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ABSTRACT: A simple method is described for the calculation of two- and three-
dimensional phase diagrams describing stability and coexistence curves or surfaces
separating one- and two-phase regions in composition/temperature space of a solution
containing solute species 1 and 2. The calculation requires a quantitative description of the
intermolecular potentials of mean force acting between like (1−1 and 2−2) and unlike
(1−2) species. Example calculations are carried out for solutions of species interacting via
spherically symmetric square-well potentials as first-order models for protein−protein
interaction. When the interaction between species 1 and 2 is more repulsive than those
acting between like species, the two-phase region is characterized by an equilibrium
between a phase enriched in 1 and depleted in 2 and a phase enriched in 2 and depleted in
1. When the interaction between species 1 and 2 is more attractive than those acting
between like species, the two-phase region is characterized by an equilibrium between a
phase enriched in both species and a phase depleted in both species. The latter example
provides a first-order description of coacervate formation without postulating specific
interactions between the two solute species.

■ INTRODUCTION

The study of liquid−liquid phase separation (LLPS) in solution
dates back to classical investigations of the solution properties of
synthetic and natural polymers.1,2 Renewed interest in the
subject has recently been engendered by the discovery of
membraneless organelles within living cells that have been
tentatively identified as immiscible liquid phases.3−6 The
membraneless organelles contain high concentrations of one
or more proteins and/or nucleic acids and are thought to
provide special microenvironments in which the rates and
equilibria of critical biochemical reactions may be modulated or
for sequestration of toxic substances.5,7

The present work concerns two classes of liquid−liquid phase
transitions in solutions of two solute species, which we shall call
species 1 and 2. In the first class, termed segregative transitions,8

one phase is enriched (relative to the total composition) in
species 1 and depleted (relative to the total composition) in
species 2, which the second phase is enriched in species 2 and
depleted in species 1. In the second class, termed associative
transitions,8 one phase is enriched in both solute species and the
second phase is depleted in both solute species. The liquid phase
that is enriched in both solutes is commonly referred to as a
complex coacervate.1

Most theoretical analyses of the thermodynamics of LLPS in
solutions of two macromolecular solute species follow the
general approach pioneered by Flory and colleagues,2 according
to which two immiscible solution phases form when the free

energy of mixing the two solute species is positive. The free
energy of mixing is decomposed into enthalpic (or energetic)
and entropic contributions, and models for the composition
dependence of each contribution are specified (see for example
refs 9 and 10). A second general approach was proposed by
Edmond and Ogston,11 according to which the composition
dependence of the chemical potentials of each of the two species
is calculated or measured, and the composition of phase
boundaries obtained by satisfying conditions for thermody-
namic stability and equilibrium. Analyses of this type have been
employed in studies of the properties of solutions of mixed
crystallins.12−14

The major difference between the two approaches is that the
latter does not require specification or quantitation of individual
enthalpic and entropic contributions to the total free energy of
the solution. It is therefore more general in principle, since it
does not distinguish between different types of biological
macromolecules (proteins, nucleic acids, and polysaccharides)
mixtures of which would require qualitatively different models
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for the enthalpy and entropy of mixing. Moreover, as will be
elaborated below, the composition dependence of the chemical
potentials of each solute species in a mixture may be
experimentallymeasured in a straightforward fashion via analysis
of the composition dependence of colligative properties of
solutions of individual species and their mixtures. For this
reason, in the present work we shall adopt and extend the free-
energy-based approach of Edmond and Ogston,11 and will
demonstrate that it is capable of exhibiting equilibrium behavior
that is characteristic of both segregative and associative phase
transitions.
In the following section, the calculation of composition-

dependent chemical potentials is described. Next the calculation
of composition- and temperature-dependent stability bounda-
ries (spinodals) and equilibrium phase boundaries (binodals)
and determination of solution composition within the two-phase
region is described. Then, results of example calculations
exhibiting properties of both segregative and associative LLPS
are presented. Finally, the significance of these results is
discussed, and comparisons are drawn with other treatments
of LLPS.

