 
specimens (BoneSimTM, 1800.35/1300.14 Composite, BoneSimTM, 
Newaygo, MI, USA) with distinctive cortical (3  mm) and cancellous 
(15 mm) bone sections (Figures 1 and 2). By simulating human mandibu-
lar bone density (type 2 according to Lekholm and Zarb classification), 
this testing specimen represents a novel standardised bone model for 
thermal evaluation in bone osteotomies (Abboud et al., 2015; Delgado-
Ruiz et al., 2016, 2018; Lekholm & Zarb, 1985; Strbac et al., 2015; Strbac, 
Giannis, et al., 2014). A thermal conductivity of 0.3–0.4 W m−1 K−1 en-
sures a similar thermal conductivity as human bone, thus providing com-
parable clinical testing conditions (Clattenburg et al., 1975; Davidson 
& James,  2000). Commercially available surgical twist drills made of 
stainless steel (stainless martensitic steel DIN Code: 1.4108; 2.2, 2.8, 
3.5, 4.2 mm ∅; Straumann PROTM, Straumann®, Basel, Switzerland) and 
alumina-toughened zirconia (2.0, 2.8, 3.5, 4.2 mm ∅; Komet CeradrillTM, 
Komet®, Gebr. Brasseler, Lemgo, Germany) for graduated preparation 
were used (Figures 3 and 4). Ethics approval was not required for this 
in vitro study.

2.2 | Experimental set-up

A customised surgical system (SH-Surgical Drilling-Sequence-
Simulator System, Center for Medical Physics and Biomedical 
Engineering, Medical University of Vienna, Austria) with a step-
per motor for automated and therefore reproducible drilling cycles 
was manufactured. Its software program (SSH-Surgical Drilling-
Sequence-Software 1.0; Center for Medical Physics and Biomedical 
Engineering, Medical University of Vienna, Austria) provided for a 
precise intermittent vertical dislocation of a surgical handpiece (WS-
75 E/KM 20:1, W&H, Bürmoos, Austria) mounted in a computer-
milled clamp (Figure 5). Parameters (drilling/withdrawing feed rate, 
depth control and dwell time) for two different drilling sequences 
(10 and 16  mm) were predetermined according to related previ-
ous investigations (Strbac et al., 2015; Strbac, Giannis, et al., 2014; 

Strbac, Unger, et al., 2014). For the 10-mm drilling depth, the auto-
mated osteotomies lasted 27.6 s (drilling 17.3 s, withdrawing 10.3 s) 
and for the 16-mm drilling depth 43.5 s (drilling 27.1 s, withdrawing 
16.4 s). The drilling and withdrawing feed rate in cortical bone was 
0.5 mm/s, in cancellous bone 1 and 5 mm/s during final withdrawing.

2.3 | Temperature measurement set-up

Two custom-built thermoprobes (SHT-Thermoprobe, Center for 
Medical Physics and Biomedical Engineering, Medical University of 

F I G U R E  1   Standardised bovine bone specimen (BoneSim, 
1800.35/1300.14 Composite, BoneSim, Newaygo, MI, USA) 
embedded in polystyrene test box

F I G U R E  2   Comparison bone specimen in computed 
tomography presenting 3 mm cortical and 15 mm cancellous bone 
sections according to type 2 Lekholm and Zarb classification

F I G U R E  3   Implant twist drills with respective drill diameters 
used for the investigation, left image: metal drills (2.2, 2.8, 3.5, 
4.2 mm ∅, Straumann PROTM, Straumann®, Basel, Switzerland), 
right image: ceramic drills (2.0, 2.8, 3.5, 4.2 mm ∅, Komet 
CeradrillTM, Komet®, Gebr. Brasseler, Lemgo, Germany)

