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of Pharmacy, Adıyaman University, Adıyaman, Turkey; cDepartment of Neurofarba, Sezione di Scienze Farmaceutiche, Universit�a degli Studi di
Firenze, Sesto Fiorentino, Italy

ABSTRACT
Isocoumarins, isomeric to comarins which act as effective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors,
were investigated for the first time as inhibitors of this enzyme. A series of 3-substituted and 3,4-disubsti-
tuted isocoumarins incorporating phenylhydrazone, 1-phenyl-pyrazole and pyrazolo-substituted pyrimidine
trione/thioxo-pyrimidine dione moieties were investigated for their interaction with four human (h) CA iso-
forms, hCA I, II, IX and XII, known to be important drug targets. hCA I and II were not inhibited by these
compounds, whereas hCA IX and XII were inhibited in the low micromolar range by the less bulky deriva-
tives. The inhibition constants ranged between 2.7–78.9 mM against hCA IX and of 1.2–66.5 mM against
hCA XII. As for the coumarins, we hypothesise that the isocoumarins are hydrolysed by the esterase activ-
ity of the enzyme with formation of 2-carboxy-phenylacetic aldehydes which act as CA inhibitors.
Isocoumarins represent a new class of CA inhibitors.
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1. Introduction

Isocoumarins, both naturally occurring1 and synthetic such deriva-
tives2, similar to the isomeric comarins3, possess a multitude of
applications in the drug design of pharmacologically relevant
derivatives3,4. These two privileged scaffolds A and B (Figure 1)
probably find many such applications due to the fact that the
bicyclic ring system found in them combines a rather stable, pla-
nar aromatic scaffold with a good reactivity due to the lactone
ring present in both derivatives, combined with the relative facility
of derivatization at diverse pharmacophoric points with the possi-
bility to generate new chemical space1–4. A salient feature of cou-
marins and isocoumarins is the relatively facile hydrolysis of their
lactone ring with formation of 2-hydroxycinammic acid C (from
coumarin) and 2-carboxy-phenylacetic aldehyde E from isocoumar-
ins, as the enol D is unstable and spontaneously converts to E1–4

(Figure 1).
Coumarins were by far the most investigated class of such

compounds, also because some of them are clinically used as anti-
coagulants for decades5 and were more recently investigated in
detail as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors6.

2. Materials and methods

2.1. General

All chemicals and anhydrous solvents were purchased from
Sigma-Aldrich, Merck, Across Organics and TCI and used without
further purification. Melting points (mp) were determined with
SMP30 melting point apparatus in open capillaries and are uncor-
rected. FT-IR spectra were recorded by using Perkin Elmer

Spectrum 100 FT-IR spectrometer. Nuclear Magnetic Resonance
(1H-NMR and 13C-NMR) spectra of compounds were recorded
using a an Agilent-NMR-vnmrs400MHz and Bruker 300MHz spec-
trometer in DMSO-d6 and TMS as an internal standard operating
at 300MHz for 1H-NMR and 75MHz for 13C-NMR. Thin layer chro-
matography (TLC) was carried out on Merck silica gel 60
F254 plates.

2.2. General procedure for the synthesis of 3–(1-(2-
phenylhydrazine) ethyl)-isochrom-1-one derivatives X(1–5)

The methyl ketone (10mmol) and phenylhydrazine derivative
compounds were added to a reaction flask by adding 20ml EtOH
with a catalytic amount of acetic acid and refluxed for 2 h. After
the reaction complete, the obtained compounds were filtered off
and crystallised from ethanol. The final products X(1–5) were
dried under vacuum and fully characterised by FT-IR, 1H-NMR, 13C-
NMR, and melting points.

3–(1-(2-phenylhydrazono)ethyl)-1H-isochromen-1-one (X1)
Yield: 90%; mp: 202–204 �C; FT-IR (cm�1): 3294 (NH), 1695 (C¼O);
1H-NMR (DMSO, d, ppm): 2.21 (s, 3H), 6.94–7.69 (m, 10H), 8.28
(s, 1H).

