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Abstract

Neuronal computations underlying higher brain functions depend on synaptic interactions among 

specific neurons. A mechanistic understanding of such computations requires wiring diagrams of 

neuronal networks. We examined how the olfactory bulb (OB) performs ‘whitening’, a 

fundamental computation that decorrelates activity patterns and supports their classification by 

memory networks. We measured odor-evoked activity in the OB of a zebrafish larva and 

subsequently reconstructed the complete wiring diagram by volumetric electron microscopy. The 

resulting functional connectome revealed an overrepresentation of multisynaptic connectivity 

motifs that mediate reciprocal inhibition between neurons with similar tuning. This connectivity 

suppressed redundant responses and was necessary and sufficient to reproduce whitening in 

simulations. Whitening of odor representations is therefore mediated by higher-order structure in 

the wiring diagram that is adapted to natural input patterns.

Neuronal activity patterns evoked by natural stimuli are transformed in the brain to extract 

relevant information. At early processing stages, activity patterns often contain correlations 
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and intensity variations that originate from the statistics of natural scenes and from the 

tuning of sensory receptors1. This statistical structure complicates the classification of 

sensory inputs because it does not usually reflect behaviorally relevant stimulus categories2. 

For example, visual scenes may be dominated by a large number of pixels representing sky 

while the biologically most important information is conveyed by a small subset of pixels 

representing specific objects (e.g., a hawk or a sparrow). Hence, correlations in sensory 

inputs can complicate meaningful pattern classification and object recognition. This problem 

can be alleviated by whitening, a fundamental transformation in signal processing that 

decorrelates patterns and normalizes their variance. Whitening is therefore often used early 

in a pattern classification process to remove undesired correlations and to optimize the use 

of coding space3.

In the visual and auditory systems, whitening of individual neurons’ responses to natural 

stimuli supports efficient coding by redundancy reduction4–7. Efficient pattern classification, 

however, requires whitening of activity patterns across neuronal populations. This form of 

whitening occurs in the olfactory bulb (OB)8–10 where axons of olfactory sensory neurons 

expressing the same odorant receptor converge onto discrete glomeruli. Odors evoke 

distributed patterns of input activity across glomeruli that can overlap substantially when 

odorants share functional groups11–13. The variance (contrast) of these glomerular activity 

patterns varies dramatically as a function of odor concentration. The output of the OB is 

transmitted to higher brain areas by mitral cells (MCs), which receive sensory input from 

individual glomeruli and interact with other MCs cells via multisynaptic interneuron (IN) 

pathways (Fig. 1a). Unlike glomerular inputs, activity patterns across MCs become rapidly 

decorrelated during the initial phase of an odor response8,14–18 and their variance depends 

only modestly on stimulus intensity10,19. Neuronal circuits in the OB therefore decorrelate 

and normalize population activity patterns, resulting in a whitening of odor representations. 

Pattern decorrelation predicted learning in odor discrimination tasks9,16, consistent with the 

assumption that whitening facilitates pattern classification. However, it remains unclear how 

this transformation is achieved by interactions between neurons in the OB network.

Efficient whitening can be achieved by transformations that are adapted to the correlation 

structure of input patterns1. Such adaptive whitening requires prior knowledge about inputs 

and tuning-dependent connectivity between specific cohorts of neurons. Hence, whitening of 

sensory representations is thought to depend on an evolutionary memory of stimulus space 

that is contained in the wiring diagram of neuronal circuits. This hypothesis is difficult to 

test in the OB because tuning and functional connectivity cannot be inferred from 

topographical relationships between neurons11,20–22. Moreover, because interactions 

between MCs are multisynaptic via INs, relevant inhibitory interactions cannot be visualized 

by transsynaptic tracing across a single synapse.

Adaptive whitening and other memory-based processes are likely to depend on higher-order 

features of neuronal connectivity that cannot be detected by sparse sampling of pairwise 

connections. We therefore used a “functional connectomics” approach that combines 

population-wide neuronal activity measurements with dense reconstructions of wiring 

diagrams, taking advantage of the small size of the larval zebrafish brain. We first measured 

odor responses of neurons in the OB by multiphoton calcium imaging and subsequently 
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reconstructed the synaptic connectivity among all neurons by serial block-face scanning 

electron microscopy (SBEM)23–26. We found that higher-order features of multisynaptic 

connectivity specifically suppress the activity of correlated MC ensembles in a stimulus-

dependent manner, resulting in a decorrelation and variance normalization. The wiring 

diagram of the OB is therefore adapted to the correlation structure of its inputs and mediates 

a whitening operation based on contrast reduction rather than contrast enhancement.

Results

Reconstruction of the wiring diagram and mapping of neuronal activity

We previously reconstructed the skeletons of 1’003 neurons in an SBEM image stack of the 

OB from a zebrafish larva (4.5 days post fertilization), accounting for 98% of all neurons in 

the OB, and classified them as MCs (n = 745), INs (n = 254) and “atypical projection 

neurons” (n = 4)25,26. We now annotated the synaptic connections of these neurons to 

reconstruct the full wiring diagram of the OB. Human annotators followed each of the 

reconstructed skeletons and manually labeled all input and output synapses (Fig. 1b,c). 

Subsequently, synapses of INs were annotated again by different annotators. Hence, each 

synapse involved in MC-IN-MC connectivity motifs should have been encountered at least 

three times. To obtain a conservative estimate of the wiring diagram with few false positives 

we retained only those synapses that were annotated at least twice by independent 

annotators.

Each synapse was assigned a unitary weight so that the total connection strength between a 

pair of neurons equaled the number of synapses. The resulting wiring diagram contained 

19,874 MC→IN synapses, 17,524 MC←IN synapses (Fig. 1d), and 13,610 synapses 

between INs. We also observed contact sites between MCs associated with the same 

glomerulus where plasma membranes showed strong staining but these sites usually lacked 

vesicles. We did therefore not consider synaptic connections between MCs. Axons of 

sensory neurons frequently made synapses onto MCs but synapses onto INs were rare 

(Extended Data Fig. 1a)26.

On average, connected pairs of MCs and INs made 3.1 MC→IN synapses and 2.9 MC←IN 

synapses per pair, and pairs of connected INs made 2.6 synapses per direction. A hallmark 

of synaptic connectivity in the adult OB are reciprocal dendrodendritic synaptic connections 

between the same MC-IN pair. In the larval OB, 52% of MC→IN synapses and 51% of 

MC←IN synapses were associated with a synapse of opposite direction, usually within 2.5 

μm, between the same pair of neurons (Fig. 1b). Hence, reciprocal synaptic connectivity is 

prominent already in the larval OB of zebrafish.

Prior to preparation of the OB sample for SBEM we measured neuronal activity by 

multiphoton imaging of the calcium indicator GCaMP5, which was expressed under the pan-

neuronal elavl3 promoter27. Somata observed in electron microscopy were mapped onto the 

light microscopy data using an iterative landmark-based affine alignment procedure 

followed by manual proofreading (Fig. 2a,b; Extended Data Fig. 1b). Somatic calcium 

signals evoked by four amino acid odors (10-4 M) and four bile acid odors (10-5 M) were 

measured sequentially in six optical planes (Fig. 2a-c; Extended Data Fig. 2) and temporally 
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deconvolved to estimate odor-evoked firing rate changes28. The dynamics of neuronal 

population activity was then represented by time series of activity vectors for each odor 

stimulus (232 MCs and 68 INs).

Decorrelation and contrast normalization of activity patterns across MCs have been 

characterized previously in the OB of adult zebrafish8,14,15 and mice16–18 where >90% of 

neurons are GABAergic INs. In the larval OB, in contrast, INs account for only 25% of all 

neurons26. Most of these INs are likely to be periglomerular and short axon cells because 

INs with the typical morphology of granule cells appear only later in development. We 

therefore asked whether the core circuitry present in the larval OB already performs 

computations related to whitening.

Correlations between activity patterns evoked by different bile acids were high after stimulus 

onset and decreased during the subsequent few hundred milliseconds (Fig. 2d,e). Patterns 

evoked by amino acids, in contrast, were less correlated throughout the odor response, which 

was expected because most amino acids had dissimilar side chains. Further analyses of 

pattern decorrelation therefore focused on activity patterns evoked by the four bile acids 

while other analyses included all eight odors. To quantify pattern decorrelation we computed 

the mean difference in pairwise Pearson correlations between a time window shortly after 

response onset (t1) and a later time window (t2) that was chosen so that the mean population 

activity across MCs was not significantly different from t1 (Fig. 2d; p = 0.57, Wilcoxon 

rank-sum test). Pattern correlations across MCs, however, were significantly lower at t2 than 

at t1 (p = 0.03, Wilcoxon rank-sum test), demonstrating that MC activity patterns were 

reorganized and decorrelated. Activity across INs followed the mean MC activity with a 

small delay and did not exhibit an obvious decorrelation during the early phase of the odor 

response (Fig. 2d). These findings are consistent with observations in the adult OB29. The 

natural time course of olfactory input to the OB of zebrafish larvae is likely to be slow 

because animals live in slow waters close to the substratum30 and because the temporal 

resolution of their olfactory sensory neurons is low31. We therefore assume that the 

dynamics of odor-evoked population activity in the OB is fast compared to the kinetics of 

natural sensory inputs.

The contrast of MC activity patterns, as measured by the variance of activity across the 

population, increased shortly after stimulus onset and peaked slightly later than pattern 

correlation. Subsequently, variance decreased and became more uniform across odors, as 

reflected by a significant decrease in the standard deviation (s.d.) of the variance across 

odors between t2 and t1 (Fig. 2d; p = 0.003, F-test; t1 was slightly shifted relative to the time 

window for correlation analysis to cover the peak of the variance). Hence, MC activity 

patterns in the larval OB became decorrelated and contrast-normalized, consistent with the 

whitening of odor representations in the adult OB.

