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,e existence of various sounds from different natural and unnatural sources in the deep sea has caused the classification and
identification of marine mammals intending to identify different endangered species to become one of the topics of interest for
researchers and activist fields. In this paper, first, an experimental data set was created using a designed scenario. ,e whale
optimization algorithm (WOA) is then used to train the multilayer perceptron neural network (MLP-NN). However, due to the
large size of the data, the algorithm has not determined a clear boundary between the exploration and extraction phases. Next, to
support this shortcoming, the fuzzy inference is used as a new approach to developing and upgrading WOA called FWOA. Fuzzy
inference by setting FWOA control parameters can well define the boundary between the two phases of exploration and ex-
traction. To measure the performance of the designed categorizer, in addition to using it to categorize benchmark datasets, five
benchmarking algorithms CVOA, WOA, ChOA, BWO, and PGO were also used for MLPNN training. ,e measured criteria are
concurrency speed, ability to avoid local optimization, and the classification rate. ,e simulation results on the obtained data set
showed that, respectively, the classification rate in MLPFWOA, MLP-CVOA, MLP-WOA, MLP-ChOA, MLP-BWO, and MLP-
PGO classifiers is equal to 94.98, 92.80, 91.34, 90.24, 89.04, and 88.10. As a result, MLP-FWOA performed better than
other algorithms.

1. Introduction

,e deep oceans make up 95% of the oceans’ volume,
which is the largest habitat on Earth[1]. Creatures are
continually being explored in the depths of the ocean with
new ways of life [2, 3]. Much research has been conducted
in the depths of the ocean, but unfortunately, this research
is not enough, and many hidden secrets in the ocean
remain unknown [4].

Various species of marine mammals, including whales
and dolphins, live in the ocean. Underwater audio signal
processing is the newest way to measure the presence,
abundance, and migratory marine mammal patterns [5–7].
,e use of human-based methods and intelligent methods
is one method of recognizing whales and dolphins [8].
Initially, human operator-based methods were used to
identify whales and dolphins. Its advantages include
simplicity and ease of work. However, the main
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disadvantage is the dependence on the operator’s psy-
chological state and inefficiency in environments where the
signal-to-noise ratio is low [9].

To eliminate these defects, automatic target recognition
(ATR) based on soft calculations is used [10, 11]. ,en,
contour-based recognition was used for recognition of
whales and dolphins due to its time complexity and low
identification rate [12, 13, 14]. ,e next item from the subset
of intelligent methods is the ATR method based on soft
computing [15], which is wildly popular due to its versatility
and parallel structure [16, 17].

,e MLP-NN neural network, due to its simple struc-
ture, high performance, and low computational complexity,
has become a useful tool for automatically recognizing
targets [18–20]. In the past, MLP-NN training used gradient-
based methods and error propagation, but these algorithms
had a low speed of convergence and were stuck in local
minima [21–23].

,erefore, this paper presents a new hybrid method of
MLP-NN training using FWOA to classify marine mam-
mals. ,e main contributions of this work are as follows:

(i) Practical test design to obtain a real data set from the
sound produced by dolphins and whales

(ii) Classifier design using MLP-NN to classify dolphins
and whales

(iii) MLP-NN training using the proposed FWOA hy-
brid technique

(iv) MLP-NN training using new metaheuristic algo-
rithms (CVOA, ChOA, BWO, PGO) and WOA as
benchmark algorithms

In the following paragraphs, the paper is structured in
such a manner that Section 2 designs an experiment for data
collection. Section 3 will cover how to extract a feature.
Section 4 describes WOA and how to fuzzy. Section 5 will
simulate and discuss it, and finally, Section 6 will conduct
conclusions and recommendations.