3–(1-(2–(4-chlorophenyl) hydrazono)ethyl)-1H-isochromen-
1-one (X2) Yield: 80%; mp: 238�–240 �C; FT-IR (cm�1): 3287 (NH),
1692 (C¼O); 1H-NMR (DMSO, d, ppm): 2.47 (s, 3H), 7.20–8.11 (m,
9H), 9.79 (s, 1H).

4–(2-(1–(1-oxo-1H-isochromen-3-yl)ethylidene)hydrazinyl)
benzonitrile (X3) Yield: 82%; mp: 250�–252 �C; FT-IR (cm�1): 3271
(NH), 2222 (C�N), 1692 (C¼O), 1597 (C¼N);1H-NMR (DMSO, d,
ppm): 2.45 (s, 3H), 7.29–8.12 (m, 9H), 10.18(s, 1H). 13C-NMR
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(DMSO, d, ppm): 12.2, 82.9, 99.3, 101.1, 103.8, 113.8, 120.3, 120.4,
127.2, 129.2, 133.9, 135.7, 137.5, 137.7, 148.9, 152, 161.5, 175.4.

4-methyl-3–(1-(2-phenylhydrazono)ethyl)-1H-isochromen-1-
one (X4) Yield: 82%; mp: 210�–212 �C; FT-IR (cm�1): 3271 (NH),
1733, 1709 (C¼O); 1H-NMR (DMSO, d, ppm): 2.17 (s, 3H), 2.47 (s,
3H), 7.18–8.17 (m, 9H), 9.57 (s, 1H). 13C-NMR (DMSO, d, ppm): 13.4,
39.4, 109.3, 112.8, 113.4, 120.2, 124.6, 128.5, 129.3, 129.4, 135.6,
135.9, 138.9, 145.6, 149.6, 161.4.

3–(1-(2–(4-chlorophenyl) hydrazono)ethyl)-4-methyl-1H-iso-
chromen-1-one (X5) Yield: 83%; mp: 240�–242 �C; FT-IR (cm�1):
3320 (NH), 1715 (C¼O); 1H-NMR (DMSO, d, ppm): 2.17 (s, 3H),
2.41 (s, 3H), 7.17–8.18 (m, 8H), 9.70 (s, 1H). 13C-NMR (DMSO, d,
ppm): 13.4, 40.6, 109.5, 114.8, 120.2, 123.5, 124.6, 128.6, 129.2,
129.3, 135.7, 136.8, 138.8, 144.6, 149.4, 161.3

2.3. General procedure for the synthesis of 3–(1-oxo-1H-
isochromen-3-yl)-1-phenyl-pyrazole-4-carbaldehyde X(6–10)
derivatives

The phenylhydrazone derivatives X (1–5) (10mmol) and DMF
(0.88 g, 12mmol) were placed in a reaction flask and the POCl3
(1.84 g, 12mmol) was added dropwise over the reaction mixture
by keeping the temperature between 0� and 5 �C. After the com-
pletion of adding, the mixture was allowed to stir overnight at
room temperature. Next day, the mixture was poured into the ice-
water and it was triturated with 10% NaOH solution. The precipi-
tate was filtered off and dried under vacuum at room tempera-
ture. The final products X(6–10) were fully characterised by FT-IR,
1H-NMR, 13C-NMR, and melting points.

3–(1-oxo-1H-isochromen-3-yl)-1-phenyl-1H-pyrazole-4-car-
baldehyde (X6) Yield: 82%; mp: 228�–230 �C; FT-IR (cm�1): 3124,
2921 (C-H), 1728 (C¼O isocoumarin), 1676 (C¼O aldehyde); 1H-
NMR (DMSO, d, ppm): 7.22–8.32 (m, 10H), 8.53 (s, 1H), 10.54
(s, 1H).

1–(4-chlorophenyl)-3–(1-oxo-1H-isochromen-3-yl)-1H-pyra-
zole-4-carbaldehyde (X7) Yield: 80%; mp: 258�–260 �C; FT-IR
(cm�1): 3287, 3025 (C-H), 1716 (C¼O isocoumarin), 1682 (C¼O
aldehyde); 1H-NMR (DMSO, d, ppm): 7.58–8.55 (m, 9H), 9.03 (s, 1H),
10.58 (s, 1H).