Whitening can facilitate pattern classification but may also introduce noise. We therefore 

quantifed the reliability of odor classification using a template matching procedure based on 

single-trial responses and found that classification success, as well as the separation of 

correct and incorrect classifications, were slightly higher at t2 than at t1 (Extended Data Fig. 
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3). Hence, pattern decorrelation did not compromise the reliability of odor identification by 

a simple classifier but facilitated pattern separation.

Computational consequences of connectivity

While contrast normalization can be achieved by global scaling operations such as divisive 

normalization32, pattern decorrelation requires interactions between distinct subsets of 

neurons9. In theory, pattern decorrelation could be achieved by large networks with sparse 

and random connectivity33 but this architecture is inconsistent with the low number of INs in 

the larval OB. Smaller networks can decorrelate specific input patterns when their 

connectivity is adapted to the covariance structure of these inputs, suggesting that 

decorrelation in the OB is an input-specific transformation of odor representations that is 

encoded in the wiring diagram. In order to explore this hypothesis we first asked whether 

whitening can be reproduced by implementing the wiring diagram in a network of minimally 

complex single-neuron models (Fig. 3a).

We first simulated a network of threshold-linear rate neurons with 208 MCs, representing all 

recorded MCs with input and output synapses, and 234 INs, representing all connected INs. 

Connections between individual neurons were given by the wiring diagram. Excitatory 

sensory input into MCs was defined by the odor-evoked activity pattern at t1. INs received 

no sensory input because synapses from sensory neurons onto INs were rare (Extended Data 

Fig. 1a). All connections made by neurons of the same type (MC or IN) had the same weight 

scaling. The time course of stimuli consisted of a fast initial rise followed by a slow decay33, 

approximating the response time course of olfactory sensory neurons in zebrafish8. Because 

connectivity was fixed, the final network model had only six degrees of freedom (thresholds, 

synaptic weight scaling factors and time constants of each neuron type).

Correlations between simulated population responses to bile acids increased rapidly and 

subsequently decreased. Consistent with experimental observations, the mean correlation 

decreased significantly between two time windows t1 and t2 that were chosen so that the 

mean activity was not significantly different (Fig. 3b). The variance (contrast) of activity 

patterns and its standard deviation across stimuli peaked slightly later than the correlation 

and decreased thereafter (Fig. 3b). Correlations between IN activity patterns remained 

higher than correlations between MC activity patterns throughout the odor response 

(Extended Data Fig. 4a). Hence, simulation results were in good agreement with 

experimental observations.

To examine the contribution of IN-IN connections to the observed pattern transformations 

we modified the strength of IN-IN synapses from 100% (same strength as MC←IN 

connections) to 0% (no IN-IN connections). Reducing IN-IN connection weights slightly 

decreased the mean activity, consistent with a disinhibitory effect of IN-IN connections, and 

slightly decreased pattern variance and its s.d.. Pattern decorrelation, however, remained 

almost unaffected (Fig. 3b). IN-IN connectivity was therefore omitted in further simulations 

for simplicity (Fig. 3c).

To exclude the possibility that pattern decorrelation by simulated networks reflects a chaotic 

process we examined responses to inputs with biologically realistic amounts of noise 
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(Methods). While activity patterns representing different odors became decorrelated, 

correlations between noisy representations of the same stimuli remained high (Extended 

Data Fig. 4b), demonstrating that pattern decorrelation did not reflect an amplification of 

noise.

Randomizing the wiring diagram by independent shufflings of the feed-forward connectivity 

matrix WMC→IN and the feedback connectivity matrix WMC←IN abolished pattern 

decorrelation and contrast normalization (Fig. 3d,e). Hence, whitening depended on the 

wiring diagram. To corroborate this conclusion we examined whether the reorganization of 

activity patterns underlying whitening can be predicted from connectivity without an explicit 

simulation of network dynamics. Activity patterns at t1 were multiplied with the feed-

forward connectivity WMC→IN, normalized, and thresholded to generate a hypothetical 

pattern of IN activity. This activity pattern was then multiplied with the feed-back 

connectivity WMC←IN to predict the pattern of feedback inhibition onto MCs. The feedback 

pattern was either subtracted from the MC activity at t1 (subtractive inhibition), or the MC 

activity pattern at t1 was divided by the pattern of feedback inhibition neuron-by-neuron 

(divisive inhibition; Extended Data Fig. 5a). This simple algebraic procedure reproduced 

both pattern decorrelation and variance normalization, independent of whether inhibition 

was subtractive or divisive (Extended Data Fig. 5b). Whitening was again abolished when 

connectivity matrices were randomized. These results confirm that the wiring diagram 

contains information essential for whitening.

We next performed more specific manipulations to explore how whitening depends on 

higher-order structure in the wiring diagram. In simulations without IN-IN connections, we 

first applied the same shufflings to MC→IN connections (WMC→IN) and to MC←IN 

connectivity (WMC←IN). This co-permutation of feed-forward and feedback connectivity 

shuffles the off-diagonal elements in the disynaptic connectivity matrix (lateral inhibition) 

but preserves the overall distribution of disynaptic MC→IN→MC connection strengths and 

the on-diagonal elements (self-inhibition; Fig. 3f). Similar to the independent randomization 

of WMC→IN and WMC←IN, co-permutation of WMC→IN and WMC←IN abolished whitening 

(Fig. 3d,e). Moreover, whitening was abolished when input channels were permuted to 

produce novel input patterns with the same statistical properties and correlations (Fig. 3e). 

These results show that whitening is mediated by higher-order features of multisynaptic 

connectivity that are adapted to patterns of sensory input.

Higher-order structure of connectivity

The shortest synaptic path between two MCs associated with different glomeruli is a 

disynaptic interaction via one IN (MC-IN-MC). To identify properties of the wiring diagram 

that mediate whitening we therefore analyzed MC-IN-MC triplets. There are seven possible 

triplet configurations that represent four topological motifs (Fig. 4a). We found that the 

motif containing no reciprocal connection (motif 1) was underrepresented whereas the other 

motifs were overrepresented in comparison to randomized networks (Fig 4b). The strongest 

overrepresentation was observed for motif 4, which contains reciprocal connections between 

both MCs and the IN. Hence, MC-IN-MC triplets frequently contained reciprocal 

connections.
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To determine whether disynaptic connectivity between MCs depends on their tuning we 

constructed an input tuning curve for each MC from the responses to the eight odors at t1. 

We then quantified the Pearson correlation between the input tuning curves of MC pairs and 

the number of disynaptic MC-IN-MC connection paths across all motifs. The mean number 

of disynaptic connections increased with the input tuning correlation (Fig. 4c, left). MCs 

with similar tuning were more likely to be connected through motifs with reciprocal 

connections, particularly motifs 2 and 4 (Fig. 4d; Extended Data Fig. 6). Consistent with this 

observation, the correlation between tuning similarity and disynaptic connectivity of MC 

pairs remained strong when only reciprocal connections were considered (Fig. 4c, right). 

Hence, triplets mediate interactions preferentially between MCs with similar tuning, and 

these interactions frequently contain reciprocal connections.

As for MC-IN-MC connections, motifs with one or two reciprocal connections were also 

overrepresented in IN-MC-IN triplets but no simple relationship was apparent between input 

tuning and disynaptic IN-MC-IN connectivity (Extended Data Fig. 7a-c). In addition, we 

found that the tuning of synaptic inputs and outputs of individual INs was significantly 

correlated and that large sets of fully reciprocally connected neurons (“maximal cliques”) 

were strongly overrepresented in the wiring diagram (Extended Data Fig. 7d-g). These 

observations further demonstrate that the connectivity among OB neurons is not random but 

governed, at least in part, by functional response properties.

Mechanism of whitening

Unidirectional lateral inhibition between functionally related neurons sharpens tuning curves 

and enhances pattern contrast in the retina34 and elsewhere (Fig. 5a, left). In idealized 

networks with reciprocal connectivity, in contrast, inhibition does not amplify asymmetries 

in inputs and self-inhibition is usually stronger than lateral inhibition (assuming equal 

synaptic strength; Fig. 5a, right). Hence, reciprocal triplet connectivity should primarily 

down-regulate, rather than sharpen, the activity of neurons in connected cohorts. As 

illustrated in Extended Data Fig. 8, computational effects of contrast enhancement (by 

unidirectional connectivity) or suppression of cohorts (by partially reciprocal connectivity) 

depend on the properties of input patterns. Contrast enhancement can decorrelate inputs 

when stimulus-specific information is contained in strong responses because strong 

responses are emphasized while weak responses are suppressed4,34. However, when strong 

responses are non-specific, contrast enhancement fails to decorrelate patterns because it 

enhances non-informative responses while suppressing weaker, potentially informative 

responses. Under these conditions, patterns may be decorrelated by the selective suppression 

of strongly active cohorts, which can, in principle, be achieved by cohort-specific reciprocal 

inhibition (Extended Data Fig. 8).

To examine the basis of pattern correlations in the OB we analyzed population activity 

patterns evoked by bile acids at t1. For each pair of patterns, we quantified the contribution 

ri,t1 of MC i to the Pearson correlation r and ranked MCs by their ri,t1 (see example in Fig. 

5b; rankings differed between odor pairs). Ranked measurements of correlation contribution, 

activity and variance contribution of individual MCs were then averaged over odor pairs 

(Fig. 5c). For each odor pair, pattern correlations at t1 were dominated by high contributions 
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from a small fraction of MCs that were also strongly active (Fig. 5c, center and left). Hence, 

correlated odor representations overlapped primarily in strongly responsive MCs at t1, 

consistent with observations in the adult OB9.