1.1. Background and Related Work. MLP-NNs are a com-
monly used technology in the field of soft computing [11, 24].
,ese networks may be used to address nonlinear issues.
Learning is a fundamental component of all neural networks
and is classified as unsupervised and supervised learning. In
most cases, back-propagation techniques or standard [25, 26]
are also used as a supervised learning approach for MLP-NNs.
Back-propagation is a gradient-based technique with limita-
tions such as slower convergence, making it unsuitable for real
world applications. ,e primary objective of the neural net-
work learning mechanism is to discover the optimal weighted
edge and bias combination that produces the fewest errors in
network training and test samples [27, 28]. Nevertheless, the
majority of MLP-NN faults will remain high for an extended
period of time throughout the learning process, after which
they will be reduced by the learning algorithm. ,is is par-
ticularly prevalent in mechanisms relying on gradients, such as
back-propagation algorithms. In addition, the back-propaga-
tion algorithm’s convergence is highly dependent on the initial
values of the learning rate and the magnitude of the motion.

Incorrect values for these variables may potentially result in
algorithm diverging. Numerous research works have been
conducted to address this issue using the back-propagation
algorithm [29], but there is not enough optimization that has
occurred, and each solution has unintended consequences. We
have seen an increase in the usage of meta-heuristic methods
for neural network training in recent years. ,e following
(Table 1) discusses many works on neural network training
using different meta-heuristic techniques.

GA and SA are likely to minimize local optimization but
have a slower convergence rate. ,is is inefficient in real-
time processing applications. Although PSO is quicker than
evolutionary algorithms, it often cannot compensate for
poor solution quality by increasing the number of iterations.
PSOGSA is a fairly sophisticated algorithm, and its per-
formance is insufficient for solving problems with a high
dimension. BBO requires lengthy computations. Despite
their minimal complexity and rapid convergence speed,
GWO, SCA, and IWTfall victim to local optimization and so
are not appropriate for applications requiring global opti-
mization. ,e primary cause for being stuck in local opti-
mizations is a mismatch between the exploration and
extraction stages. Various methods are provided to solve
problems such as getting stuck in local optimizations and
slow convergence speed in WOA, including parameteriza-
tion ɑ by the linear control strategy (LCS) and arcsine-based
nonlinear control strategy (NCS-arcsine) to establish the
right balance between exploration and extraction [51, 52].
LCS and NCS-arcsine strategies usually do not provide
appropriate solutions when used for high-dimensional
problems.

On the other hand, the no free launch (NFL) theorem
logically states that meta-heuristic algorithms do not have
the same answer in dealing with different problems [29].
Due to the problems mentioned and considering the NFL
theory in this article, a fuzzy whale algorithm called Fuzzy-
WOA is introduced for the MLP-NN training problem to
identify whales and dolphins.

To investigate the performance of the FWOA, we design
an underwater data accusation scenario, create an experi-
mental dataset, and compare it to a well-known benchmark
dataset (Watkins et al. 1992). To address the time-varying
multipath and fluctuating channel effects, a unique two
cepstrum liftering feature extraction technique is used.

2. The Experiment Design andData Acquisition

As shown in Figure 1, to obtain a real data set of sound
produced by dolphins and whales from a research ship
called the Persian Gulf Explorer and a Sonobuoy, a
UDAQ_Lite data acquisition board and three hydrophones
(Model B& k 8013) were obtained and were used with equal
distance to increase the dynamic range. ,is test was
performed in Bushehr port. ,e array’s length is selected
based on the water depth, and Figure 2 shows the hy-
drophones’ location.

,e raw data included 170 samples of pantropical
spotted dolphin (8 sightings), 180 samples of spinner dol-
phin (five sightings), 180 cases of striped dolphin (eight
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sightings), 105 cases of humpback whale (seven sightings),
95 samples of minke whale (five sightings), and 120 samples
of the sperm whale (four sightings). ,e experiment was
developed and performed in the manner shown in Figure 2.

2.1. 4e Ambient Noise Reduction and Reverberation
Suppression. For example, the sounds emitted by marine
mammals (dolphins and whales) recorded by the hydro-
phone array are considered x (t), y (t), z (t), and the original

Table 1: Some related studies.