■ METHODS
Specification of Solute Chemical Potentials. The

chemical potential, or free energy increment, of solute species
i in a solution of an arbitrary number of solute species may be
generally written as

μ μ γ= + + { }RT c RT c Tln ln ( , )i i i i
0

(1)

where μi
0 denotes the standard state chemical potential, R is the

molar gas constant, T is the absolute temperature, ci is the molar
concentration of species i, γi is the thermodynamic activity
coefficient of species i, and {c} is the concentrations of all solute
species. ln γi is a direct measure of the equilibrium average free
energy of interaction per mole between a solute molecule of
species i and all the other solutemolecules in the solution. As will
be seen below, this quantity and its derivatives with respect to
solute concentrations will be utilized to directly calculate LLPS
phase boundaries.
The first step in simplifying our approach to the analysis of

phase equilibria in solutions is recognition that themathematical
description of the equilibrium thermodynamic properties of
solutions is isomorphic to that of a fluid of solute particles,15

provided that the potentials of direct interaction (i.e., through
vacuum) between the solute particles in the fluid are replaced by
a potential of mean force acting between solute molecules in
solution, defined as follows for the interaction between two
molecules:

ω ω ω≡ − = ∞U r F r F r( , ) ( , ) ( , )ij (2)

The first term on the right side of eq 2 denotes the free energy of
the solution when the centers of molecules i and j are separated
by distance r with a mutual orientation denoted by the
generalized variable ω, and the second term denotes the free
energy of the solution when the molecules are separated by a
sufficiently large distance such that the free energy of the
solution is no longer a function of r. The potential of mean force
acting between solute molecules i and j in solution thus
incorporates not only direct interaction between the two solute
molecules but also contributions to the free energy of interaction
due to solvent and all solute species except molecules i and j.
According to the McMillan−Mayer theory of solutions,15 the

thermodynamic activity coefficients of each of two solvent
species in solution may be expanded in powers of solute
concentration according to

γ = + + + + +B c B c B c B c c B cln 2 ...1 11 1 12 2 111 1
2

112 1 2 122 2
2

(3)

γ = + + + + +B c B c B c B c c B cln 2 ...2 12 1 22 2 112 1
2

122 1 2 222 2
2

(4)

where the two-body interaction coefficients Bij are defined as
functions of the potential of mean force acting between
molecules of species i and j, and the three-body interaction
coefficients Bijk are defined as functions of the potential of mean
force acting between molecules of species i, j, and k. When
truncated after three-body terms, eqs 3 and 4 are valid only over
a restricted range of concentrations, the upper limit of which
depends upon the strength of the intermolecular interactions
under a particular set of experimental conditions.
There are three unique two-body interaction coefficients and

four unique three-body interaction coefficients. These seven
interaction coefficients are the only input required in order to
calculate phase diagrams, provided that the concentration is
sufficiently low that truncation of eqs 3 and 4 after three-body
terms is valid. They may be evaluated experimentally via
measurement of the composition dependence of any of three
thermodynamically determined colligative properties of solution
mixtures−osmotic pressure,16 sedimentation equilibrium,17 and
light scattering.18,19 Theymay also be evaluated computationally
given suitable relations for the potential of mean force acting
between two and three solute molecules in solution as a function
of the relative distances and orientations of the interacting
molecules.13,14,20 A simplified version of this last option is
presented below.

Specification of Potential of Mean Force Acting
between Solute Molecules. In order to demonstrate our
simplified approach to the calculation of LLPS phase diagrams,
we shall evaluate the Bij and Bijk, and via eqs 3 and 4, the chemical
potentials of each of two solute species in a mixture interacting
via square-well potentials of mean force using an analytical
formalism due to Kihara.21,22 Relations derived by Kihara,
specifying the interaction-dependent values of Bij and Bijk, are
presented in the appendix to ref 23. The three two-body and four
three-body interaction coefficients so calculated have been
found to accurately describe the activity coefficients of each
solute species as a function of composition in mixtures of model
square-well interacting solutes at total volume fractions of up to
0.2, as calculated via Monte Carlo simulations.23 It is evident
that the SW potential is only a crude approximation to any real
potential of mean force acting between real biological macro-
molecules. However, it does incorporate the two major features
of any real potential of mean force: a “hard” steric repulsion and
a “soft” longer-ranged attraction or repulsion. Moreover, it will
be shown subsequently that results obtained with this very
simple model can reproduce qualitatively the phase separation
behavior exhibited by real protein and polymer solutions.
For the purpose of demonstration, we define the steric radius