4–(4-formyl-3–(1-oxo-1H-isochromen-3-yl)-1H-pyrazol-1-yl)
benzonitrile (X8) Yield: 78%; mp: >300oC; FT-IR (cm�1):
3120–3078 (CH), 2228 (C�N), 1712 (C¼O isocoumarin), 1673
(C¼O aldehyde); 1H-NMR (DMSO, d, ppm): 7.69–8.24 (m, 9H), 9.50
(s, 1H), 10.31 (s, 1H).

3–(4-methyl-1-oxo-1H-isochromen-3-yl)-1-phenyl-1H-pyra-
zole-4-carbaldehyde (X9) Yield: 80%; mp: 201�–203 �C; FT-IR
(cm�1): 3117, 2921 (C-H), 1718 (C¼O isocoumarin), 1679 (C¼O
aldehyde); 1H-NMR (DMSO, d, ppm): 2.60 (s, 3H), 7.28–8.43 (m,
8H), 8.59 (s, 1H), 10.31 (s, 1H). 13C-NMR (DMSO, d, ppm): 12.9,

113.5, 119.7, 121.1, 123.9, 124.7, 128.3, 128.8, 129.6, 129.8, 129.9,
134.9, 138.2, 138.8, 142.9, 146.8, 161.4, 185.5.

1–(4-chlorophenyl)-3–(4-methyl-1-oxo-1H-isochromen-3-yl)-
1H-pyrazole-4-carbaldehyde (X10) Yield:78%; mp: 288�–290 �C;
FT-IR (cm�1): 3124, 2911 (C-H), 1715 (C¼O isocoumarin), 1679
(C¼O aldehyde); 1H-NMR (DMSO, d, ppm): 2.41 (s, 3H), 7.65–8.30
(m, 8H), 9.40 (s, 1H), 10.09 (s, 1H) .

2.4. General procedure for the synthesis of X(11–20) derivatives

The aldehyde derivatives X(6–10) (10mmol) was dissolved in
acetic acid and the barbituric acid/2-thiobarbituric acid (10mmol)
was added over the mixture and stirred overnight at room tem-
perature. Then, the mixture was filtered off and crystallised from
ethanol to yield compounds X(11–20). The obtained final prod-
ucts were dried under vacuum and fully characterised by FT-IR,
1H-NMR, 13C-NMR, and melting points.

5-((3–(1-oxo-1H-isochromen-3-yl)-1-phenyl-1H-pyrazol-4-yl)
methylene) pyrimidine-2,4,6(1H,3H,5H)-trione (X11) Yield: 82%;
mp: >300 �C; FT-IR (cm�1): 3235, 3081 (NH), 1738, 1722, 1680
(C¼O), 1574 (C¼N); 1H-NMR (DMSO, d, ppm): 7.44–8.20 (m, 10H),
8.68 (s, 1H), 9.74 (s, 1H), 12.41 (s, 1H, NH), 12.45 (s, 1H, NH).

5-((1–(4-chlorophenyl)-3–(1-oxo-1H-isochromen-3-yl)-1H-
pyrazol-4-yl) methylene) pyrimidine-2,4,6(1H,3H,5H)-trione
(X12) Yield: 81%; mp: >300oC; FT-IR (cm�1): 3238, 3058 (NH),
1735, 1699, 1666 (C¼O), 1571 (C¼N); 1H-NMR (DMSO, d, ppm):
7.20–8.20 (m, 9H), 8.62 (s, 1H), 9.69 (s, 1H), 11.29 (s, 1H, NH), 11.36
(s, 1H, NH).

4–(3-(1-oxo-1H-isochromen-3-yl)-4-((2,4,6-trioxotetrahydro-
pyrimidin-5(2H)-ylidene) methyl)-1H-pyrazol-1-yl) benzonitrile
(X13) Yield: 80%; mp: >300oC; FT-IR (cm�1): 3192, 3068 (NH),
2231 (-C�N), 1735, 1712, 1676 (C¼O), 1565 (-C¼N); 1H-NMR
(DMSO, d, ppm): 7.37–8.17 (m, 9H), 8.56 (s, 1H), 9.71 (s, 1H), 11.28
(s, 1H, NH), 11.36 (s, 1H, NH).