We then examined the changes in the activity of individual neurons underlying the 

decorrelation and contrast normalization between t1 and t2. The activity of MCs with large 

ri,t1 was significantly lower at t2 than at t1 (Fig. 5b,c). The mean activity of MCs that did not 

strongly contribute to the initial correlation, in contrast, remained similar. As a consequence, 

the contribution of MCs with large ri,t1 to the overall correlation decreased, resulting in a 

substantial decorrelation of population activity patterns between t1 and t2. Pattern 

decorrelation can therefore be attributed, at least in part, to the selective inhibition of MC 

cohorts that dominated the initial pattern correlations. MCs with high ri,t1 also made strong 

contributions to pattern variance at t1 (Fig. 5c) because their activity was substantially higher 

than the population mean. Because the selective inhibition of these cohorts between t1 and t2 

changed the activity of these MCs towards the population mean, the inhibition of these MCs 

also decreased pattern variance and its s.d. across odors. Pattern decorrelation and contrast 

normalization can therefore be attributed to a common mechanism that targets inhibition to 

specific MC cohorts and results in contrast reduction rather than contrast enhancement.

The selective suppression of activity in cohorts of co-responsive MCs cannot be achieved by 

global changes in subtractive or divisive inhibition because inhibition within cohorts needs 

to be stronger than the mean inhibition across the population in response to defined sets of 

odors. To explore how such stimulus- and ensemble-specific inhibition is generated by 

specific wiring we defined functional cohorts of MCs for each pair of bile acid stimuli as the 

10 MCs with the highest ri,t1 (Extended Data Fig. 9a). We then determined the disynaptic 

MC inputs to these cohorts by retrograde tracing through the wiring diagram across two 

synapses. Inputs to MCs within a cohort were strongly biased towards MCs of the same 

cohort (Fig. 5d,e). Consistent with this finding, the density of MC-IN-MC triplets, 

particularly motifs 2 and 4, was significantly higher within cohorts than among randomly 

chosen MC subsets (Extended Data Fig. 9b). Hence, cohorts of MCs are not only functional 

ensembles defined by similar initial responses but also anatomical ensembles with a high 

density of disynaptic MC-IN-MC connections.

The dense disynaptic connectivity implies that MCs in a cohort will be strongly inhibited 

when the cohort is activated as a whole. Indeed, the activity of MC and the associated 

presynaptic INs in a cohort evolved in opposite directions during an odor response 

(Extended Data Fig. 9c). As a consequence of cohort-specific connectivity, inhibition of 

MCs within a cohort will be stronger than the mean level of inhibition. The specific 

suppression of activity underlying whitening can thus be attributed to dense reciprocal 

connectivity within cohorts that are activated by specific sets of odors. Cohorts therefore 

function as “feature detectors”, where a “feature” is a molecular stimulus property that 

efficiently activates many MCs in the ensemble. When a feature is present, the activity of the 

corresponding MC cohort is down-regulated by feedback inhibition and the representation of 

the feature in population activity patterns is suppressed, which reduces correlations between 

related patterns. Pattern decorrelation can therefore be explained by a mechanism that 

involves “feature suppression” through specific connectivity. Features may correspond to 
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functional groups that promote high correlations of afferent activity patterns because they 

activate overlapping sets of odorant receptors. This hypothesis predicts that MCs within 

functional cohorts exhibit similar input tuning to suppress the representation of such 

features. Indeed, the mean correlation between tuning curves of MCs at t1 was significantly 

higher within cohorts (r = 0.56 ± 0.40; mean ± s.d.) than across all MCs (r = 0.01 ± 0.38; p < 

10-84; Wilcoxon rank-sum test).

Feature suppression decreases pattern correlations by the selective inhibition of MCs with 

high activity and large contributions to initial correlations. To confirm that this mechanism 

can account for whitening in the OB we set the activity of MCs in functional cohorts (10 

MCs with the highest ri,t1 pair at t1) to the population mean for each odor pair. As predicted, 

this “targeted suppression” of functional cohorts resulted in decorrelation and variance 

normalization (Extended Data Fig. 5b). To further dissect the mechanism of feature 

suppression we took advantage of simulations. We first ranked simulated MCs by their ri,t1 

for bile acid-evoked activity patterns in experiments (same ranking as in Fig. 5c). As 

observed experimentally, simulated MCs with large ri,t1 were strongly inhibited between t1 

and t2 while the mean activity of other MCs remained unchanged (Fig. 6a). Direct analysis 

of inhibitory inputs to individual MCs confirmed that MCs with large ri,t1 received 

substantially more inhibition than other MCs. This specific targeting of inhibition to MCs 

with large ri,t1 was abolished when connectivity was randomized (Fig. 6b). Simulations 

therefore precisely reproduced the activity changes in individual neurons that resulted in 

whitening, implying that simulations recapitulated the underlying mechanism. Moreover, 

these results further show that decorrelation and whitening of inputs cannot be achieved by 

global inhibition but rely on interactions among specific subsets of neurons.

We next performed selective manipulations of the wiring diagram. We first selected the MCs 

with the highest ri,t1 for each pair of bile acid stimuli (MC cohorts; 19 MCs in total; 

Extended Data Fig. 9a) and deleted their connections onto INs (11% of all MC→IN 

connections; Fig. 6c, “selective deletion”). As a control, we deleted the same fraction of 

feedforward connections of random subsets of MCs. While random deletions had almost no 

effect, the selective deletion of feed-forward connections from MC cohorts abolished pattern 

decorrelation and variance normalization (Fig. 6d,e). Ranking of MCs by their ri,t1 in 

experimental data demonstrated that the activity of MCs with high ri,t1 was not substantially 

reduced between t1 and t2 when MC→IN connections originating from cohorts were 

deleted. As a consequence, these MCs continued to make large positive contributions to 

pattern correlation and variance at t2 (Fig. 6f). The selective deletion of MC→IN 

connections from functional cohorts therefore abolished whitening because it disrupted 

feature suppression. To corroborate this result we redirected feed-forward connections of 

MCs within cohorts to randomly selected IN targets, which perturbs the connectivity of 

cohorts without changing the total number of connections in the network. This manipulation 

(Fig. 6c “selective permutation”) also abolished whitening (Fig. 6d,e) and eliminated the 

specific inhibition of MCs with high ri,t1 at t2 (Fig. 6f), as observed for the “selective 

deletion” of connections.

Finally, we randomized all connections except for those between the 19 cohort MCs and 

their IN partners (“selective preservation”; Fig. 6c). We found that pattern decorrelation 
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remained intact (Fig. 6d,e), contrary to the loss of decorrelation after full randomization of 

the wiring diagram (Fig. 3d,e). Variance normalization was partially reduced, as expected 

because cohorts were selected based on bile acid but not amino acid patterns. The activity of 

MCs with high ri,t1 was strongly reduced at t2 (Fig. 6f), demonstrating that pattern 

decorrelation and partial variance normalization were generated by feature suppression. 

Specific manipulations of the wiring diagram therefore demonstrate that whitening is 

mediated by disynaptic interactions that suppress the activity of correlation-promoting MC 

cohorts.

Discussion

We used a functional connectomics approach in a small vertebrate to explore the mechanism 

of whitening in the OB. Whitening is a computation related to object classification and 

associative memory that requires specific transformations of neuronal activity patterns. Such 

computations are thought to rely on specific wiring diagrams that are adapted to relevant 

inputs. Consistent with this notion, we found that whitening is achieved by specific 

multisynaptic interactions that cannot be described by general topographic principles or by 

the first-order statistics of connectivity between neuron types. Functional connectomics is 

therefore a promising approach to dissect distributed, memory-based computations 

underlying higher brain functions.

Correlations between input patterns in the OB were dominated by distinct subsets of 

strongly active input channels. This correlation structure is likely to reflect the co-activation 

of different odorant receptors by discrete functional groups12,13 and implies that input 

correlations cannot be removed efficiently by contrast enhancement35–37. Pattern 

decorrelation can also not be explained by the amplification of specific responses through 

disinhibition because it persisted when IN-IN connections were eliminated. Rather, patterns 

are decorrelated by the selective inhibition of strongly active, correlation-promoting MC 

cohorts. Pattern decorrelation is therefore achieved by a mechanism that results in contrast 

reduction, rather than contrast enhancement, which also supports contrast normalization.

The tuning-dependent MC-IN-MC connectivity required for whitening may be established 

by molecular or by activity-dependent mechanisms. We reconstructed the wiring diagram of 

a larva at a stage before activity-dependent effects were detected on the morphological 

development of glomeruli38, suggesting that the initial assembly of neuronal connections 

may rely primarily on molecular cues. Projections of INs are enriched between glomeruli 

that receive input from odorant receptors of the same families26, raising the possibility that 

glomerular targeting of sensory neurons39 and INs involve related mechanisms. However, 

the development of specific connectivity among OB neurons remains to be explored.

Lateral inhibition between neurons with similar tuning is often assumed to sharpen tuning 

curves by amplifying asymmetries in the input. In the OB, however, triplet connections 

between related MCs are enriched in reciprocal connectivity. Such connectivity results in 

feedback inhibition that is independent of the precise input pattern and down-scales activity 

without amplifying asymmetries (Fig. 5a, right). Reciprocally connected MC↔IN↔MC 

cohorts therefore mediate feature suppression because the inhibitory feedback gain within 
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the cohort is larger than the mean feedback gain when an appropriate feature is present. This 

mechanism can explain the selective and odor-dependent inhibition of correlation-promoting 

MC cohorts.

Functional connectomics permitted us to test the significance of this mechanism by 

implementing the wiring diagram in a network of minimally complex model neurons. 