of an effectively spherical molecule to be equal to the radius of a
hard sphere with the same mass and density as the actual
molecule.
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where Mi denotes the molar mass of species i, v̅i is the partial
specific volume, and NA is Avogadro’s number. The square-well
potential of interaction between molecules of species i and j is
then defined as follows:

ε=

∞ < +

+ ≤ < +

+ ≤
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where rij denotes the distance between the centers of molecules
of species i and j, εij is the depth (or height) of the square well, k
is the Boltzmann constant, and Lij is a scaling parameter relating
the range of the square-well interaction to the sizes of the two
interacting molecules. For convenience we shall subsequently
introduce the variable ε*≡ ε/kT to denote the value of ε in units
of the thermal energy kT. This potential is shown schematically
in Figure 1. Effective interactions between two species of solute

molecules in solution are thus defined by the parameters r1, r2,
ε11* , ε22* , ε12* , L11, L22, and L12. In the calculations to followwe shall
assume for the purposes of demonstration that the partial
specific volumes of the interacting macromolecules are equal to
0.73 cm3/g, an average value for globular proteins,24 so the
values of r1 and r2 are determined by the corresponding molar
masses.
Determination of Phase Boundaries. Stability Bounda-

ries (Spinodals). Compositions lying on the spinodal are
characterized by a free energy surface that is concave down in at
least one direction in composition space, so any small fluctuation
in composition will lead to a rapid phase separation termed
spinodal decomposition. According to the fluctuation theory of
light scattering in a solution of two scattering solute species,18,25

at spinodal compositions the scattering intensity will diverge,
leading to the condition
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Evaluation of the composition-dependent activity coefficients of
species 1 and 2 and their partial derivatives via eqs 3 and 4
together with the numeric solution of eq 7 permits calculation of
the spinodal curves.
Equilibrium Phase Boundaries (Binodals). Compositions

lying on an equilibrium boundary must satisfy the condition that
the chemical potential, or free energy increment, of each solute
species must be equal in both phases.

μ μ=I
1 1

II
(8)

μ μ=I
2 2

II
(9)

where the superscript indicates the phase. Since the standard
state chemical potential of each species is independent of
composition and therefore identical in both phases, eqs 8 and 9
are equivalent to

μ μΔ = ΔI
1 1

II
(10)

μ μΔ = Δ2
I

2
II

(11)

whereΔμi ≡ (μi− μi
0)/RT = ln ci ln γi(T, {c}). Solution of these

equations leads to a set of pairs of equilibrium compositions (c1
I ,

c2
I ) and (c1

II, c2
II), which may be connected by straight tie-lines.

Any total composition (c1, c2, T) within the two-phase region
will lie on a tie-line connecting one pair of these equilibrium
compositions, and the volume fraction of phase II will be given
by

=
−
−

=
−
−
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c c
c c
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1 1
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1
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1
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2 2
I

2
II

2
I

(12)

The numeric solution of eqs 10 and 11 for the entire set of
equilibrium concentrations is prohibitively computationally
intensive in the general case. For example, if one wished to
explore a range of concentrations in w1 and w2 with a resolution
of 100 points in each concentration range, one would have to
evaluate chemical potentials for 1004 combinations of
concentrations. In the present work, we restrict calculation of
binodals to the symmetric case:M1 =M2, L11 = L22, and ε11* = ε22* ,
permitting calculational shortcuts as described in the Supporting
Information.