Paper Type Application Training algorithms Year
[30] Feed-forward NN Sonar image classification Genetic algorithm (GA) 1989
[31] MLP NN Magnetic body detection in a magnetic field Simulated annealing (SA) 1994
[32] MLP NN Predicting the solubility of gases in polymers Particle swarm optimizer (PSO) 2013
[33] MLP NN Parkinson’s disease diagnosis Social-spider optimization (SSA) 2014
[34] ANN Artificial intelligence Runge Kutta method 2015
[35] MLP NN XOR, heart, iris, balloon, and breast cancer dataset Moth-flame optimization (MFO) 2016
[36] MLP NN Sonar dataset classification Gray wolf optimization (GWO) 2016
[37] Feed-forward NN Sonar dataset classification Particle swarm optimizer (PSO) 2017

[38] Algorithm
improvement

23 benchmark functions and solving infinite impulse
response model identification

Lévy flight trajectory-based WOA
(LWOA) 2017

[39] MLP NN Big data Biogeography-based optimization
(BBO) 2018

[40] MLP NN UCI dataset (benchmark) Monarch butterfly optimization
(MBO) 2018

[41] Algorithm
improvement Five standard engineering optimization problems LWOA 2018

[42] MLP NN Sonar target classification Dragonfly optimization algorithm
(DOA) 2019

[42] MLP NN Sonar dataset classification Improved whale 2019
[43] MLP NN Classification of EEG signals PSOGSA 2020
[44] ANN Prediction of urban stochastic water demand Slime mould algorithm (SMA) 2020

[45] Algorithm
improvement Optimize star sensor calibration Hybrid WOA-LM algorithm 2020

[46] Feed-forward NN COVID19 detection Colony predation algorithm (CPA) 2020
[47] MLP NN XOR, balloon, Iris, breast cancer, and heart Harris hawks optimization (HHO) 2020

[48] Deep convolutional
NN COVID19 detection Sine-cosine (SCA) 2021

[49] ANN Predicting ground vibration Hunger games search optimization
(HGS) 2021

[50] MLP NN Sonar dataset classification Fuzzy grasshopper optimization
algorithm (FGOA) 2022

(a) (b)

(c) (d)

Figure 1: Items needed to collect data sets in: (a) Persian gulf explorer. (b) Research sonobuoys. (c) Hydrophone model 8103 of B&K
company. (d) UDAQ_Lite data collection board.
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sound of dolphins and whales is considered s (t). ,e
mathematical model of the output of hydrophones is in

x(t) � 􏽚
t

−∞
h(t − τ)s(τ),

y(t) � 􏽚
t

−∞
g(t − τ)s(τ),

z(t) � 􏽚
t

−∞
q(t − τ)s(τ).

(1)

In equation (1), the Environment Response Functions
(ERF) are denoted by h (t), g (t), and q (t). ERFs are not
known, and “tail” is considered uncorrelated [53], and
naturally, the first frame of sound produced by marine
mammals does not reach the hydrophone array at one time.
Due to the sound pressure level (SPL) in the Hydrophone
B&K 8103 and reference, which deals with the underwater
audio standard, the recorded sounds must be preamplified
by a factor of 106.

,e frequency domain SPL is then transformed using
the Hamming window and fast Fourier transform (FFT).
Following that, (2) reduces the frequency bandwidth to
1 Hz.

SPL1 � SPLm − 10 logΔf. (2)

SPLm is the obtained SPL at each fundamental frequency
center in dB; re 1 μPa, SPL1 is the SPL reduced to 1Hz
bandwidth in dB; re 1 μPa, and Δf represents the bandwidth
for each 1/3 Octave band filter. To reduce the square mean
error (MSE) between ambient noise and marine mammal
noise, a Wiener filter was utilized [54]. Following that, the
results were computed using (3) to identify sounds with a

low SNR, less than 3 dB, that should be eliminated from the
database.

SPLv � 10log 10
SPLT

10
􏼒 􏼓

− 10
SPLA

10
􏼒 􏼓⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

where T, V, and A represent all the available signals, sound,
and ambient sound, respectively. After that, the SPLs were
recalculating at a standard measuring distance of 1m as
follows:

SPL � SPL1 + 20log(r). (4)

Figure 3 illustrates the block diagram for ambient noise
reduction and reverberation suppression.