F I G U R E  4   Comparison of drill geometries and drill shapes with 
increasing drill diameter due to different material properties ((a): 
ceramic drills, (b): metal drills)
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Vienna, Austria) with 1.5-mm diameter and 18-mm length were used to 
obtain real-time temperature changes. These multichannel measuring 
devices consisted of a 3D printed body with 14 individual temperature 
sensors (7 sensors per thermoprobe, 0.4 mm ∅, response time >0.2 s, 
10 KΩ at 25°C, temperature range −40 to +250°C). The thermopro-
bes were software designed (NX 5.0.3.2 Unigraphics, PLM Software, 
Siemens, Cologne, Germany) and manufactured by a rapid prototyp-
ing system (Eden350, Objet Ltd., Rehovot, Israel) using photopolymer 
resin (Objet FullCure720TM, Objet Ltd., Rehovot, Israel). They were 
planned with predefined notches for the NTC sensors (negative tem-
perature coefficient sensors; Miniature Axial Glass Thermistor, No. 
GA10KM3499J15, Measurement SpecialtiesTM, Hampton, VA, USA) at 
depths of 2, 4, 8 and 10 mm for 10-mm drilling sequence and addition-
ally 11, 13 and 16 mm for 16-mm drilling sequence (Figure 6). A com-
puter-aided temperature measurement system (SHTM-Temperature 

Measurement System, Center for Medical Physics and Biomedical 
Engineering, Medical University of Vienna, Austria), a measurement 
amplifier (SHU-Measurement Amplifier, Center for Medical Physics 
and Biomedical Engineering, Medical University of Vienna, Austria), 
an ADC-converter (Analogue-to-digital-converter; NI DAQCardTM-
6062E, National InstrumentsTM, Austin, TX, USA) and a software-con-
trolled program (DASYLab® Software 5.0; Measurement Computing 
Corporation, Norton, MA, USA) detected electrical resistance of the 
NTC sensors, allowing real-time measurement and recording of tem-
perature after initial calibration against traceable standards (Strbac 
et al., 2015; Strbac, Giannis, et al., 2014; Strbac, Unger, et al., 2014).

2.4 | Experimental protocol

A total of 50 bovine bone specimens were embedded in rectangular 
polystyrene test boxes (No. 34160-0101; Bock, Lauterbach, Germany) 
and bonded with a two-component epoxy resin adhesive (Loctite® 
Double BubbleTM, Henkel AG & Co. KGaA, Düsseldorf, Germany), en-
suring a stable position throughout the experimental drilling procedure. 
Individual metal templates for positioning the thermoprobes were 
CNC-milled in order to precisely position them 1 and 2 mm from the 
final preparation site using a twist drill (2 mm ∅, drilling depth 18 mm, 
210L20.205.020, Komet®, Gebr. Brasseler, Lemgo, Germany) (Oliveira 
et al., 2012; Rashad et al., 2011; Strbac, Giannis, et al., 2014; Strbac, 
Unger, et al., 2014) (Figure 6). Before inserting the two thermoprobes, a 
heat-transfer compound (HTCP20S 20 ml, Electrolube®, Leicestershire, 
UK) was injected in each canal for optimal thermal conductivity (Ercoli 
et al., 2004; Harder et al., 2013; Strbac et al., 2015). The experimental 
protocol consisted of two drill materials (ceramic and stainless steel) 
with 4 diameters each (2.0/ 2.2, 2.8, 3.5 and 4.2 mm ∅), 2 different 
cooling methods (without/with external saline irrigation), two drilling 
depths (10 mm/16 mm) and was conducted with 10 repetitions (n = 320 
preparations in total) under constant room temperature (21 ± 1°C). A 
computer-milled table for horizontal dislocation of the embedded spec-
imen ensured precise automated preparations by the surgical hand-
piece connected to a surgical motor unit (Implantmed SI-923; Surgical 
control S-N1, W&H, Bürmoos, Austria) with a new and unused drill for 
each osteotomy (Figure 5). Graduated predrilling according to clinical 
recommendations was performed prior to measurements. The real-
time temperature at 1- and 2-mm distance was recorded during all oste-
otomies starting 10 s before drilling and ending 25 s after withdrawing 
(Figure  7). In case of external irrigation sequences, constant saline 
cooling of 50 ml/min at room temperature (Ecobag® click, 0.9% NaCl, 
5,000 ml, B. Braun Melsungen AG, Melsungen, Germany) was applied 
throughout the whole preparation period (drilling start to withdrawing 
end) using an irrigation tubing set (Irrigation set for machinery—80 mm, 
32.F0139, Omnia®, Fidenza, Italy) and surgical suction was applied at 
1.5 cm from preparation site. All osteotomies were performed accord-
ing to a standard protocol for an atraumatic preparation at 800  rpm 
(Gaspar et al., 2013; Koopaie et al., 2019; Oliveira et al., 2012; Scarano 
et  al.,  2020; Strbac et  al.,  2015; Strbac, Giannis, et  al.,  2014; Strbac, 
Unger, et al., 2014).