Simulating Temperature Dependence of Phase Tran-
sitions.We define a reference temperature T0, a reference value
of εij,0* = εij/kT0, and the relative temperature Trel = T/T0. In
principle, one should allow for the temperature-dependence of
intermolecular interactions. Without specifying the nature of
these interactions, we may write

ε ε* = * α−T T( )ij ijrel ,0 rel
1

(13)

where the value of α indicates whether the strength of the
underlying interaction increases (α > 0) or decreases (α < 0)
with temperature. In order to simulate the temperature
dependence of phase transitions, values of α and εij,0* are
specified, corresponding to a relative temperature of unity. Then
binodal compositions are calculated as described above for each
of an array of increasing values of Trel. If α < 1, then the absolute
value of εij*(Trel) diminishes with increasing Trel, such that at
some maximum value of T that we designate the critical value
TUC, or upper consolute temperature, the phase boundary will
vanish, and the solution will remain a single phase at all
temperatures greater than Tcrit. If, however, α > 1, then the
absolute value of εij*(Trel) will increase with increasing Trel, in
which case a solution existing as a single phase at Trel = 1 may
form two phases above a critical temperatureTLC, referred to as a
lower consolute temperature (see below).

Numerical Methods. Numeric solution of eqs 3, 4, 7, 10,
and 11 was performed using user-written scripts and functions in
MATLAB (Mathworks, Natick MA) that are available upon
request from the author. The algorithms employed are described
in the Supporting Information.

Figure 1. Plot of square-well potential of mean force as a function of the
center-to-center distance between two interacting spherical molecules
of species i and j.
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■ RESULTS
Segregative Phase Transition. Figure 2 shows a phase

diagram obtained from a calculation carried out at a single

temperature with the parameter values specified in the caption.
Note that the value of ε12* is more positive than either ε11*or ε22* ,
indicating that the interaction between molecules of unlike
species is more repulsive than the interaction betweenmolecules
of either like species. The blue curve indicates the spinodal, and
the red curve indicates the binodal. The dashed tie-line connects
the compositions of two equilibrium phases: (w1

I = 224,w2
I =

33.5) and (w1
II = 33.5,w2

II = 224). Symmetry dictates that the
chemical potentials of each solute is the same in both phases.
Qualitatively similar results were obtained from other
simulations in which the interaction between unlike species is
more repulsive than the interactions between like species.
An experimental measurement of phase equilibria in a

solution mixture of two polymers11 yields a phase diagram,
shown in Figure 3, that resembles qualitatively the calculated
binodal in Figure 2.
Figure 4 shows the results of a calculation carried out at

multiple temperatures as described above, with parameter values
specified in the figure caption. The left panel is a projection of

the three-dimensional phase diagram onto the composition axis.
The blue curves are binodals calculated at various relative
temperatures plotted as functions of solution composition. Since
α is set equal to 0, the absolute values of εij*(Trel) diminish with
increasing Trel. The left panel shows that with increasing
temperature, binodals trend toward the upper right-hand corner.
The red curve defines the intersection between the binodal
surface and a vertical plane connecting compositions denoted by
(w1, w2) of (0, 240) and (240, 0), indicating the critical
temperature for a solution of the corresponding composition. At
temperatures exceeding this value the solution exists as a single
phase, and a temperatures below this value, at equilibrium the
solution exists as a mixture of two phases. As an example, the
horizontal tie-line plotted atTrel = 1.18 connects two phases with
compositions (59.9, 108.5) and (180.5, 59.9). The black dot
indicates the value of the critical temperature at a solution
composition of (120, 120).
An experimental measurement of phase equilibria in a

solution mixture of two polymers carried out at multiple
temperatures26 yields a three-dimensional phase diagram,
shown in Figure 5, that qualitatively resembles the calculated
diagram in Figure 4.