Simulations included only ~30% of the MC population and did not quantitatively reproduce 

all details of the measured population activity. Nevertheless, the dynamics that resulted in 

whitening by feature suppression was preserved, demonstrating that the computational 

function of the circuit is determined to a large extent by its connectivity. Whitening was 

robust against input noise and parameter variations, presumably because the essential 

connectivity exhibits substantial redundancy. Precisely targeted manipulations of the wiring 

diagram confirmed that feedback inhibition among correlation-promoting MC cohorts was 

necessary and sufficient to achieve whitening. Hence, whitening in the OB depends on 

higher-order features of connectivity and is produced by a network mechanism that differs 

from canonical computations in the retina and other sensory systems, presumably because 

the statistical properties of sensory inputs differ between sensory modalities.

In visual cortex, functionally related principal neurons make stronger excitatory connections 

than random subsets of neurons40. Such connectivity can arise from Hebbian plasticity 

mechanisms, enhance representations of sensory features, and amplify specific inputs in 

memory networks after learning. The connectivity observed in the OB, in contrast, results in 

disynaptic inhibitory interactions between functionally related principal neurons. Functional 

connectivity in the OB is therefore similar in structure, but opposite in sign, to excitatory 

connectivity motifs in visual cortex. As a consequence, the connectivity in the OB 

suppresses, rather than amplifies, specific features in the input. Such a mechanism appears 

useful to attenuate the impact of irrelevant sensory inputs and to reduce undesired 

correlations. The mechanism of feature suppression is consistent with networks that have 

been optimized for whitening in a theoretical framework with biologically plausible 

constraints41–43, and inhibitory functional interactions between neurons with related tuning 

have also been observed in the rodent neocortex44. The elementary microcircuit that 

mediates whitening in the OB may therefore contribute to similar computations also in other 

brain areas.

Methods

Animals and preparation

Adult zebrafish (Danio rerio) were maintained and bred under standard conditions at 26.5°C. 

Embryos and larvae of a double-transgenic line (elavl3:GCaMP5 x vglut:DsRed)45,46 in 

nacre background were raised at 28.5°C in standard E3 medium47.

Imaging experiments were performed as described previously48,49. In brief, larvae 4 - 5 days 

post fertilization were contained in a small drop of aerated E3 without methylene blue or N-

phenylthiourea. Larvae were then paralyzed by addition of 20 μl of fresh mivacurium 

chloride (Mivacron, GlaxoSmithKline, Munich, Germany)50 and embedded in 2% low-

melting agarose (type VII; Sigma, St Louis, MO, USA) in a perfusion chamber that was 
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inclined by 30° to improve dorsal optical access to the OBs. Agarose covering the noses was 

carefully removed. A constant stream of E3 (2 ml/min) was delivered through a tube in front 

of the nose and removed by continuous suction. Throughout the experiment it was ensured 

that larvae showed normal heartbeat. Larvae that were not fixed for EM recovered from 

paralysis after a few hours and continued to develop without obvious defects. All animal 

procedures were performed in accordance with official animal care guidelines and approved 

by the Veterinary Department of the Canton of Basel-Stadt (Switzerland). The sex of 

zebrafish larvae is not yet determined at the age used in this study.

Odor stimulation

Odor application was performed as described48. In brief, odors were delivered to the nose 

through the E3 medium using a computer-controlled, pneumatically actuated HPLC 

injection valve (Rheodyne, Rohnert Park, CA, USA). The rise time of stimuli was 

approximately 500 ms51. All experiments were carried out at room temperature (~22°C). 

The odor set comprised one food odor51, four bile acids (glycochenodeoxycholic acid 

[GCDCA], taurocholic acid [TCA], taurodeoxycholic acid [TDCA] and glycocholic acid 

[GCA]; Sigma Aldrich, Munich, Germany) and four amino acids (Trp, Lys, Phe, and Val; 

Fluka, Neu-Ulm, Germany). Stock solutions of GCDCA, TCA, TDCA, Trp, Lys, Phe and 

Val at 5 × 10-3 M in E3 were kept refrigerated and diluted 1:500 (GCDCA, TCA, TDCA) or 

1 : 50 (Trp, Lys, Phe, Val) in aerated E3 medium immediately before the experiment. A 

stock solution of GCA was prepared in 50% ethanol/50% E3 at 2.5×10-3 M, refrigerated, 

and diluted 1:250 immediately before the experiment. In a given trial, an odor was applied 

twice for a duration of ~3 s with an inter-stimulus interval of 60 s. Successive trials with 

different odors were separated by at least 2 min.

Multiphoton calcium imaging

Multiphoton imaging was performed using a microscope equipped with a mode-locked 

Ti:sapphire laser (SpectraPhysics) and a 20× objective (NA 1.0, Zeiss) as described52. 

GCaMP5 was excited at 910 nm and emission was detected through green (535 ± 25 nm) 

and red (610 ± 37.5 nm) emission filters in separate channels. Images (256 × 256 pixels) 

were acquired at 128 ms per frame using SCANIMAGE and EPHUS software53,54 for a total 

of 2 min in each trial. Trials were performed sequentially in six focal planes that were 

separated by approximately 10 μm along the dorso-ventral axis of the OB. The field of view 

covered the entire cross-section of the OB and parts of the adjacent telencephalon. Ten 

stimulus trials (nine odors and one E3 control), each including two odor applications, were 

performed in each focal plane. The order of stimuli was E3, food, GCDCA, TCA, TDCA, 

GCA, Trp, Lys, Phe, Val. In addition, 2 min of spontaneous activity were recorded in each 

focal plane. After completion of all trials a stack of images covering the whole olfactory 

bulb was acquired with a z-step interval of 0.5 μm.

Automated drift correction

Slow mechanical drift, which may be caused by capillary forces acting on the agarose 

matrix55, was corrected between trials by an automated routine. This routine acquired a 

small stack (± 3 μm around the focus; 0.5 μm steps) and compared images to a reference 

acquired previously by cross-correlation after standardizing image columns and rows. The 
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field of view was then automatically translated in X,Y and Z to maximize the cross-

correlation to the reference.

Electron microscopy

Preparation and imaging of this sample have been described previously25,26. Briefly, tissue 

was stained en bloc with osmium, uranyl acetate and lead aspartate using an established 

protocol56,57 with minor modifications and embedded in Epon resin with silver particles to 

minimize charging25,26. Multi-tile images were acquired in high vacuum using a scanning 

electron microscope (QuantaFEG 200; FEI) equipped with an automated ultramicrotome 

inside the vacuum chamber (3View; Gatan). Section thickness was 25 nm, pixel size was 

9.25 × 9.25 nm2, and the electron dose was 17.5 e-nm-2. The dataset comprised 4,746 

successive sections of which one section was lost due to technical problems. The final stack 

was cropped to a size of 72.2 × 107.8 × 118.6 μm3.

Neuron reconstruction and synapse annotation

Skeletons of all neurons in the OB were reconstructed previously as described25,26. Briefly, 

three independent skeletons of each neuron were generated manually from seed points at 

somata. Skeletons were converged and mismatches were corrected as described, and high 

accuracy was verified by measures of precision and recall26. Tracing was performed using 

KNOSSOS (www.knossostool.org) or PyKNOSSOS (https://github.com/adwanner/

PyKNOSSOS). Most skeletons were generated by a professional high-throughput image 

annotation service (www.ariadne.ai).

Synapses were annotated manually using PyKNOSSOS in “flight” mode25. In the default 

configuration, PyKNOSSOS displays image data in four viewports: the YX viewport 

(imaging plane) and three mutually orthogonal viewports of arbitrary orientation. In “flight” 

mode, the latter is perpendicular to the direction of the current neurite. We found that this 

“auto-orthogonal” view increases tracing speed and facilitates the identification of branch 

points and synapses. Annotators followed skeletonized reference neurons along pre-

calculated paths to ensure that all neurites were annotated. Most synapses were annotated by 

a professional image annotation service (www.ariadne.ai).

Synapses were identified by a cloud of vesicles that touched the plasma membrane, often at 

a site of intense staining. Annotators defined synapses by placing three nodes: (1) a node in 

the presynapse, (2) a node in the synaptic cleft, and (3) a node in the postsynapse. Nodes in 

the presynapse and postsynapse are skeleton nodes of the pre- and postsynaptic neurons if 

these skeletons are available. In addition, annotators assigned a confidence level c to each 

synapse. This confidence level was introduced because synapse identification is not 

unambiguous; rather, human experts can disagree whether a given structure is a synapse or 

not even when image quality is high.

Synapses were then classified as either “input synapse”, “output synapse”, “sensory 

synapse” or “unknown”. Input and output synapses are synapses of the reference neuron 

with the corresponding directions, excluding synapses with sensory neurons. Sensory 

synapses are input synapses received by the reference neuron from axons of sensory 

neurons, which were identified by their dark cytoplasm58. Unknown structures resemble 
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synapses but do not display all characteristic features. These structures often included an 

intense staining of the membrane but no clearly associated vesicle cloud. We therefore 

speculate that some of these structures may be gap junctions.

We first annotated input and output synapses of all MCs and INs independently of each 

other. Hence, each synapse should have been encountered twice, once from the presynaptic 

side and once from the postsynaptic side. Synapses of INs were then annotated again by 

different individuals, resulting in a 3-fold redundancy for each MC-IN synapse. In order to 

minimize the number of false positives the final wiring diagram retained only those MC-IN 

synapses that were annotated on the MC and at least once on the IN. As a control, we also 

repeated connectivity analyses and simulations with a wiring diagram that included only 

those synapses that were annotated at least three times. This wiring diagram produced very 

similar results (not shown).