F I G U R E  5   Automated intermittent and graduated preparation 
sequence (e.g. 4.2 mm ∅ ceramic implant drill, 16-mm drilling 
depth, without irrigation) and temperature measurement system (2 
thermoprobes with injected heat-transfer compound)

F I G U R E  6   Schematic illustration of real-time temperature 
measurement system, 2 thermoprobes in 1- and 2-mm distance 
to the drilling site, 14 individual temperature sensors and their 
respective measurement depths
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2.5 | Statistical analysis

The obtained experimental data were recorded (ASC file format) 
for each osteotomy and included real-time recordings of 14 tem-
perature sensors, a time signature (δ = 0.001 s) and a record of an 
external linear motion potentiometer (Linear Potentiometer 600 
Series, Type 9615R5.1KL2.0, BEI Sensors, Goleta, CA, USA). In order 
to match temperature variations with each osteotomy and to pro-
cess the data, a custom analysis software for descriptive statistics 
was used (MATLAB®, R2016a, MathWorks®, Natick, MA, USA). 
Temperature changes were calculated [∆T(°C) = Tx-T0] by subtracting 
the recorded temperature [Tx] with the bone specimen baseline tem-
perature [T0] before each osteotomy (Abboud et  al.,  2015; Calvo-
Guirado et al., 2015; Gehrke et al., 2015; Oliveira et al., 2012; Rashad 
et al., 2011; Sannino et al., 2015; Strbac, Giannis, et al., 2014; Strbac, 
Unger, et  al.,  2014). For statistical analysis, temperature and tem-
perature differences were normally distributed and described and 
tabulated with mean ± standard deviation. Depth of sensor channel 
with maximum temperature increase was described and tabulated 
with median, minimum and maximum. For comparison of ceramic 
and stainless steel drills, a linear mixed model was fitted including 
the variables material (ceramic/metal), drilling diameter (2.0/2.2, 
2.8, 3.5, 4.2 mm), drilling depth (10 mm/16 mm) and irrigation (with/ 
without). Compound symmetry was assumed for repeated measure-
ments. A four-way interaction analysis of the four explanatory vari-
ables was conducted. In case of significant interactions, subgroup 
analyses to test for differences in drill materials were performed 
and corresponding p-values are presented. Statistical calculations 
were performed with the statistical software SAS® (Version 9.4, SAS 
Institute Inc., Cary, NC, USA). All p-values are two-sided, and p ≤ .05 
was considered statistically significant.

3  | RESULTS

Temperature changes during implant site preparation of 320 osteoto-
mies with different drill materials, drill diameters, drilling depths, irri-
gation methods and 10 repetitions were investigated. The mean bone 
specimen baseline temperature [T0] before osteotomy procedures 
was 21.74 ± 1.18°C for the 10-mm drilling depth and 21.80 ± 1.26°C 
for the 16-mm drilling depth. Bone temperatures increased with all the 
implant drills tested; the distributions of mean differences between 
drilling and baseline temperatures over all temperature measurement 
sensors (10-mm drilling sequence: 2×4 sensors, 16-mm drilling se-
quence: 2×7 sensors) are shown in Figure 8 and Table 1.

3.1 | Highest mean temperature increase

The maximum mean temperature increases for 10-mm drilling se-
quences without irrigation were as follows [∆T°C mean (SD)]: 18.70 
(1.14) for the 2.0 mm drill (CER) and 13.93 (3.05) for the 2.2 mm 
drill (MET); 13.15 (2.35) for the 2.8 mm drill (CER) and 12.90 (2.93) 
for the 2.8 mm drill (MET); 14.33 (1.83) for the 3.5 mm drill (CER) 
and 15.16 (2.08) for the 3.5 mm drill (MET); and 12.61 (1.80) for 
the 4.2 mm drill (CER) and 10.17 (5.17) for the 4.2 mm drill (MET; 
Figure 8, Table 1).

The highest mean temperature increases for 10-mm drilling 
sequences with external cooling were as follows [∆T°C mean 
(SD)]: 12.13 (5.68) for the 2.0 mm drill (CER) and 3.73 (0.73) for the 
2.2 mm drill (MET); 7.47 (1.89) for the 2.8 mm drill (CER) and 2.59 
(0.68) for the 2.8 mm drill (MET); 3.94 (0.61) for the 3.5 mm drill 
(CER) and 3.16 (0.79) for the 3.5 mm drill (MET); and 2.73 (0.31) 
for the 4.2 mm drill (CER) and 3.06 (0.76) for the 4.2 mm drill (MET; 
Figure 8, Table 1).