Associative Phase Transition. Figure 6 shows a phase
diagram calculated at a single temperature with the parameter
values shown in the figure caption. The value of ε12* is more
negative than either ε11*or ε22* , indicating that the interaction
between molecules of unlike species is more attractive than the
interaction between molecules of either like species. The left
panel shows closed binodal (red) and spinodal (blue) curves
separating an exterior one-phase region and an interior two-
phase region. The dashed spinodal curve is calculated via
numerical solution of eq 7, as described in the Supporting
Information. The solid spinodal and the binodal curves are
calculated using an approximate analysis of the composition
dependence of osmotic pressure, as described in Supporting
Information. Two sample tie-lines are plotted, each of which is
connects points indicating phase compositions that are depleted
in both solute species and enriched in both solute species,
relative to any total composition lying along the tie-line. For
example, the uppermost tie-line plotted in red connects
compositions of (21.1, 32.2) and (40.5, 55.4). In the right
panel, the (relative) chemical potentials of each of the two solute
species are plotted as functions of binodal composition, and it
may be seen how the two compositions indicated by the termini

Figure 2. Phase diagram at fixed temperature for symmetric segregative
interactions between two solute species. Results of calculations carried
out forM1 =M2 = 70 000, L11 = L22 = L12 = 1.25, ε11* = −0.5, ε22*= −0.5,
and ε12* = 2. The spinodal is plotted in blue and the binodal in red. The
dashed tie-line connects two phases with equilibrium compositions
(224, 33.5) and (33.5, 224).

Figure 3. Binodal curve separating one-phase region (lower left) from
two-phase region (upper right) in a solution mixture of PEG-6000
(species 1) and Dextran 19.7 (species 2). Data from Edmond and
Ogston.11

Figure 4. Temperature-dependent phase diagram for symmetric
segregative interactions between two solute species. Results of
calculations carried out for M1 = M2 = 70 000, L11 = L22 = L12 = 1.25,
ε11,0* = ε22,0* = −0.5, ε12,0* = 2, and α = 0. Left panel: projection of the
three-dimensional binodal surface onto the composition axis. Right
panel: binodals calculated for various relative temperatures plotted as a
function of composition. The red curve represents the intersection of
the binodal surface with a vertical plane extending between (0, 240) and
(240, 0), the meaning of which is described in the text.
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of each tie-line in the left-hand panel connect points of equal
chemical potential of each species in both phases, satisfying eqs
11 and 12. Qualitatively similar results were obtained from other
simulations in which the interaction between unlike species is
more attractive than the interactions between like species.
An experimental measurement of phase equilibria in a

solution mixture of two polymers1 yields a phase diagram,
shown in Figure 7, that resembles qualitatively the calculated
diagram in the left panel of Figure 6.
Figure 8 shows a temperature-dependent phase diagram

calculated as described above, with parameter values specified in
the figure caption. In the left panel the red and blue curves are
binodals and spinodals, respectively, calculated for each of a
series of values of Trel, plotted as functions of composition. As
the temperature increases, the size of the two-phase region
decreases and ultimately vanishes when the temperature exceeds
Tcrit, the value of T above which the solution remains one-phase
at all compositions. A symmetry axis defined byw1 =w2 = 0.5wtot
is drawn in black, connecting the compositions of two phases

coexisting at Trel = 1.04. The combination of constant-
temperature binodals defines a three-dimensional region of
two phases in composition/temperature space. In the right
panel, points are plotted to indicate the two intersections of the
binodal and two intersections of the spinodal at each
temperature along the symmetry axis. These points define
composition−temperature binodal and spinodal curves in the
plane of the equal-concentration slice.
While we have so far been unable to find a published

experimental measurement of associative LLPS at multiple
temperatures with which to compare our calculated results,
Figure 9 shows experimental results obtained at multiple salt
concentrations. Increasing salt concentration, like increasing
temperature, will diminish the strength of electrostatic
intermolecular interactions, and one would expect the effect of
increasing salt concentration to qualitatively resemble the effect
of increasing temperature.

■ DISCUSSION
The resemblance between the calculated results shown in the
previous section and the experimental results with which they
are compared is qualitative rather than quantitative. For several
reasons, this is to be expected: (1) The square-well model for a
potential of mean force is clearly simplistic and used only to
demonstrate application of eqs 3,4, and 7−9 to the calculation of

Figure 5. Composition−temperature phase diagram for a solution
mixture of soluble gelatin (weight-average molar mass = 170 kg) and
dextran (weight-average molar mass = 282 kg). Data from Edelman et
al.26 Reproduced (with modification) with permission from ref 26.
Copyright 2001 American Chemical Society.