Each synapse was assigned a unitary weight. As a consequence, the strength of the 

connection between two neurons in each direction was given by the number of synapses 

between this pair of neurons. In addition, we tested two other methods to determine synaptic 

strength. First, connection strength was binarized such that all connections had strengths 0 or 

1, independent of the number of synapses. Second, we defined the weight of a synapse as its 

mean confidence level c, and the total weight of a connection as the sum of the confidence 

levels of all synapses. In addition, we tested various confidence thresholds to discard 

synapses with low confidence before determining the weights. Similar results were obtained 

with all methods and a wide range of confidence thresholds, implying that results are highly 

robust.

Correlation between multiphoton and SBEM image stacks

Mapping of multiphoton to SBEM image data may be complicated by (1) mechanical 

distortions introduced by the sample preparation procedure, (2) shrinkage due to loss of 

extracellular space induced by chemical fixation59, and (3) developmental changes occurring 

during the approximately three hours between the first calcium imaging trial and the final 

fixation of the tissue. Initial observations indicated that distortions between image datasets 

were mostly linear (rotation, translation, shrinkage) while non-linear distortions appeared 

minimal and developmental changes were negligible. We therefore used an affine 

transformation to map multiphoton images into the SBEM stack, followed by manual fine 

adjustment of regions of interest (ROIs) for the extraction of calcium signals.

An initial affine transformation matrix was fitted to a set of corresponding points that were 

selected manually in both datasets. The EM volume was then transformed onto the two-

photon images, the position of existing points were optimized manually, and additional pairs 

of corresponding points were selected. The transform was then re-calculated based on the 

updated set of landmarks and this procedure was iterated until asymptotic behavior was 

observed.

All somata of the OB were outlined manually in the SBEM dataset and mapped onto the 

time-averaged multiphoton fluorescence images of each trial, resulting in 7280 mappings of 

somatic outlines in the SBEM dataset to regions of interest (ROIs) in 66 multiphoton images 
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(11 trials at each of six optical planes). The position of all ROIs was then manually adjusted 

to optimize the mapping in each trial. The average displacement of ROIs during manual 

adjustment was small (593 ± 833 nm; mean ± s.d.; Extended Data Fig. 1b), demonstrating 

that the accuracy of the initial affine mapping was already high.

INs in the larval zebrafish OB were previously divided into three classes based on 

morphological criteria26. The 68 INs included in the activity dataset included neurons from 

all three without an obvious bias (13/53 INs of class 1, 20/78 INs of class 2, 31/123 INs of 

class 3). Moreover, they included 4/4 neurons that were previously classified as atypical 

projection neurons26. We did not observe an obvious bias of IN classes for specific 

connectivity motifs.

Analysis of calcium signals

Individual frames of multiphoton image time series were low-pass spatially filtered with a 

mild 2D Gaussian kernel (σ = 1.2 pixels). Baseline fluorescence F was calculated as the 

average fluorescence during a 2 s window before response onset. Traces representing 

relative changes in fluorescence (ΔF/F) in each ROI were averaged over the two successive 

odor applications in each trial and band-pass filtered in time using a Butterworth filter with a 

cutoff frequency of 0.2 times the frame rate. The average population response onset (t = 0) 

was determined manually from all raw ΔF/F traces and fixed for all trials. Firing rate 

changes of neurons represented by individual ROIs were estimated by temporal 

deconvolution of calcium signals as described28 using standard parameters (τdecay = 3 s, 

thrnoise = 0).

Analyses of population activity were restricted to neurons represented by ROIs with a radius 

≥2 pixels in all trials (corresponding to an area of 3.14 μm2; 232 MCs and 68 INs). For 

network simulations and mechanistic analyses of whitening we considered only the 208 

MCs that were pre- and post-synaptic to at least one IN and excluded 24 presumably 

premature MCs. Population responses to different odors were compared by calculating the 

Pearson correlation coefficient between the population activity vectors of MCs for the 

different stimuli at a given time point after response onset.

Network modeling

MCs are glutamatergic while most or all INs in the developing zebrafish OB express 

GABA48. We therefore consider MCs to be excitatory and INs to be inhibitory. MCs and INs 

were simulated as threshold-linear units with a state variable representing firing rate. The 

ri(t) and uj(t) representing firing rates of MC i and IN j, respectively, followed the equations 

of motion

τMC
i ⋅ dri(t)

dt = − ri(t) + Gseni Si(t) − Ginℎ
i W MC IN

i ⋅ [ u (t) − θ IN]+

τIN
j ⋅ duj(t)

dt = − uj(t) + Gexc
j W IN MC

j ⋅ [ r (t) − θ MC]+
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where the vectors θ MC and θ IN are firing thresholds, W IN MC
j  and W MC IN

i

correspond to the reconstructed IN-to-MC and MC-to-IN connectivity weight matrices of 

the jth IN and of the ith MC, respectively, and the vectors r (t) and u (t) represent the firing 

rates of the MC and IN, respectively. []+ denotes half-wave rectification:

[x(t)]+ = 0, x(t) < 0
x(t), x(t) ≥ 0

τMC
i  and τIN

j  are the time constants for the individual MCs and INs, respectively. Gsen
i , Ginℎ

i

and Gexc
j  are the individual scaling factor for sensory, inhibitory and excitatory input, 

respectively. To account for the natural variability in biological systems, the parameter 

values for each of the cells in each of the individual simulation runs were drawn from a 

Gaussian distribution with a standard deviation of 1% of the distribution mean. The 

distribution means of the different parameters were:

Gsen = 6, Gexc = 0.7, Ginh = 3.5, θMC = 2, θIN = 50, τMC = 1, τIN = 80;

The time course of sensory input Si(t) was modelled as difference of exponentials as 

described previously33:

s(t) = − aj, ∞ +
aj, ∞
1 − α (1 − e−τrt − α + αe−τdt) with α = 0.8, τr = 1 150, τd = 1 600, aj, ∞ = 1 150

To model Si(t), the individual sensory input of MC i, we used its experimentally measured 

activity ai during t1 and modulated the time course according to s(t):

Si(t) = ai
s(t)

smax
, where smax = max

t ≥ 0
(s(t))

The differential equations were solved in MATLAB with a fixed step size of 1 millisecond 

using a first degree Newton-Cotes integration scheme or using an adaptive step size 

embedded Runge-Kutta-Fehlberg (4, 5) scheme. Both integration schemes lead to 

qualitatively very similar results, and therefore the former method was used for simplicity 

for the simulated data shown here.

In an iterative, semi-automated parameter search, we identified a suitable parameter range 

that fulfilled the following criteria:

(1) The peak firing rates of individual neurons does not exceed a physiologically 

realistic range (< 200 Hz).

(2) The strength of inhibition is appropriate to reproduce the time course of the 

average population activity, correlation and variance.

(3) The activity, correlation contribution and variance contribution of individual 

MCs at t1 and t2 is in good correspondence to experimental measurements.
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Parameters for which these criteria were fulfilled were found by parameter variations in pilot 

studies. Results were usually robust against variations of each parameter by ±50% around 

the values reported above.

To simulate responses to noisy inputs we assumed that a MC receives convergent input from 

40 olfactory sensory neurons of the same type, each spiking with Poisson statistics. 

Simulated firing rates of sensory neurons were calculated in 25 ms windows, averaged over 

convergent sensory neurons, and scaled to obtain a total input to each MC with the same 

mean as in the noiseless case. Assuming that each sensory neuron makes 10 synapses onto 

MCs, the total number of sensory neurons would be approximately 3’000 per epithelium.

Analysis of triplet motifs

Occurrences of disynaptic MC-IN-MC and IN-MC-IN motifs were counted after binarizing 

connections. We enumerated all neuron triplet combinations in the reconstructed wiring 

diagram and tested for graph isomorphism against all 4 disynaptic motif types. The obtained 

motif counts were compared against a reference model where the forward and backward 

connectivity of the MCs were permuted independently while maintaining the node count and 

edge density (n = 10,000 permutations). The z-scores and p-values were obtained by 

computing the mean and standard deviation of each motif type in the permuted networks.

To compare the motif frequency as a function of the pairwise tuning similarity, we divided 

the MC pairs into two groups, one with tuning correlation higher than a threshold (e.g., r > 

0.5) and one with tuning correlation lower than the threshold (r ≤ 0.5), and counted the 

occurrences of MC-IN-MC and IN-MC-IN motifs in each group. We then compared the 

motif counts against a reference model where we permuted the pairwise tuning similarity 

between MCs and regrouped them by tuning correlation while maintaining the same network 

topology (n = 10,000 permutations). The z-scores and p-values were then obtained by 

computing the mean and standard deviation of each motif type in the permuted groups.

Additional analyses

The contribution of individual MCs to the Pearson correlation coefficient

r = 1
n − 1 ∑

i = 1

n xi − x
sdx

yi − y
sdy

between population activity patterns was calculated by determining the summand 
xi − x

sdx
yi − y
sdy

 for each MC. Similarly, the contribution of individual MCs to the variance

sdx2 = 1
n − 1 ∑

i = 1

n
(xi − x)2

of the population activity patterns was calculated by determining the summand (xi − x)2 for 

each MC. Here, xi and yi are responses of MCs to odors x and y, sdx and sdy are the standard 
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deviations of population responses to odors x and y, and n is the total number of MCs in the 

population.

The analysis of disynaptic connectivity as a function of tuning correlation (Fig. 4c; Extended 

Data Fig. 7c) included only neurons that showed an obvious response because correlation 

measurements are sensitive to noise. A neuron was classified as responsive when the average 

of the two largest responses exceeded the mean across all neuron-odor pairs by 0.6 standard 

deviations. When applied to the matrix representing all MCs and odors, approximately 30% 

of MCs were classified as responsive by this criterion. Weights of input synapses were 

normalized for each neuron to the sum of all inputs to that neuron and final plots were 

normalized to the mean.