In the next part, the effect of reverberation must be
removed. In this regard, the common phase is added to the
band (reducing the phase change process using the delay
between the cohesive parts or the initial sound is called the
common phase) [55]. ,erefore, a cross-correlation pass
function by adjusting each frequency band’s gain eliminates
noncorrelated signals and passes the correlated signals.
Finally, the output signals from each frequency band are
merged to form the estimated signal, i. e., 􏽢S. ,e basic design
for removing reverberation is shown in Figure 4. Figure 5
illustrates typical representations of dolphin and whale
sounds and melodies, as well as their spectra.

3. Average Cepstral Features and Cepstral
Liftering Features

,e effect of ambient noise and reverberation decreases after
detecting the audio signal frames obtained in the

Sonobuoy

Hydrophone array

Communication
Link

Dolphine Ballast

H3

H2

H1

Whale

Figure 2: Test scenario and location of the hydrophones.
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Amplifier Filter

Hydrophone
Array

Reverberation
Removal Section

A/D Fourier
Transform

Frequency Band
Reduction Eq.2

Distance
Normalization

Eq.4

Correction for
Background
Noise Eq.3

Figure 3: ,e block diagram of the ambient noise reduction and reverberation suppression system.
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Figure 4: ,e reverberation removal section’s block diagram.
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Figure 5: Continued.
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preprocessing stage. In the next step, the detected signal
frames enter the feature extraction stage. ,e sounds made
by dolphins and whales emitted from a distance to the
hydrophone experience changes in size, phase, and density.
Due to the time-varying multipath phenomenon, fluctuating
channels complicate the challenge of recognizing dolphins
and whales. ,e cepstral factors combined with the cepstral
liftering feature may considerably reduce the impacts of
multipath, whilst the average cepstral coefficients can sig-
nificantly minimize the time-varying effects of shallow
underwater channels [56]. As a result, this section recom-
mends the use of cepstral features, such as mean cepstral
features and cepstral liftering features, in order to construct a
suitable data set. Cepstrum indices of greater and lower
values indicate that the channel response cepstrum and the
original sound of dolphins and whale cepstrum are distinct.
[57]. ,ey are located in distinct regions of the liftering
cepstrum. ,erefore, by reducing time liftering, the quality
of the features is increased. Following removing noise and
reverberation, the frequency domain frames of SPLs (S (k))
are passed to the portion extracting cepstrum features. ,e
following equation determines the cepstrum characteristics
of the sound produced by dolphin and whale signals.

c(n) � 􏽘
M

l�1
log 􏽘

N−1

k�0
|S(k)|

2
Hl(k)⎛⎝ ⎞⎠cos(n/(1 − 0.5)π/M),

(5)

where S(k) indicates the frequency domain frames of sounds
generated by dolphins and whales, N signifies the number of
discrete frequencies employed in the FFT, andHl (k) denotes
the transfer function of the Mel-scaled triangular filter with
l� 0,1, ...,M. Ultimately, using the discrete cosine transform
(DCT), the cepstral coefficients are converted to the time
domain as c (n).

As previously stated, the sound generated by dolphins
and whales is obtained via a method called low-time lif-
tering. Consequently, (6) is recommended to separate the
sound that originated from the whole sound.

we[n] �

1, 0≤ n≤ Lc,

0, Lc ≤ n≤
N

2
.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

Lc indicates the liftering window’s length, which is
typically 15 or 20.,e ultimate features may be computed by
multiplying the cepstrum c (n) by and using the logarithm
and DFT functions as described in the following equations:

ce(n) � we[n]c(n), (7)

cL(n) � Log DFT ce(n)( 􏼁( 􏼁. (8)

Finally, the feature vector would be represented using

xm � cL(0), cL(1), · · · , cL(P − 1)
T

􏽨 􏽩. (9)
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Figure 5: Typical sound presentations produced by dolphins and whales and their spectrogram. (a) Pantropical spotted dolphin. (b) Spinner
dolphin. (c) Striped dolphin. (d) Humpback whale. (e) Minke whale. (f ) Sperm whale.
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,e first 512-cepstrum points (out of 8192 points in one
frame for a sampling rate of 8192Hz, expect for zeroth index
cm

y [0]􏽮 􏽯 are corresponded to 62.5ms liftering coefficients
and are windowed from theN indices, which is equivalent to
one frame length to reduce the liftering coefficients to 32
features. Prior to averaging, the duration of subframes is five
seconds. Ten prior frames compose 50 s average cepstral
features throughout the averaging liftering technique,
smoothing 10 frame results in the final average cepstral
features. As a result, the average cepstral feature vector has
32 elements. ,e Xm vector would then be used as an input
signal for an MLP-NN in the subsequent phase.