The maximum mean temperature increases for 16-mm drilling 
sequences without irrigation were as follows [∆T°C mean (SD)]: 
27.20 (2.81) for the 2.0  mm drill (CER) and 23.85 (4.75) for the 

F I G U R E  7   Illustration of multichannel real-time measurement 
of temperature changes (∆T) at 16-mm drilling depth in (a) 1- and 
(b) 2-mm distance to the osteotomy site, (c) corresponding drilling 
pathway recorded by external linear motion potentiometer

F I G U R E  8   Temperature increase in investigated drill materials 
(blue colour = ceramic, red colour = metal, *p ≤ .05) of different 
drill diameters (2.0/2.2, 2.8, 3.5, 4.2 mm ∅), irrigation methods 
(without/external irrigation) and drilling depths (10/16 mm)
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2.2 mm drill (MET); 22.63 (7.20) for the 2.8 mm drill (CER) and 17.41 
(2.82) for the 2.8 mm drill (MET); 18.58 (4.50) for the 3.5 mm drill 
(CER) and 19.14 (8.15) for the 3.5 mm drill (MET); and 17.41 (3.13) 
for the 4.2 mm drill (CER) and 9.90 (2.99) for the 4.2 mm drill (MET; 
Figure 8, Table 1).

The highest mean temperature increases for 16-mm drilling 
sequences with external cooling were as follows [∆T°C mean 
(SD)]: 25.79 (2.86) for the 2.0  mm drill (CER) and 9.29 (4.40) for 
the 2.2 mm drill (MET); 22.65 (4.23) for the 2.8 mm drill (CER) and 
5.02 (1.17) for the 2.8 mm drill (MET); 8.09 (3.59) for the 3.5 mm 
drill (CER) and 6.55 (1.36) for the 3.5  mm drill (MET); and 5.01 
(1.19) for the 4.2 mm drill (CER) and 4.97 (1.91) for the 4.2 mm drill 
(MET; Figure 8, Table 1).

3.2 | Temperature increase and drill material

With regard to implant material, significant temperature differences 
(p  ≤  .05) during implant preparations at drilling depths of 10 and 
16 mm with different drill diameters and irrigation methods were ob-
served. Drill materials were compared with respect to correspond-
ing diameter, cooling method and osteotomy depth. The differences 
in heat generation between the drill materials differed significantly 
and, whenever significant results were found, ceramic drills invari-
ably showed higher mean temperature increases [∆T°C (SD)] com-
pared with metal drills (Figure 8, Table 1).

3.2.1 | Drilling osteotomies of 10-mm depth

During drilling sequences of 10-mm depth, significantly higher temper-
atures were observed using ceramic drills of 2.0-mm diameter without 

irrigation (p = .002), with external irrigation (p < .001), as well as using 
2.8-mm ceramic drills with external irrigation (p  =  .002) (Figure  8, 
Table 1).

3.2.2 | Drilling osteotomies of 16-mm depth

During drilling osteotomies of 16-mm depth, significantly higher tem-
peratures were found using ceramic drills of 2.0-mm diameter without 
cooling (p = .025), with external cooling (p < .001), using 2.8-mm ce-
ramic drills without cooling (p < .001), with external cooling (p < .001), 
as well as using 4.2-mm ceramic drills without cooling (p  <  .001) 
(Figure 8, Table 1).

3.3 | Temperature increase and sensor location/ 
corresponding depth

In order to analyse bone areas affected by the temperature increase, 
the occurrence of maximum temperature changes at median sensor 
channel depth [ch (minimum–maximum)] (sensor channel depths: 2, 4, 
8, 10 mm for 10-mm drilling sequence and additionally 11, 13, 16 for 
16-mm drilling sequence) was calculated for 1- and 2-mm measuring 
distance (Table 2).

3.3.1 | Drill diameter 2.0/2.2 mm

Highest temperature changes using 2.0-/2.2-mm drills during 10-mm 
drilling osteotomies were found between median sensor channels 
[ch] of 3 and 4 mm without irrigation and 4 and 8 mm with external 
irrigation.