Figure 6. Results of calculations carried out forM1 =M2 = 70 000, L11 =
L22 = L12 = 1.25, ε11* = ε22* = −0.8, and ε12* = −2.5. Left panel: phase
diagram at a fixed temperature showing calculated spinodal (blue) and
binodal (red), with two sample tie-lines. Right panel: relative chemical
potentials of each solute species plotted as a function of composition
along the binodal curve. Points are plotted for termini of each of the tie-
lines shown in the left panel.

Figure 7. Tie-lines connecting compositions of equilibrium phases in a
solution mixture of gum arabic (species 1) and gelatin (species 2).
Symbols: data from Figure 6 of Bungenberg de Jong.1 Blue dashed
curve: smooth extrapolation of the data representing a possible binodal
curve connecting the data points.

Figure 8. Simulated temperature dependent phase diagram. Blue curves
are spinodals and red curves are binodals, calculated as described in the
text, withM1 =M2 = 70 000, L11 = L22 = L12 = 1.25, α = 0, ε11,0* = ε22,0* =
−0.8, and ε12,0* =−2.5. The dotted black line in the left panel is the axis of
symmetry (w1 =w2), and themarked points on the binodal and spinodal
curves represent the values of the binodal and spinodal compositions
along the axis of symmetry. These points are replotted as a function of
total composition in the right panel.
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spinodal and binodal curves. (2) Equation 13, used to simulate a
temperature-dependent phase diagram respectively, is heuristic
and meant only to capture qualitative effects. (3) The
experimental results cited for comparison with calculations
were obtained using mixtures of polymers that are quite
heterogeneous rather than individual species as specified in the
model. Nevertheless, the correspondence between calculated
and experimental phase diagrams is clear. When interaction
between unlike species is less favorable than that between like
species, the predicted tie-lines connect phases enriched in one
species and depleted in the other, characteristic of segregative
LLPS, and when interaction between unlike species is more
favorable than that between like species, the predicted tie-lines
connect phases enriched in both species with phases depleted in
both species, characteristic of associative LLPS or coacervate
formation.
The phase diagrams shown in Figures 3 and 5 exhibit upper

consolute temperatures, indicating that a decrease in temper-
ature favors phase separation. Such behavior is often
observed,8,10 but systems exhibiting lower consolute temper-
atures exist as well,27 where phase separation is induced upon
increasing temperature. The appearance of phase separation
with increasing temperature indicates that intermolecular
interactions are strengthened with increasing temperature.
Such systems may be qualitatively simulated by the method
introduced here, provided that calculations are performed using
eq 13 with a value of α exceeding 1, as shown in Supporting
Information.
The phenomenon of LLPS has been observed in mixtures of

two polymers,1,8 mixtures of a polymer and a protein,28−30 and
in mixtures of two proteins.14,31−33 The thermodynamic
approach to calculation of LLPS in solutions of two solutes
pioneered by Edmond and Ogston11 and generalized here may
be applied to the analysis of all of these phenomena, whereas the
classical approach employing separate models for the energy (or
enthalpy) and entropy of mixing of two solute species must be
tailored specifically for each mixture. For example, the frequent
utilization of Flory−Huggins mean-field theory2 to estimate the
entropy of mixing of two solutes clearly does not apply when one
or both of the solutes are not polymers, andmodels proposed for
interaction of different types of macromolecules clearly vary
qualitatively with the nature of the macromolecules. In contrast,

the values of the interaction coefficients Bij and Bijk appearing in
eqs 3 and 4 comprise the totality of information required to
perform the calculations presented here. The combination of eqs
3, 4, and 7 informs us that a spinodal boundary will occur at all
solution compositions (c1, c2) satisfying the model-independent
relation