To summarize, the number of inputs to a neural network
equals P. ,e whole feature extraction step is shown in
Figure 6. To summarize, Figure 7 depicts the result of this
step.

4. Design of an FWOA-MLPNN for Automatic
Detection of Sound Produced by
Marine Mammals

MLP-NN is the simplest and most widely used neural
network [58, 59]. Important applications of MLP-NN in-
clude automatic target recognition systems. For this reason,
this article uses MLP-NN as an identifier [60]. MLP-NN is
amongst the most durable neural networks available and is
often used to model systems with a high degree of non-
linearity. In addition, the MLP-NN is a feed-forward net-
work able of doing more precise nonlinear fits. Despite what
has been said, one of the challenges facing MLP-NN is al-
ways training and adjusting the edges’ bias and weight [61].

,e steps for using meta-heuristic algorithms to teach
MLPNN are as follows: the first phase is to determine how to
display the connection weights. ,e second phase involves
evaluating the fitness function in order to determine the
connection weights, which may be thought of as the mean
square error (MSE) for recognition issues. ,e third step
employs the evolutionary process to minimize the fitness
function, that is represented by the MSE. Figure 8 and
equation (10) illustrate the technical design of the evolu-
tionary technique for connection weight training.

V
→

� W
�→

. θ
→

􏼚 􏼛 � W11.W12. · · · .Wih.b1.b2. · · · .bh.M11.M12. · · · .Mhm􏼈 􏼉,

(10)

where n represents the input nodes’ amount, Wij indicating
the node’s connection weight to the jth node, θjdenotes the
bias (threshold) of the jth hidden neuron.

As noted before, the MSE is a frequently used criterion
for assessing MLP-NNs, as the following equation
demonstrates.

MSE � 􏽘

m

i�1
o

k
i − d

k
i􏼐 􏼑

2
, (11)

wherem is the number of neurons in the MLP outputs, dk
i is

the optimal output of the ith input unit in cases where kth

training sample is utilized, and ok
i denotes the real output of

the ith input unit in cases where the kth training sample is

observed in the input. To be successful, the MLP must be
tuned to a collection of training samples. As a result, MLP
performance is calculated as follows:

E � 􏽘
T

k�1
􏽘

m

i�1
o

k
i − d

k
i􏼐 􏼑

2
/T. (12)

T denotes the number of training samples, dk
i denotes

the optimal output related to ith input when using kth the
training sample, m denotes the number of outputs, and
Ok

i indicates the input’s real output when using kth the
training sample. Finally, the recognition system requires a
meta-heuristic method to fine-tune the parameters indicated
above. ,e next subsection proposes an instructor based on
an improved whale optimization algorithm (WOA) with
fuzzy logic called FWOA.

4.1. Fuzzy WOA. ,is section upgrades WOA using fuzzy
inference. In this regard, in the first subsection, it will review
WOA, and in the second subsection, it will describe the fuzzy
method for upgrading WOA.

4.1.1. Whale Optimization Algorithm. ,e WOA optimi-
zation algorithmwas introduced in 2016, inspired by the way
whales were hunted by Mirjalili and Lewis [62]. WOA starts
with a set of random solutions. In each iteration, the search
agents update their position by using three operators:
encircling prey, bubble-net attack (extraction phase), and
bait search (exploration phase). In encircling prey, whales
detect prey and encircle it. ,e WOA assumes that the best
solution right now is his prey. Once the optimal search agent
is discovered, all other search agents will update their po-
sition to that of the optimal search agent. ,e following
equations express this behavior:

D
→

� C
→
∙X∗
��→

(t) − X
→

(t)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, (13)