Drill diameter
Drill 
material

Drilling depth 10 mm Drilling depth 16 mm

Irrigation method Irrigation method

Without External Without External

2.0 mm CER 18.70 (1.14) 12.13 (5.68) 27.20 (2.81) 25.79 (2.86)

2.2 mm MET 13.93 (3.05) 3.73 (0.73) 23.85 (4.75) 9.29 (4.40)

p-value .002* <.001* .025* <.001*

2.8 mm CER 13.15 (2.35) 7.47 (1.89) 22.63 (7.20) 22.65 (4.23)

2.8 mm MET 12.90 (2.93) 2.59 (0.68) 17.41 (2.82) 5.02 (1.17)

p-value .824 .002* <.001* <.001*

3.5 mm CER 14.33 (1.83) 3.94 (0.61) 18.58 (4.50) 8.09 (3.59)

3.5 mm MET 15.16 (2.08) 3.16 (0.79) 19.14 (8.15) 6.55 (1.36)

p-value .539 .596 .708 .312

4.2 mm CER 12.61 (1.80) 2.73 (0.31) 17.41 (3.13) 5.01 (1.19)

4.2 mm MET 10.17 (5.17) 3.06 (0.76) 9.90 (2.99) 4.97 (1.91)

p-value .095 .803 <.001* .984

*p ≤ .05. 

TA B L E  1   Maximum temperature 
increase [∆T°C mean (SD)] over all 
temperature sensors (10-mm drilling 
sequence: 2×4 sensors, 16-mm drilling 
sequence: 2×7 sensors) at different 
drilling depths with various drill diameters 
and irrigation methods, testing drill 
material ceramic (CER) versus metal 
(MET); P-values for drill material 
comparisons are calculated by a linear 
mixed model after significant four-way 
interaction
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During 16-mm drilling depths, maximum temperature changes 
using 2.0-/2.2-mm drills were observed between median sensor 
channels [ch] of 4 and 8  mm without irrigation and 4 and 13  mm 
when external irrigation was used (Table 2).

3.3.2 | Drill diameter 2.8 mm

Maximum temperature changes using 2.8-mm drills during 10-mm 
drilling sequences were observed at median sensor channel [ch] of 
4 mm without irrigation and 8 mm when external irrigation was used.

During 16-mm drilling osteotomies, highest temperature changes 
using 2.8-mm drills were found between median sensor channels 
[ch] of 4 and 8 mm without irrigation and 10 and 13 mm with exter-
nal irrigation (Table 2).

3.3.3 | Drill diameter 3.5 mm

Highest temperature changes using 3.5-mm implant drills during 10-mm 
drilling depths were found at median sensor channel [ch] of 4 mm with-
out irrigation and 8 mm when external irrigation was applied.

During 16-mm drilling sequences, maximum temperature 
changes using 3.5-mm drills were observed between median sensor 
channels [ch] of 4 and 9 mm without irrigation and 11 and 13 mm 
with external cooling (Table 2).

3.3.4 | Drill diameter 4.2 mm

Maximum temperature changes using 4.2-mm drills during 10-mm 
drilling osteotomies were observed at median sensor channel [ch] of 
4 mm without irrigation and 8 mm when external cooling was used.

During 16-mm drilling depths, highest temperature changes 
using 4.2-mm drills were found between median sensor channels 
[ch] of 4 and 8 mm without irrigation and 11 and 13 mm with exter-
nal irrigation (Table 2).

4  | DISCUSSION

As yet, there have been only a few published investigations explor-
ing the performance of ceramic and metal implant drills with regard 
to intrabony thermal effects. These scientific studies have been per-
formed on a variety of osseous bone models using different tem-
perature measurement systems (various thermocouples or infrared 
thermography devices) and in vitro study designs. In addition, they 
have been mainly focused on the temperature correlation between 
drill material and drill wear (Hochscheidt et al., 2017; Koo et al., 2015; 
Koopaie et al., 2019; Oliveira et al., 2012; Pires et al., 2012; Scarano 
et al., 2020).