Statistical analysis

No statistical methods were used to pre-determine sample sizes but our sample sizes are 

similar to those reported in previous publications8,10,14,15 or larger. Reconstruction of the 

wiring diagram required no sampling because all neurons and synapses were annotated. 

Neurons were randomly assigned to annotators for reconstruction. The study included only 

one animal. Stimulus presentation was not randomized. Annotators were blind to the identity 

of neurons. Otherwise, data collection and analysis were not performed blind to the 

conditions of the experiments. No animals or datapoints were excluded from analyses. 

Statistical comparisons were performed using a two-sided Wilcoxon rank-sum test, a two-

tailed t-test, a permutation test, or an F-test. Normality and equal variance were tested when 

statistical tests were used that make these assumptions.

Extended Data
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Extended Data Fig. 1. Sensory input to INs and mapping of datasets.
a, Distribution of the fraction of synaptic inputs onto INs that originated from sensory axons. 

The average fraction of synaptic inputs onto INs that came from sensory neurons was 5.9 ± 

4.6% (mean ± s.d.). This is an upper-bound estimate because structures in EM images were 

classified as sensory synapses even when they were small and when synaptic features such 

as postsynaptic densities and vesicle clusters were ambiguous. No obvious synaptic 

connections were observed from OB neurons onto axon terminals of sensory neurons. b, 

Displacement of regions of interest (ROIs) during manual proofreading. ROIs representing 

somata were mapped from the EM dataset to optical image planes in each trial by an affine 

transformation that was determined by an iterative landmark-based procedure (Methods). 

Subsequently, the position of each ROI was adjusted manually on the optical image (n = 

7,280 ROIs; six image planes with 11 trials each). The mean displacement (± s.d.) during 

manual adjustment (proofreading) was small (593 ± 833 nm), implying that automated 

mapping was highly reliable.
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Extended Data Fig. 2. Calcium imaging of odor responses.
a, Raw calcium signals (ΔF/F) evoked by eight odors in neurons that were present in all 

trials and included in simulations (208 MCs and 68 INs; average of two trials). Gray bars 

indicate odor stimulation. b, Raw calcium signals (ΔF/F) evoked by eight odors and E3 

medium in neurons that were present in all trials and included in simulations (176 MCs and 

50 INs; average of two trials; sorted by response to E3 medium). c, Correlation matrices of 

MC activity patterns at t1 and t2 after excluding 10 MCs with highest responses to E3 

medium (all MCs in b except for the first 10; n = 166 MCs in total). Calcium signals were 
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deconvolved to estimate firing rate changes as in Fig. 2. As observed in the full dataset (Fig. 

2e), MC activity patterns evoked by similar odors were correlated at t1 and became 

decorrelated at t2. The main results were therefore not affected by possible responses to E3 

medium.
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Extended Data Fig. 3. Decoding of odor identity from MC activity patterns.
a, Pearson correlation matrices showing similarities of activity patterns across odors and 

trials at t1 and t2 (average over 100 repetitions). In each repetition, two activity patterns 

(trials) were generated for each odor by randomly assigning the first or second response of 

each neuron to each trial. Note the high correlations between activity patterns representing 

the same odor in different trials, particularly at t2. b, Success rates of odor identification by 

template matching. For each odor, the vector representing the odor in one trial (test vector) 

was correlated to vectors representing all odors in the other trial (templates) and assigned to 
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the odor represented by the template with the highest correlation. Dots show the mean 

fraction of correct identifications, error bars show s.d., boxes show median, 25th percentile 

and 75th percentile (n = 100 repetitions each). Dashed gray line shows chance level. Top: 

identification based on patterns averaged over time windows t1 and t2 (see text). Bottom: 

identification based on single frames within t1 and t2. Left: tests and templates included all 

MCs. Center, right: the 10 or 100 MCs with the highest contribution to the initial pattern 

correlation (highest ri,t1) were omitted for each odor pair. Omitting the 10 MCs with the 

highest ri,t1 (cohorts) had almost no consequence on odor identification, confirming that 

information about precise odor identity is conveyed predominantly by other MCs.
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Extended Data Fig. 4. Additional simulation results.
a, Mean Pearson correlation between IN activity patterns (blue) and the corresponding MC 

activity patterns (black) evoked by different bile acid inputs in simulations (n = 6 bile acid 

pairs each). Correlations between IN activity patterns remain higher than correlations 

between MC activity patterns. b, Mean Pearson correlation between simulated MC activity 

patterns evoked by inputs representing different odors (blue; all bile acid pairs) and between 

activity patterns evoked by inputs representing the same odors in trials with input noise 

(purple; all bile acids). Shading shows s.d.. Noise was modeled based on conservative 

estimates of the number and firing rates of olfactory sensory neurons in zebrafish larvae 

(Methods). Three noisy trials were simulated for each odor, resulting in n = 12 correlations 

between same-odor trials and n = 54 correlations between different-odor trials. Patterns 

evoked by different inputs were decorrelated whereas noisy versions of the same inputs were 

not decorrelated.
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Extended Data Fig. 5. Algebraic transformations of sensory inputs.
a, Schematic: simple algebraic approach to approximate transformations of MC activity 

patterns by feedback inhibition. Input activity patterns (MC activity at t1) were multiplied by 

the feed-forward connectivity matrix WMC→IN, normalized and thresholded. Normalization 

and thresholding are basic operations performed by the neuronal circuits of the OB10 and by 

individual neurons, respectively. The resulting IN activity patterns were multiplied with the 

feedback connectivity matrix WMC←IN, resulting in odor-specific patterns of feedback 

inhibition onto MCs. Feedback inhibition was either subtracted from the MC activation 

patterns (subtractive inhibition), or MC activation patterns were divided by the feedback 

inhibition patterns (divisive inhibition), followed by thresholding. Scaling factors and 

thresholds were adjusted so that effects on the mean activity were small. b, Mean activity, 

Pearson pattern correlation and s.d. of pattern variance at t2 after algebraic transformations 

of input patterns as described in a (“Experiment”: experimental results). Horizontal black 
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lines show mean experimental values at t1; activity and s.d. of pattern variance is normalized 

to the experimental value at t1. Dots show means, error bars show s.d., filled bars show 

difference to corresponding values at t1. Box plots show median, 25% percentile, and 75th 

percentile. For experimental results and simulations using the reconstructed wiring diagram, 

variability was measured across odor pairs (correlation; bile acids only; n = 6) or individual 

odors (s.d. of variance; n = 8). Significance tests compare values at t2 to experimental values 

at t1 (correlation: two-sided Wilcoxon rank-sum test; s.d. of variance: F-test with df1 = df2 = 

7 degrees of freedom). For results obtained with randomized wiring diagrams (W random), 

variability was measured across n = 50 permutations of the wiring diagram. Significance 

tests compare repetitions to the mean value observed experimentally at t1 (two-sided 

Wilcoxon rank-sum test). *, p < 0.05; **, p < 0.01; ***, p < 0.001; n.s., not significant. In 

“targeted suppression”, the activity of the 10 MCs that contributed most strongly to the 

pattern correlation at t1 for each odor pair (“functional cohort”) was set to the population 

mean. No other manipulations or algebraic operations were performed. P-values: activity: 

0.57, 0.57, 0.25, 0.23 0.17; Pearson correlation: 0.03, 0.04, 0.98, 0.04, 0.008; s.d. of 

variance: 0.003, 10-23, 10-26, 10-21, 10-16.
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Extended Data Fig. 6. Occurrence of connectivity motifs as a function of tuning correlation.
Z-scores quantify the over-representation of motifs among MC pairs with signal correlations 

greater than a threshold between -0.8 and 0.8. For each motif, color-coded bars show z-

scores for different signal correlation thresholds. Z-scores were determined by comparison 

against 10,000 shufflings of the tuning correlation matrix as in Fig. 4d.
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Extended Data Fig. 7. Functional connectivity between interneurons.
a, IN-MC-IN triplets included in the analysis. Connections between INs were analyzed 

separately (see below and main text) to facilitate the comparison to MC-IN-MC triplets (Fig. 

4). b, Left: number of IN-MC-IN motifs found in the wiring diagram (considering only INs 

with activity measurements and at least one MC→IN and MC←IN connection; n = 66). 