X
→

(t + 1) � X
∗��→
(t) − A

→
∙D
→

, (14)

where t is the current iteration, A
→

and C
→

are the coefficient
vectors, (X

∗��→
) is the place vector which is the best solution so

far, and X
→

is the place vector. It should be noted that in each
iteration of the algorithm, if there is a better answer, (X

∗��→
)

should be updated. ,e vectors A
→

and C
→

are obtained using
the following equations:

A
→

� 2 α→∙ r
→

− α→, (15)

C
→

� 2∙ r
→

, (16)

where α→ decreases linearly from 2 to zero during repetitions
and r

→ is a random vector in the distance [0, 1]. During the
bubble-net assault, the whale swims simultaneously around
its victim and along a contraction circle in a spiral pattern.
To describe this concurrent behavior, it is anticipated that
the whale would adjust its location during optimization
using either the contractile siege mechanism or the spiral
model. (17) is the mathematical model for this phase.
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X
→

(t + 1) �
X
∗��→
(t) − A

→
∙D
→

, if p< 0.5,

D
→
∙ebi∙ cos(2πl), if p≥ 0.5,

⎧⎪⎨

⎪⎩
(17)

where D
→

is derived from (8) and denotes the distance i
between the whale and its prey (the best solution ever ob-
tained). A constant b is used to define the logarithmic helix
shape; l is a random number between −1 and +1. p is a
random number between zero and one. Vector A is used
with random values between −1 and 1 to bring search agents
closer to the reference whale. In the search for prey to update
the search agent’s position, random agent selection is used
instead of using the best search agent’s data. ,e mathe-
matical model is in the form of the following equations:

D
→

� | C
→

|∙Xrand

�����→
∙X
→

, (18)

X
→

(t + 1) � Xrand

�����→
− A

→
∙D
→

. (19)

Xrand

�����→
is the randomly chosen position vector (random

whale) for the current population, and vector A
→

is utilized
with random values larger or smaller to one to drive the
search agent away from the reference whale. Figure 9 shows
the FWOA flowchart, and Figure 10 shows the pseudocode

of the FWOA. In the next section, we will describe the
proposed fuzzy system.

4.1.2. Proposed Fuzzy System for Tuning Control Parameters.
,e proposed fuzzy model receives the normalized per-
formance of each whale in the population (normalized fit-
ness value) and the current values of the parameters α→ and
C
→
. ,e output also shows the amount of change using the

symbols ∆α and ∆C. ,e NFV value for each whale is ob-
tained as follows:

NFV �
fitness − fitnessmin

fitnessmin − fitnessmax
. (20)

,e NFV value is in the range of [0. 1]. ,is paper’s
optimization problem is of the minimization type, in which
the fitness of each whale is obtained directly by the optimal
amount of these functions. (21) and (22) update the pa-
rameters α→ and C

→
for each whale which are as follows:

α→t+1
� α→t

+ ∆α, (21)

C
→t+1

� C
→t

+ ∆C. (22)
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Fuzzy Controller

Figure 9: Flowchart of the WOA.
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,e fuzzy system is responsible for updating the pa-
rameters α→ and C

→
of each member of the population

(whale) and the three inputs of this system are the current
value of parameters α→ and C

→
, NFV. Initially, these values

are “fuzzification” by membership functions. ,en, their
membership value is obtained using μ. ,ese values apply to
a set of rules and give the values ∆α and ∆C. After deter-
mining these values, the “defuzzification” process is per-
formed to estimate the numerical values ∆α and ∆C. Finally,
these values are applied in (12) and (13) to update the pa-
rameters ∆α and ∆C. ,e fuzzy system used in this article is
of the Mamdani type. Figure 11 shows the proposed fuzzy
model and membership functions used to adjust the whale
algorithm’s control parameters. ,e adjustment range for
membership functions is obtained using the primary [62] of
theWOA.Many experiments were performed for all types of
membership functions, including trimf, trapmf, gbellmf,
gaussmf, gauss2mf, sigmf, dsigmf, psigmf, pimf, smf, and
zmf. Comparison of the results showed that trimf input and
output membership functions are more suitable for using
the data set obtained in Sections 2 and 3.