The purpose of this investigation was to examine metal and 
ceramic implant twist drills with identical or similar diameters 
during automated and reproducible drilling osteotomies by using a 

TA B L E  2   Location of maximum temperature increase: median sensor channel location [ch (minimum–maximum)] (sensor channel depths: 
2, 4, 8, 10 mm for 10-mm drilling sequence and additionally 11, 13, 16 for 16-mm drilling sequence) in 1- and 2-mm measuring distance 
(MD = measuring distance, CER = ceramic, MET = metal)

Drill diameter
Drill 
material MD

Drilling depth 10 mm Drilling depth 16 mm

Irrigation method Irrigation method

Without External Without External

2.0 mm CER 1 mm 4 mm (2–4) 4 mm (4–8) 4 mm (2–4) 4 mm (4–11)

2 mm 4 mm (4–4) 8 mm (4–8) 6 mm (4–8) 8 mm (8–11)

2.2 mm MET 1 mm 3 mm (2–4) 8 mm (4–8) 4 mm (2–11) 11 mm (11–13)

2 mm 4 mm (4–4) 8 mm (4–8) 8 mm (4–8) 13 mm (8–16)

2.8 mm CER 1 mm 4 mm (2–4) 8 mm (4–8) 6 mm (4–11) 11 mm (4–11)

2 mm 4 mm (4–8) 8 mm (8–8) 8 mm (8–13) 10 mm (8–13)

2.8 mm MET 1 mm 4 mm (2–4) 8 mm (8–8) 4 mm (4–4) 11 mm (11–11)

2 mm 4 mm (4–4) 8 mm (8–8) 8 mm (4–11) 13 mm (13–13)

3.5 mm CER 1 mm 4 mm (4–4) 8 mm (4–8) 9 mm (2–11) 11 mm (11–13)

2 mm 4 mm (4–4) 8 mm (8–8) 8 mm (4–8) 13 mm (8–13)

3.5 mm MET 1 mm 4 mm (2–4) 8 mm (4–8) 4 mm (2–11) 11 mm (11–11)

2 mm 4 mm (4–4) 8 mm (8–8) 8 mm (4–8) 13 mm (10–13)

4.2 mm CER 1 mm 4 mm (4–4) 8 mm (4–8) 4 mm (2–11) 11 mm (11–11)

2 mm 4 mm (4–8) 8 mm (4–8) 8 mm (8–8) 13 mm (8–13)

4.2 mm MET 1 mm 4 mm (2–4) 8 mm (4–8) 4 mm (2–11) 11 mm (11–11)

2 mm 4 mm (4–4) 8 mm (4–8) 8 mm (8–8) 13 mm (8–13)
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highly sensitive real-time multichannel temperature measurement 
system and a standardised bovine bone model, previously intro-
duced for temperature testing of surgical instruments (Abboud 
et  al.,  2015; Delgado-Ruiz et  al.,  2016, 2018; Strbac et  al.,  2015; 
Strbac, Giannis, et  al.,  2014). Infrared thermography poses a valid 
alternative to thermocouple technology and has been successfully 
used in temperature investigations in the past (Augustin et al., 2012; 
Benington et al., 2002; Frösch et al., 2019). Doubts concerning its 
accuracy when recording temperatures at irrigated preparation 
sites (Benington et al., 1996; Tehemar, 1999) led to further develop-
ment of real-time multichannel thermoprobes by the authors in the 
past (Strbac et al., 2015; Strbac, Giannis, et al., 2014; Strbac, Unger, 
et al., 2014). This established temperature measurement system was 
applied in the present investigation as well, taking into account the 
fact that the comparability of results may be limited when it comes 
to different study designs (such as varying number of thermocou-
ples, distance to preparation site, number and configuration of tem-
perature sensors).

For overcoming limitations of previous temperature studies and 
as a result of the fact that temperature increase during implant oste-
otomies is considered to be a complex interaction of multiple factors 
(Augustin et al., 2012; Möhlhenrich et al., 2015; Tehemar, 1999), drill 
wear was consciously excluded as a contributing factor in this inves-
tigation by only testing new and unused drills.

The mean temperature increase for metal drills with external 
irrigation was below the defined critical temperature threshold of 
47°C in all drill diameters and drilling depths, thereby confirming 
the cooling effect of external irrigation on bone temperature using 
metal implant drills (Augustin et  al.,  2008; Harder et  al.,  2013; 
Oliveira et al., 2012; Rashad et al., 2011; Sener et al., 2009; Strbac, 
Unger, et al., 2014). One of the most important findings of this in-
vestigation was the statistically significant difference in tempera-
ture performance between metal and ceramic drills, especially with 
small drill diameters (2.0/2.2 and 2.8  mm ∅) (Figure  8, Table  1). 
Recorded temperatures with ceramic drills at 16-mm drilling depth 
reached or exceeded the harmful temperature threshold, regard-
less of whether irrigation was applied or not. Local temperatures 
at the drilling site can be presumed to be even higher due to the 
technical measuring distance of 1 and 2  mm to the osteotomy 
site (Oliveira et  al.,  2012; Strbac, Giannis, et  al.,  2014; Yacker & 
Klein, 1996).