5-((3–(4-methyl-1-oxo-1H-isochromen-3-yl)-1-phenyl-1H-pyr-
azol-4-yl) methylene) pyrimidine-2,4,6(1H,3H,5H)-trione (X14)
Yield: 81%; mp: >300oC; FT-IR (cm�1): 3248, 3084 (NH), 1731,
1712, 1686 (C¼O), 1568 (C¼N); 1H-NMR (DMSO, d d, ppm): 2.46
(s, 3H), 7.59–7.91 (m, 9H), 8.11 (s, 1H), 9.76 (s, 1H), 11.32 (s, 1H,
NH), 11.33 (s, 1H, NH). 13C-NMR (DMSO, d, ppm): 13.3, 114.8, 116,
117.2, 120.3, 120.8, 125, 128.8, 129.6, 130, 130.4, 134.8, 136.1,
137.6, 138.8, 142, 142.1, 150.2, 150.5, 161.1, 162.9, 163.6…

5-((1–(4-chlorophenyl)-3–(4-methyl-1-oxo-1H-isochromen-3-
yl)-1H-pyrazol-4-yl) methylene) pyrimidine-2,4,6(1H,3H,5H)-tri-
one (X15) Yield: 82%; mp: >300oC; FT-IR (cm�1): 3163, 3042 (NH),
1738, 1709, 1666 (C¼O), 1575 (C¼N); 1H-NMR (DMSO, d, ppm):
2.46 (s, 3H), 7.63–8.25 (m, 8H), 8.27 (s, 1H), 9.75 (s, 1H), 11.32 (s,
1H, NH), 11.33 (s, 1H, NH).

5-((3–(1-oxo-1H-isochromen-3-yl)-1-phenyl-1H-pyrazol-4-yl)
methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (X16)
Yield: 82%; mp: >300oC; FT-IR (cm�1): 3143, 3055 (NH), 1761, 1715
(C¼O), 1565 (C¼N); 1H-NMR (DMSO, d, ppm): 7.42–8.20 (m, 10H),
8.64 (s, 1H), 9.69 (s, 1H), 11.28 (s, 1H, 1NH), 11. 35 (s, 1H, 1NH).
13C-NMR (DMSO, d, ppm): 107.3, 116.3, 116.5, 120.2, 120.6, 127.4,
128.9, 129.4, 129.9, 130.3, 135.5, 135.9, 136.8, 138.6, 143.9, 147.3,
149, 160.7, 161, 162, 162.7, 178.8.

5-((1–(4-chlorophenyl)-3–(1-oxo-1H-isochromen-3-yl)-1H-
pyrazol-4-yl) methylene)-2-thioxodihydropyrimidine-
4,6(1H,5H)-dione (X17) Yield: 82%; mp: >300oC; FT-IR (cm�1):
3137, 3075 (NH), 1754, 1712, (C¼O), 1558 (C¼N); 1H-NMR
(DMSO, d, ppm): 7.42–8.18 (m, 9H), 8.65 (s, 1H), 9.72 (s, 1H), 12.39
(s, 1H, 1NH), 12. 45 (s, 1H, 1NH).

Figure 1. Coumarin (A) and isocoumarin (B), and their hydrolysis prroducts (C–E).
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4–(4-((4,6-dioxo-2-thioxotetrahydropyrimidin-5(2H)-ylidene)
methyl)-3–(1-oxo-1H-isochromen-3-yl)-1H-pyrazol-1-yl) benzo-
nitrile (X18) Yield: 80%; mp: >300oC; FT-IR (cm�1): 3215, 3137
(NH), 2235 (C�N), 1751, 1715 (C¼O), 1574 (C¼N); 1H-NMR
(DMSO, d, ppm): 2.46 (s, 3H), 7.47–8.26 (m, 9H), 8.28 (s, 1H), 9.79
(s, 1H), 12.43 (s, 2H, 2NH).