− =J J J J 01 2 3 4 (16)

where

= + + +

= + + +

= + +

= + +

J B c B c c B c

J B c B c B c c

J B c B c B c c

J B c B c c B c

1 2 2

1 2 2

2 2

2 2

1 22 2 122 1 2 222 2
2

2 11 1 111 1
2

112 1 2

3 12 1 112 1
2

122 1 2

4 12 2 112 1 2 122 2
2

As pointed out above, the required values of the Bij and Bijk may
be obtained by means of model functions for the potentials of
mean force, as in the present work and in refs 12−14 by
molecular dynamics or Monte Carlo computer simulations,34 or
from experimental measurement of the composition depend-
ence of colligative properties such as static light scattering,18,19

sedimentation equilibrium,17 or osmotic pressure.16,35While the
methods of calculating binodals presented here is limited to
symmetrically interacting systems, the calculation of spinodals
via solution of eq 7 is applicable to asymmetrically as well as
symmetrically interacting systems, as shown in Figure 10. If an

experimentally measured set of measured values of Bij and Bijk
results in a predicted spinodal, then one may be confident that
the solution will exhibit a liquid−liquid phase separation when
the total composition falls within the predicted spinodal
boundary. In contrast, solutions with compositions falling
between the binodal and spinodal may or may not separate

Figure 9. Compositions of phases in equilibrium in mixtures of gum
arabic (species 1) and gelatin (species 2) at various concentrations of
CaCl. Symbols: data from Figure 7 of Bungenberg de Jong.1 Black
dotted line indicates axis of equal w/v concentrations of the two
polymers and connects compositions of equilibrium phases at 4% salt.
Dashed red curves are smooth extrapolations of the data representing
possible binodals. Right panel is a plot of the points at all salt
concentrations along the equal w/v composition axis. Blue curve in
right panel is a cubic polynomial fit to the points, plotted to guide the
eye.

Figure 10. Spinodal boundaries calculated for symmetrically and
asymmetrically interacting solute mixtures by numerical solution of eq
7. Black spinodal is calculated for a symmetrically interacting mixture
with the parameters given in the caption of Figure 6. The blue and red
spinodals are calculated for asymmetrically interacting solute mixtures
with the following interaction potentials. Blue: Lij as above. Black: ε11* =
−0.7, ε22* =−0.8, and ε12* =−2.5. Red: L11 = 1.25, L22 = 1.28, L12 = 1.25,
ε11* =−0.7, ε22* =−0.8, and ε12* =−2.5. Black dotted line is the symmetry
axis.
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into two phases, depending uponwhether the solution has or has
not achieved thermodynamic equilibrium.
Although the analysis of LLPS from the standpoint of

chemical potential was pioneered by Edmond and Ogston
(EO),11 the work presented here is considerably more general
than the original: (1) The present work takes into account three-
body solute−solute interactions, whereas EO took into account
only two-body interactions, and thus is applicable at higher
solute concentrations. (2) Unlike EO, the present work provides
a protocol for calculation of spinodals. (3) The present work
provides methods for calculating phase-diagrams for associative
LLPS, including both spinodals (in general) and binodals (in
special cases), whereas EO did not treat associative LLPS at all.
At the phenomenological level considered here, solvent,

small-molecule solutes such as salts, and temperature are treated
implicitly rather than explicitly. However, in order to arrive at a
quantitative mechanistic description of the effects of solvent,
small molecules, or temperature on LLPS in a solution
containing two specific macromolecular solutes, a quantitative
analysis of the dependence of the potentials of mean force acting
between molecules of like and unlike macromolecular solutes
upon each of these factors will ultimately have to be
incorporated. Such information may be obtained experimentally
through measurements of the effect of varying temperature or
salinity upon the solution properties listed above or via
sufficiently detailed computer simulation.
Finally, we emphasize that the “simple” calculation of phase

diagrams presented here is rapid. Using a generic desktop
personal computer running MATLAB (Mathworks, Natick,
MA), together with scripts and functions incorporating
algorithms described in the Supporting Information, a phase
diagram such as that shown in Figure 2may be generated in a few
seconds and that shown in Figure 6 within a minute. This
rapidity allows the investigator to explore a large parameter
space including variations inmolecular size, and the strength and
range of both attractive and repulsive interactions between like
and unlike molecules in solution mixtures over a wide range of
composition and temperature.
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