Internal or combined internal and external irrigation may be con-
sidered a convenient alternative for overcoming cooling problems 
with external irrigation alone (Gehrke et al., 2018; Harder et al., 2013; 
Lavelle & Wedgwood,  1980; Strbac et  al.,  2015; Strbac, Giannis, 
et al., 2014; Strbac, Unger, et al., 2014; Tehemar, 1999). However, ce-
ramic drills are not manufactured with internal cooling channels due 
to the risk of fracture (Pires et al., 2012). Even though our present 
findings suggest that cooling efficiency of external irrigation using 
ceramic drills of smaller diameter (2.0/2.8  mm ∅) compared with 
metal drills should be considered as less effective, external irriga-
tion itself was confirmed to be one of the most influential factors on 
heat generation (Augustin et al., 2008; Ercoli et al., 2004; Kerawala 

et  al.,  1999; Koo et  al.,  2015; Sener et  al.,  2009; Strbac, Giannis, 
et al., 2014; Strbac, Unger, et al., 2014).

Graduated osteotomy technique is believed to reduce friction 
and consequently temperature by removing a smaller quantity of 
bone material in each drilling step when compared to single drilling 
procedures. The observation that predrilling with pilot drills of both 
drill materials (2.0/2.2 mm ∅), especially in deeper osteotomies, was 
associated with considerably higher temperatures when compared 
to expansion drilling procedures (2.8, 3.5, 4.2 mm ∅) and the fact 
that predominantly lower temperatures both in metal and ceramic 
drills were recorded with increasing diameter, confirm the benefi-
cial effect of graduated drilling technique (Augustin et  al.,  2012; 
Eriksson & Adell, 1986; Lucchiari et al., 2016; Oh et al., 2011; Strbac 
et al., 2015; Strbac, Giannis, et al., 2014).

As demonstrated by Eriksson & Albrektsson, intrabony ther-
mal effects are not only influenced by temperature generated 
during preparation, but also influenced by exposure time (Eriksson 
& Albrektsson,  1983). Previous investigations confirmed that the 
induced amount of frictional heat correlates with the drilling time 
(Abouzgia & James, 1995; Grunder & Strub, 1986; Iyer et al., 1997; 
Sener et al., 2009) and that drilling depth is considered to be a factor 
influencing temperature generation (Augustin et al., 2012; Cordioli & 
Majzoub, 1997; Lee et al., 2012; Oliveira et al., 2012; Strbac, Giannis, 
et  al.,  2014; Strbac, Unger, et  al.,  2014). In accordance with these 
findings, the present study was able to demonstrate that greater 
drilling depths (10- vs. 16-mm drilling depth) and thus a prolonged 
exposure time to frictional forces (27.6 s vs. 43.5 s) were almost in-
variably associated with higher temperatures.

When evaluating temperatures in terms of the respective bone 
level, temperature increase was recorded at all temperature sensor 
depths (both in cortical and deeper cancellous layers of bone) for 
all drill materials, drill diameters, drilling depths and cooling meth-
ods. The distribution of maximum temperature for 10-mm drilling 
osteotomies indicates that highest temperatures for all drill materi-
als and diameters were mainly observed at subcortical levels (4 mm) 
without irrigation and in deeper bone sections (8 mm) when external 
irrigation was used. In 16-mm drilling depth, maximum temperatures 
were mostly recorded between 4 and 8 mm for all drill materials and 
diameters without irrigation and between 8 and 13 mm with exter-
nal irrigation when using larger drill diameters (2.8, 3.5, 4.2 mm ∅) 
of both drill materials. However, when comparing ceramic and metal 
pilot drills (2.0/2.2 mm ∅) of 16-mm drilling sequence with external 
irrigation, ceramic drills were found to cause temperature changes in 
more superficial layers of bone than metal pilot drills (Table 2). These 
results support earlier investigations, which reported twist drills of 
small diameters to be associated with higher temperatures (Cordioli 
& Majzoub, 1997; Strbac et al., 2015; Strbac, Giannis, et al., 2014) 
and identified maximum temperatures to be located in subcor-
tical or deeper bone sections (Cordioli & Majzoub,  1997; Harder 
et al., 2013; Misic et al., 2011; Misir et al., 2009; Strbac et al., 2015; 
Strbac, Unger, et al., 2014; Sumer et al., 2011). Our findings addition-
ally confirmed that external irrigation seems to be associated with 
temperature increase in deeper layers of bone, thereby verifying the 
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superficial efficiency of external cooling (Cordioli & Majzoub, 1997; 
Harder et al., 2013; Lavelle & Wedgwood, 1980; Misir et al., 2009; 
Moshiri et al., 2013).