5-((3–(4-methyl-1-oxo-1H-isochromen-3-yl)-1-phenyl-1H-pyr-
azol-4-yl) methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-
dione (X19) Yield: 81%; mp: >300oC; FT-IR (cm�1): 3147, 2902
(NH), 1705, 1666 (C¼O), 1568 (C¼N); 1H-NMR (DMSO, d, ppm):
2.46 (s, 3H), 7.61–8.26 (m, 9H), 8.28 (s, 1H), 9.78 (s, 1H), 12.43 (s,
2H, 2NH).13C-NMR (DMSO, d, ppm): 13.4, 115, 116.1, 117.4, 120.3,
120.8, 125, 128.9, 129.6, 130, 130.4, 135, 136.1, 137.6, 138.7, 141.9,
143, 150.4, 160.7, 161, 161.9, 172.9, 178.8.

5-((1–(4-chlorophenyl)-3–(4-methyl-1-oxo-1H-isochromen-3-
yl)-1H-pyrazol-4-yl) methylene)-2-thioxodihydropyrimidine-
4,6(1H,5H)-dione (X20) Yield: 82%; mp: >300oC; FT-IR (cm�1):
3130, 2915 (NH), 1715, 1669 (C¼O), 1568 (C¼N); 1H-NMR (DMSO,
d, ppm): 7.47–8.26 (m, 8H), 8.42 (s, 1H), 9.76 (s, 1H), 11.35 (s,
2H, 2NH).

2.5. Ca inhibition assay

An SX.18MV-R Applied Photophysics (Oxford, UK) stopped-flow
instrument has been used to assay the inhibition of various CA
isozymes7. Phenol Red (at a concentration of 0.2mM) has been
used as an indicator, working at the absorbance maximum of

557 nm, with 10mM Hepes (pH 7.4) as a buffer, 0.1 M Na2SO4 or
NaClO4 (for maintaining constant the ionic strength; these anions
are not inhibitory in the used concentration), following the CA-cat-
alyzed CO2 hydration reaction for a period of 5–10 s. Saturated
CO2 solutions in water at 25 �C were used as substrate. Stock solu-
tions of inhibitors were prepared at a concentration of 10mM (in
DMSO-water 1:1, v/v) and dilutions up to 0.01 nM done with the
assay buffer mentioned above. At least seven different inhibitor
concentrations have been used for measuring the inhibition con-
stant. Inhibitor and enzyme solutions were pre-incubated together
for 15min–6 h at 4 �C prior to assay, in order to allow for the for-
mation of the E-I complex. Triplicate experiments were done for
each inhibitor concentration, and the values reported throughout
the paper is the mean of such results. The inhibition constants
were obtained by nonlinear least-squares methods using the
Cheng-Prusoff equation, as reported earlier, and represent the
mean from at least three different determinations1,8–14. All CA iso-
zymes used here were recombinant proteins obtained as reported
earlier by our group.

3. Results and discussion

3.1. Chemistry

The structurally diverse isocoumarin derivatives X(1–20) were syn-
thesised according to the general synthetic route shown in
Scheme 1. 3-Acetylisocoumarin-substituted compounds B were

Scheme 1. General synthetic route for the synthesis of the isocoumarin-substituted compounds X(1-20). Reagent and conditions: (i) chloroacetone, TEA, 170 �C, (ii)
substituted phenylhydrazine hydrochloride, EtOH, sodium acetate, 2 h reflux, (iii) DMF/POCl3, 0–5 �C, then 3 h reflux, (iv) barbituric acid/2-thiobarbituric acid, acetic acid.
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synthesised as previously described by some of us15. The hydra-
zone derivatives X(1–5) were obtained by reacting B with substi-
tuted hydrazines16. The aldehydes X(6–10) were synthesised in
high yields by using the Vilsmeier-Haack procedure17. These alde-
hydes were condensed with barbituric acid/2-thiobarbituric acid
under acid condition at reflux to produce the final derivatives
X(10–20). The chemical structures of the novel isocoumarin-sub-
stituted derivatives reported here were confirmed by analytical
and spectral data (see Materials and methods for details).

3.2. Carbonic anhydrase inhibition

Coumarins act as prodrug inhibitors, being hydrolysed by the
esterase activity of CAs to the corresponding hydroxy-cinnamic
acids which per se act as inhibitors, binding at the entrance of the
enzyme active site and occluding it6. Thus, unlike other inhibitors,
such as the anions, the sulphonamides and their isosteres, etc., 6,
the enzyme and the inhibitor are incubated for at least 6 h in
order to allow for the hydrolysis to occur. This was also the proto-
col that we used for assaying the CA inhibition with isocoumarins,
since incubation times of 15min–3 h led to low but increasing lev-
els of inhibition (data not shown). However, after 6 h incubation,
the inhibition levels remained constant and are shown in Table 1.