Right: z-score quantifying over- or under-representation of motifs as compared to 10,000 

independent randomizations. c, Top: disynaptic connections between responsive INs as a 

function of tuning similarity (Pearson correlation), normalized to the mean (n = 992 neuron 
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pairs; neurons were included only when their activity exceeded a threshold; see Methods; 

number of neuron pairs per bin: 192, 218, 178, 228, 176). Dots and error bars show mean ± 

s.e.m. when tuning curves were determined using all eight odor stimuli. Box plots show 

median, 25th percentile and 75th percentile across results when tuning curves were 

determined by all possible combinations of four odors. Bottom: result of the same analysis 

including only reciprocal connections (motif 4; n = 992 neuron pairs). d, Left: Pearson 

correlations between the mean tuning curves of MC inputs to INs (n = 57 INs). INs were 

ordered by optimal leaf ordering for hierarchical clustering. Right: Pearson correlations 

between the mean tuning curves of the MC targets of INs (same ordering of INs). INs were 

included in the analysis when their activity was measured, when they received input from at 

least 1 MC and 1 IN for which activity measurements were available, and when they 

targeted at least 1 MC and 1 IN for which activity measurements were available. e, X-axis: 

Pearson correlation between the tuning curves of each IN and the mean tuning curves of MC 

inputs to the same IN (rIN-inputs). Y-axis: Pearson correlation between the tuning curves of 

each IN and the mean tuning curves of its MC targets (rIN-targets). r, correlation coefficient; 

***, p = 10-8 (two-tailed t-test, n = 63 INs). INs were included in the analysis when their 

activity was measured, when they received input from at least 1 MC for which activity 

measurements were available, and when they targeted at least 1 MC for which activity 

measurements were available. f, Black: number of maximal IN cliques in the wiring diagram 

as a function of clique size. Gray curve shows expectation based on randomized wiring 

diagrams (10,000 permutations). A maximal clique is a complete set of INs that are all 

reciprocally connected to each other. Top and bottom plots show distributions for cliques 

without a MC and cliques with one reciprocally connected MC, respectively. Maximal 

cliques with more than one MC do not exist because the wiring diagram contained no 

connections between MCs. g, Left: Mean Pearson correlation of tuning curves between 

neurons in maximal cliques as a function of clique size (n = 414; number per bin: 3, 19, 22, 

44, 96, 99, 75, 29, 24, 3). Dots and error bars show mean ± s.e.m.; box plots show median, 

25th percentile and 75th percentile. Gray curve shows mean after shuffling of tuning 

correlation matrix (right). Right: same analysis after shuffling of tuning correlation matrix 

(1,000 repetitions; n = 414,000; number per bin: 3,000, 19,000, 22,000, 44,000, 96,000, 

99,000, 75,000, 29,000, 24,000, 3,000). Black curve shows mean of original data (left).
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Extended Data Fig. 8. Effects of different transformations on pattern correlation.
a, Schematic: effect of contrast enhancement on the correlation between displaced Gaussian 

patterns. The X-axis represents neurons while the Y-axis represents their activity. Blue and 

orange bars represent overlapping activity patterns evoked by two different stimuli. The 

similarity of activity patterns is quantified by the Pearson correlation coefficient, r. Note that 

many neurons respond to both stimuli but neurons showing maximal responses differ 

between stimuli. Hence, strongly active neurons convey stimulus-specific information. 

Contrast enhancement therefore decorrelates patterns because it emphasizes strongly active 

neurons and suppresses weakly active neurons. b, Effect of contrast enhancement on the 

Pearson correlation between activity pattern that overlap in strongly active neurons. Activity 

patterns have the same Pearson correlation as in a but their shape is slightly different: 

maximal responses to the two stimuli occur in the same neuron, and tails of moderately or 

weakly active neurons extend in opposite directions. Hence, stimulus-specific information is 

conveyed primarily by moderately or weakly active neurons while strong responses are non-

specific. As a consequence, contrast enhancement fails to decorrelate these patterns. c, 

Patterns that overlap in strongly active neurons (same as in b; r: Pearson correlation) are 

decorrelated by selective inhibition of strongly active neurons, which results in contrast 

reduction. Decorrelation occurs because the relative contribution of moderately or weakly 

active neurons is enhanced as the activity of strongly active neurons is suppressed. Selective 

inhibition of strongly active units is generated by reciprocal inhibition that is stronger or 
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denser within cohorts of co-tuned neurons. Inhibitory feedback gain is therefore higher than 

the average inhibitory feedback gain within a co-tuned cohort when the stimulus feature that 

activates the cohort is present (feature suppression).
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Extended Data Fig. 9. Further characterization of functional cohorts.
a, Composition of functional MC cohorts. For each pair of bile acid odors (X-axis), a 

functional MC cohort was defined as the 10 MCs that contribute most to the correlation 

between odor-evoked activity patterns at t1 (highest ri,t1). Gray pixels denote membership of 

each MC (Y-axis) in each cohort. Cohorts for different odor pairs overlapped substantially. 

Consistent with this observation, the mean Pearson correlation between tuning curves of 

MCs at t1 was significantly higher within cohorts (r = 0.56 ± 0.40; mean ± s.d.) than across 

all MCs (r = 0.01 ± 0.38; p = 10-84; two-sided Wilcoxon rank-sum test). Furthermore, we 

analyzed the mean tuning correlation at t1 among the 16 MCs that were not part of cohorts 

themselves but provided the highest number of disynaptic input connections to neurons 

inside cohorts (r = 0.23 ± 0.52; mean ± s.d.). This tuning correlation was lower than the 

tuning correlation within the cohort but still significantly higher than the mean tuning 

correlation across all MCs (p = 10-40; two-sided Wilcoxon rank-sum test). Similarly, the 

mean tuning correlation at t1 among the 16 MCs that received the most disynaptic output 

connections from neurons inside cohorts (r = 0.17 ± 0.53; mean ± s.d.) was lower than the 

tuning correlation within the cohort but significantly higher than the mean tuning correlation 

across all MCs (p = 10-17; two-sided Wilcoxon rank-sum test). b, Black: frequency of each 

MC-IN-MC triplet motif in MC cohorts (n = 6 cohorts for each motif). Dots show means, 

error bars show s.d., box plots show median, 25% percentile, and 75th percentile. Gray: 

frequency of MC-IN-MC triplet motifs among randomly selected MC subsets of the same 

size (n = 10 MCs; n = 600 repetitions for each motif). Frequency of occurrence is 

normalized to the mean frequency in random subsets for each motif. **, p < 0.01; ***, p < 

0.001 (two-sided Wilcoxon rank-sum test). P-values: 0.002, 10-5, 0.0008, 0.0001. We also 

observed that the 10 INs receiving the largest number of MC inputs from each cohort were 

1.7 times more likely to make direct connections than random subsets of INs (p = 0.007; 

two-sided Wilcoxon rank-sum test). c, Blue: mean activity of the 10 MCs in the functional 

cohort defined by responses to TCA and GCDCA (example odors in Fig. 5b). Green: mean 

activity of the 10 INs that were included in activity measurements and provided the highest 

synaptic input to the MC cohort. As expected, IN activity increased while MC activity 

decreased during odor application.
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Fig. 1. Neuronal organization and computations in the OB.
a, Schematic illustration of whitening in the OB. Top: correlated input patterns with different 

variance. Bottom: decorrelated output patterns with similar variance. Center: Highly 

simplified illustration of the OB circuit. MCs receive excitatory input from a single 

glomerulus and interact via inhibitory INs. Whitening requires multisynaptic interactions 

between specific subsets of MCs that are mediated by INs and defined by the wiring 

diagram. Interactions between INs and top-down inputs to the OB are not shown. b, 

Example of a reciprocal synapse between a MC and an IN. c, Reconstructions of a MC (left) 

Wanner and Friedrich Page 36

Nat Neurosci. Author manuscript; available in PMC 2020 July 20.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



and an IN (right). Gray volumes show glomeruli, dots depict synapses, colors denote 

synapse class (unidirectional non-sensory input [blue], unidirectional output [red], reciprocal 

[magenta], input from sensory neurons [green]). d, Simplified representation of the wiring 

diagram between MCs and INs (binarized connection strength). Colored matrix elements 

show MC→IN synapses (blue), MC←IN synapses (orange), and reciprocal synapses 

(black).
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Fig. 2. Odor-evoked population activity in the OB.
a, Mapping of the six optical image planes selected for calcium imaging onto the EM-based 

reconstructions of neurons. Thickness of planes shows range of drift between trials. b, One 

optical image plane showing raw GCaMP5 fluorescence (left) and the corresponding oblique 

slice through the EM image stack (right). Dashed line outlines ipsilateral brain hemisphere; 

continuous white outlines show glomerular neuropil. Tel, telencephalon; OB, olfactory bulb. 

Region outlined by the red square is enlarged; white dots depict somata in corresponding 

locations. Bottom left: fluorescence change evoked by an odor stimulus in the same field of 

view. Arrowheads depict locations of two responsive somata in different images. The 

alignment of EM images with optical images was repeated in all n = 6 image planes with 
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similar results. c, Activity (deconvolved calcium signals) of MCs (n = 232) and INs (n = 68) 

in response to four bile acids (BAs) and four amino acids (AAs) during two time windows, 

t1 and t2. d, Left: time courses of odor-evoked activity (n = 8 odors), pattern correlation 

(Pearson; n = 6 bile acid pairs) and pattern variance (n = 8 odors). Activity was determined 

by low-pass filtering and deconvolution of somatic calcium signals. Horizontal bar indicates 

time of odor stimulation. Black: mean measures across MCs. Gray: individual odors 

(variance) or odor pairs (correlation). Light blue: mean measures across INs. Correlation 

was measured only between activity patterns evoked by bile acids because patterns evoked 

by amino acids were dissimilar already at response onset. Right: Mean measures for MCs 

during t1 and t2 (activity, correlation, mean variance: two-sided Wilcoxon rank-sum test; s.d. 

of variance: F-test with df1 = df2 = 7 degrees of freedom; F = 14.0). Black markers and error 

bars show mean ± s.d.; gray lines show individual datapoints. e, Matrices showing Pearson 

correlations between activity patterns across MCs (left; n = 232) and INs (right; n = 68) at t1 

and t2. Odors: TCA, taurocholic acid; GCA, glycocholic acid; GCDCA, 

glycochenodeoxycholic acid; TDCA, taurodeoxycholic acid; Trp, tryptophan; Phe, 

phenylalanine; Val, valine; Lys, lysine.
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Fig. 3. Whitening depends on connectivity.
a, Architecture of the simulated network. Sensory input was targeted to MCs but not to INs. 

b, Time courses of simulated odor-evoked activity, pattern correlation (Pearson) and the s.d. 

of pattern variance obtained with different IN-IN connection strengths (100%, 20%, 0%). 