Comparing the temperature performance of metal and ceramic 
implant drills, our findings clearly seem to contradict the majority 
of similar previous investigations, which observed lower tempera-
tures with ceramic drills (Koopaie et al., 2019; Oliveira et al., 2012; 
Scarano et al., 2020) or did not find any statistically significant dif-
ferences between the two drill materials (Harder et al., 2013; Koo 
et al., 2015; Moshiri et al., 2013; Pires et al., 2012). Our investigation 
was able to confirm findings of Sumer et al., who observed signifi-
cantly higher temperatures in 3-mm depth using ceramic drills when 
compared to stainless steel (Sumer et al., 2011). The observed dif-
ferences between the two drill materials in our present investiga-
tion could mainly be explained by deviating material properties (in 
particular thermal conductivity) of alumina-toughened zirconia and 
stainless steel drills (Gaertner et al., 2005), but also by drill geome-
try. With regard to the latter, earlier findings suggested drill geom-
etry to be a key factor associated with temperature generation (Ali 
Akhbar & Yusoff, 2019; Chacon et al., 2006; Oh et al., 2011; Oliveira 
et al., 2012; Sannino et al., 2015; Scarano et al., 2011; Strbac, Giannis, 
et al., 2014), given that sharpness and geometry are influencing fric-
tion and heat production by having an impact on pressure exerted on 
the drill bit (Pirjamalineisiani et al., 2016).

However, the present investigation had some limitations. The 
results of this in vitro study have been obtained using artificial 
bovine discs with no vital bone experiments or direct simulation 
of in vivo conditions (such as body temperature or blood flow). 
Consequently, heat generation of the used instruments and tech-
niques may vary in vivo from the present experimental set-up. 
Previous investigations may be regarded as non-standardised and 
diverse due to major differences in their study designs (such as 
bone model, experimental set-up, drilling speed, temperature mea-
surement system, focus on durability/ drill wear), therefore making 
comparison between these previously published findings rather 
difficult.

The aim of this study was, despite of its limitations, to further 
refine and establish standardised instrument performance testing 
and to contribute to safety of medical components by avoidance 
of human or animal experiments on ethical grounds. Future studies 
could pursue more uniform in vitro testing conditions, facilitating 
comparison of testing results, especially when it comes to new and 
hardly investigated treatment options.

In summary, the present study could confirm preceding investi-
gations and reveal drill material and geometry as significant factors 
for temperature generation, even though recommended saline irri-
gation, intermittent and graduated drilling were performed. Zirconia 
and mixed ceramics can be recognised as innovative and promis-
ing new dental materials due to their physicochemical and biologi-
cal characteristics, although further modifications in terms of drill 
geometry, sharpness, material thickness and properties should be 
considered and investigated, especially when ceramic drills are being 
used in bone osteotomies.

To the best knowledge of the authors, this study can be con-
sidered as the first fully standardised in vitro investigation using 
an established uniform bone model for performance testing of 
ceramic and metal drills under recommended atraumatic clinical 
conditions.

5  | CONCLUSION

This standardised comparative investigation revealed the significant 
impact of drill material and geometry on intrabony heat generation. 
Previously published results were mainly obtained using a huge va-
riety of non-standardised experimental set-ups including focus on 
drill wear, impairing the comparability of results. Our findings sug-
gest a beneficial effect of graduated, intermittent preparation tech-
nique using external saline irrigation, although major differences in 
temperature performance between metal and ceramic implant drills 
could be observed. Furthermore, the results of this study may con-
tribute towards technical modifications of ceramic drills in the fu-
ture and thus further improve the long-term clinical results of dental 
implants, especially considering the use of new upcoming ceramic 
dental implants.
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