Four human (h) CA isoforms, known to be relevant drug tar-
gets (hCA I, II, IX and XII)18 were included in the work for

assessing their inhibition by the isocoumarins reported here
(Table 1). It may be observed that as for many coumarins6, hCA I
and II were not inhibited by isocoumarins up until 100 mM con-
centrations of inhibitor in the assay system. On the contrary,
many isocoumarins (except X12, X17 and X20) showed low
micromolar inhibitory power against these isoforms, with KIs in
the range of 2.7� 78.9 mM against hCA IX and of 1.2� 66.5 mM
against hCA XII, respectively (Table 1). It can be observed that the
less bulky isocoumarins X1-5 and X6-10 were the most effective
CAIs in the investigated series, with KI-s against hCA IX and XII <
15 mM, whereas the compounds incorporating bulkier moieties,
such as X11–20 showed a reduced inhibitory power. This is to be
expected, since the active site cavity of these enzymes may not
easily accommodate two bulky moieties (phenylpyrazole and pyr-
imidine-trione/thioxo-pyrimidine-dione) present in some of
these compounds.

4. Conclusions

We investigated here whether isocoumarins, which are isomeric
compounds to comarins known to act as effective CAIs, also act
as inhibitors of this enzyme. A series of 3-substituted and
3,4-disubstituted isocoumarins incorporating phenyl-hydrazone, 1-
phenyl-pyrazole and pyrazolo-substituted pyrimidine trione/thi-
oxo-pyrimidine dione moieties prepared by an original approach

Table 1. Inhibition data of human CA I, II, IX and XII with compounds X1-20 and the standard sulphonamide inhibitor acetazolamide (AAZ) by a stopped-flow CO2

hydrase assay7.

Cmpd. R1 R2 X

KI (mM)
a,b

hCA I hCA II hCA IX hCA XII

X1 -H -H – >100 >100 4.3 1.9
X2 -H -Cl – >100 >100 3.5 4.6
X3 -H -CN – >100 >100 2.8 1.2
X4 -CH3 -H – >100 >100 3.9 2.3
X5 -CH3 -Cl – >100 >100 2.7 5.8
X6 -H -H – >100 >100 7.1 6.5
X7 -H -Cl – >100 >100 6.2 11.6
X8 -H -CN – >100 >100 8.0 8.3
X9 -CH3 -H – >100 >100 8.9 8.1
X10 -CH3 -Cl – >100 >100 8.1 13.4
X11 -H -H O >100 >100 46.2 41.7
X12 -H -Cl O >100 >100 >100 >100
X13 -H -CN O >100 >100 62.4 36.2
X14 -CH3 -H O >100 >100 54.6 66.5
X15 -CH3 -Cl O >100 >100 >100 >100
X16 -H -H S >100 >100 49.7 47.1
X17 -H -Cl S >100 >100 >100 >100
X18 -H -CN S >100 >100 78.9 53.4
X19 -CH3 -H S >100 >100 72.3 62.8
X20 -CH3 -Cl S >100 >100 >100 >100
AAZ – – – 0.250 0.0125 0.026 0.0057
aMean from three different assays, by a stopped flow technique (errors were in the range of ± 5–10% of the reported values).
bincubation time 6 h.
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were investigated for their interaction with hCA I, II, IX and XII,
known to be important drug targets. hCA I and II were not inhib-
ited by these compounds, whereas hCA IX and XII were inhibited
in the low micromolar range by the less bulky derivatives. The
inhibition constants ranged between 2.7� 78.9 mM against hCA IX
and of 1.2� 66.5 mM against hCA XII. As for the coumarins, we
hypothesise that the isocoumarins are hydrolysed by the esterase
activity of the enzyme with formation of 2-carboxy-phenylacetic
aldehydes which act as CA inhibitors. Isocoumarins represent a
new class of CAIs.
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