100% corresponds to the same strength as MC←IN connections. Measures were calculated 

across all n = 208 MCs. c, Simulated network without IN-IN connections. d, Time courses 

of simulated activity, pattern correlation (Pearson) and s.d. of pattern variance obtained with 

different wiring diagrams (no IN-IN connections). Measures were calculated across all n = 
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208 MCs. Blue: original wiring diagram obtained by circuit reconstruction. Dark red: fully 

randomized connectivity. Light red: co-permutation of feed-forward (MC→IN) and feed-

back (MC←IN) connectivity. Shaded areas show s.d. across permutations. e, Pattern 

correlation and s.d. of pattern variance at t2. Horizontal black lines show mean experimental 

values at t1; s.d. of pattern variance is normalized to the experimental value at t1. Statistical 

comparisons of correlation and s.d. of variance were performed using a two-tailed t-test and 

an F-test, respectively. Dots show means, error bars show s.d., filled bars show difference to 

corresponding values at t1, box plots show median, 25% percentile, and 75th percentile. For 

experimental results and simulations using the reconstructed wiring diagram, variability was 

measured across odor pairs (correlation; bile acids only; n = 6) or individual odors (s.d. of 

variance; n = 8). Significance tests compare values at t2 to experimental values at t1 

(correlation: two-sided Wilcoxon rank-sum test; s.d. of variance: F-test with df1 = df2 = 7 

degrees of freedom). For other simulation results, variability was measured across n = 50 

different network simulations (repetitions). Significance tests compare repetitions to the 

mean value observed experimentally at t1 (two-tailed t-test with 49 degrees of freedom). *, p 

< 0.05; **, p < 0.01; ***, p < 0.001; n.s., not significant. P-values: correlation: 0.03, 0.04, 

0.81 (t = 0.23), 0.51 (t = 0.66), 0.42 (t = 0.81); s.d. of variance: 0.003 (F = 14.0), 0.04 (F = 

5.2), 0.01 (t = 2.56), 0.03 (t = 2.19), 0.03 (t = 2.18). f, Top: disynaptic connectivity matrix 

between all MCs included in activity measurements and simulations (WMC→IN * WMC←IN; 

Methods). Grayscale represents number of disynaptic MC-IN-MC connections (normalized). 

Bottom: example of a disynaptic connectivity matrix with the same order of MCs after co-

permuting WMC→IN and WMC←IN.
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Fig. 4. Tuning-dependent disynaptic connectivity in the OB.
a, Classes of triplet connectivity motifs between MCs and INs. b, Left: number of 

connectivity motifs found in the wiring diagram (considering only MCs with activity 

measurements; n = 232). Right: z-score quantifying over- or under-representation of motifs 

as compared to 10,000 independent randomizations of the wiring diagram. c, Left: 

disynaptic connections between responsive MCs as a function of tuning similarity, 

normalized to the mean (n = 2,162 neuron pairs; Methods; number of neuron pairs per bin: 

298, 368, 416, 502, 578). Dots and error bars show mean ± s.e.m. when tuning curves were 

determined using all eight odor stimuli. Box plots show median, 25th percentile and 75th 

percentile across results when tuning curves were determined by all possible combinations 

of four odors. Right: same analysis including only reciprocal connections (motif 4; n = 2,162 
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neuron pairs). d, Over- and under-representation of connectivity motifs among MC pairs 

with high tuning correlation (Pearson; r > 0.5; black) and among the remaining pairs (r ≤ 

0.5; gray). Z-scores were determined by comparison against 10,000 shufflings of the tuning 

correlation matrix (one-tailed permutation test, n = 10,000 permutations, no adjustments for 

multiple comparisons). *, p < 0.05; **, p < 0.01; ***, p < 0.001; n.s., not significant. P-

values for motif counts: 0.1117, 0.1105, 0.0015, 0.0014, 0.0122, 0.0109, 0.0001, 0.0004.
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Fig. 5. Disynaptic connectivity underlying feature suppression.
a, Schematic illustration of contrast enhancement by unidirectional lateral inhibition (left) 

and down-scaling of cohort activity by reciprocal inhibition (right; feature suppression). 

Arrow length and grayscale indicate activity. b, Example of MC activity patterns evoked by 

two bile acids (TCA, GCDCA) that were decorrelated between t1 and t2. MCs are ranked 

from top to bottom by their individual contribution to the pattern correlation r at t1 (ri,t1; 

Pearson correlation). c, Left: average contribution of MCs to all pairwise correlations 

between activity patterns evoked by bile acids at t1 and t2. MCs were ranked by ri,t1 for each 
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pair of patterns as in b. Sorted vectors of correlation contributions were then averaged over 

odor pairs. Center, right: Mean bile-acid evoked activity of MCs and mean contribution of 

MCs to pattern variance. MCs were sorted by ri,t1 and averaged as in the left panel. Gray and 

black curves show correlation contribution, activity, and variance contribution at t1 and t2, 

respectively (same sorting of individual neurons by ri,t1 for all curves). Insets enlarge the top 

part of the curves (20 MCs with highest ri,t1). d, Example of disynaptic retrograde tracing of 

functional cohorts in the wiring diagram. Blue: three MCs with highest ri,t1 for the odor pair 

shown in b (“starter MCs”). Green: 12 INs with largest number of synaptic inputs to the 

starter MCs. Red: 48 MCs with largest number of disynaptic inputs to the starter MCs. 

Transparency represents the number of synaptic connections. Note that the MCs with strong 

disynaptic connectivity to the starter MCs include the starter MCs themselves, consistent 

with pronounced reciprocal connectivity among functionally related MC cohorts. e, 

Disynaptic MC-IN-MC connectivity as a function of correlation contribution at t1 (ri,t1; same 

ranking of MCs as in b and c). For each pair of bile acids, the 10 MCs with the highest ri,t1 

were selected as starter cells. Disynaptic inputs from all MCs were then represented in a 

vector and averaged over odor pairs. Note strong overrepresentation of disynaptic 

connectivity within the cohort of starter cells (gray shading).
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Fig. 6. Mechanism of whitening analyzed by targeted manipulations of the wiring diagram.
a, Mean correlation contribution, activity, and variance contribution of MCs responding to 

bile acids at t1 (light blue) and t2 (dark blue) in simulations (correlation contribution: n = 6 

bile acid pairs; activity and variance contribution: n = 8 odors). MCs were ranked by the 

correlation contribution ri,t1 observed in experimental data as in Fig. 5c. Insets enlarge the 

top parts of the curves (20 MCs with highest ri,t1) and compare simulation results to 

experimental data (gray, black) for the same 20 MCs. b, Simulated synaptic inputs as a 

function of time during stimulus presentation for all MCs. For each odor pair, MCs were 
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ranked by the correlation contribution ri,t1 in experimental data as in a and Fig. 5c. Ranked 

matrices were normalized and averaged over odor pairs. Inset: synaptic inputs to the 20 MCs 

with highest ri,t1. Top: original wiring diagram; bottom: randomized wiring diagram. c, 

Schematic: selective deletion, selective permutation and selective preservation of MC cohort 

connectivity in simulations. d, Pattern correlation (Pearson) and s.d. of pattern variance 

(normalized) at t2 observed in simulations under different conditions. Horizontal black lines 

show mean values at t1. Dots show means, error bars show s.d., filled bars show difference to 

corresponding values at t1, box plots show median, 25% percentile, and 75th percentile. For 

simulations using the original wiring diagram, variability was determined across odor pairs 

(correlation; bile acids only; n = 6) or individual odors (s.d. of variance; n = 8). Significance 

tests compare values at t2 to experimental values at t1 (correlation: two-sided Wilcoxon 

rank-sum test; s.d. of variance: F-test with df1 = df2 = 7 degrees of freedom). For other 

simulation results, variability was measured across n = 50 different network simulations 

(repetitions). Significance tests compare repetitions to the mean value observed 

experimentally at t1 (two-tailed t-test with 49 degrees of freedom). *, p < 0.05, ***, p < 

0.001; n.s., not significant. P-values: correlation: 0.04, 10-5 (t = 5.0), 10-13 (t = 10.5), 10-5 (t 

= 5.1), 0.67 (t = 0.4); s.d. of variance: 0.04 (F = 5.2), 10-7 (t = 6.3), 10-45 (t = 53.8), 0.07 (t = 

1.84), 10-4 (t = 4.22). e, Time courses of mean activity, mean pattern correlation (bile acid 

pairs) and the s.d. of pattern variance in simulations using different wiring diagrams. Shaded 

area shows s.d. across different permutations (n = 50). f, Mean correlation contribution, 

activity, and variance contribution of the 20 MCs with the highest ri,t1 observed 

experimentally and in simulations using different wiring diagrams. MCs were ranked by ri,t1 

observed in experimental data as in a and in Fig. 5c (same ranking under all conditions). 

Gray: t1; Colored: t2 (mean over 50 repetitions for all permutations).

Wanner and Friedrich Page 47

Nat Neurosci. Author manuscript; available in PMC 2020 July 20.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Results
	Reconstruction of the wiring diagram and mapping of neuronal activity
	Computational consequences of connectivity
	Higher-order structure of connectivity
	Mechanism of whitening

	Discussion
	Methods
	Animals and preparation
	Odor stimulation
	Multiphoton calcium imaging
	Automated drift correction
	Electron microscopy
	Neuron reconstruction and synapse annotation
	Correlation between multiphoton and SBEM image stacks
	Analysis of calcium signals
	Network modeling
	Analysis of triplet motifs
	Additional analyses
	Statistical analysis

	Extended Data
	Extended Data Fig. 1
	Extended Data Fig. 2
	Extended Data Fig. 3
	Extended Data Fig. 4
	Extended Data Fig. 5
	Extended Data Fig. 6
	Extended Data Fig. 7
	Extended Data Fig. 8
	Extended Data Fig. 9
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6