,e semantic values used in the membership functions
of the input variables α→ , C

→
, and NFV are low, medium, and

high. ,e semantic values used in the output variables ∆α
and ∆C are NE (negative), ZE (zero), and PO (positive). ,e
fuzzy rules used are presented in Table 2, and how to train
MLP-NN using FWOA is shown in Figure 12.

5. Simulation Results and Discussion

,e evaluation of the IEEE CEC-2017 benchmark functions
is presented in this section, followed by a discussion of the
results achieved for the classification of marine mammals.

5.1. Evaluation of IEEE CEC-2017 Benchmark Functions.
,e CEC-2017 benchmark functions and dimension size are
shown in Table 3. Table 6 shows the parameters selected in
the algorithms used for the benchmark functions. In all
algorithms, the maximum number of iterations is 100, and
the population size is 180.

As shown in Table 4, the FWOA algorithm has achieved
more encouraging results compared to CVOA, WOA,
ChOA, BWO, and PGO. From a more detailed comparison
of WOA with its upgraded version with a fuzzy subsystem
(FWOA), it can be seen that the improvement and upgrade
of WOA have been successful.

5.2. Classification of Marine Mammals. In this section, to
show the power and efficiency of MLP-FWOA, in ad-
dition to using the sounds obtained in Sections 2 and 3,
the reference dataset (Watkins et al. 1992) is also used. As
already mentioned, To obtain the data set, the Xm vector
is assumed to be an input for the MLP-WOA. ,e Xm

dimension is 680 × 42, which indicates that there are

Set the initial values of the whale's population size n, coefficient vectors A, and the maximum number of 
iterations
Fuzzification parameters a and C
Calculate the fitness of each search agent
Calculate the NFV by the Eq. (20)
Calculate the parameters a and C using fuzzy inference system Mamdani
Defuzzification parameters a and C
X* = the best search agent 
while (t < maximum number of iterations)

for each search agent
Update a, A, C, l and p

If1 (p<0.5)
If2 (|A| < 1)

Update the position of the current search agent by the Eq. (13)
else if2 (|A| ≥ 1)

Select a random search agent (Xrand)
Update the position of the current search agent by the Eq. (19)

end if2 
else if1 (p ≥ 0.5)

Update the position of the current search by the Eq. (17)
end if1
end for 
Check if any search agent goes beyond the search space and amend it to calculate the fitness of each
search agent
Update X if there is a better solution
t=t+1 

end while 
return X

⁎

⁎

Figure 10: Pseudocode of the FWOA.

12 Computational Intelligence and Neuroscience



42 features and 680 samples in the data set. In addition,
the benchmark dataset has a dimension of 410 × 42. In
MLP-FWOA, the number of input nodes is equal to the
number of features. ,e 10-fold cross-validation method
is used to evaluate the models. ,erefore, first, the data
are divided into ten parts, and each time nine parts are
used for training and another part for testing. Figure 13

shows the 10-fold cross-validation. ,e final classification
rate for each classifier is calculated using the average of
the ten classification rates obtained.

To have a fair comparison between the algorithms, the
condition of stopping 300 iterations is considered. ,ere is
no specific equation for obtaining the number of hidden
layer neurons, so (23) is used to obtain [63].

H � 2 × N + 1, (23)

whereN indicates the total number of inputs andH indicates
the total number of hidden nodes. Furthermore, the number
of output neurons corresponds to the number of marine
mammal classifications, namely six.

For a comprehensive assessment of FWOAperformance,
this algorithm is compared with WOA [62], ChOA [64],
PGO [65], CVOA [66], and BWO [67] benchmark
algorithms.

In all population base algorithms, population size is a
hyper parameter that plays a direct role in the algorithm’s
performance in the search space. For this reason, many
experiments were performed with different population
numbers, some of which are shown in Table 5. ,e results
showed that for the proposed model, a population of 180 is
the most appropriate value. In other words, with an in-
creasing population, in addition to no significant im-
provement in model performance, complexity increases, and
processing time increases. Table 6 illustrates the

Fuzzy Input
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Fuzzy sistem
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FWOA

Fuzzy Output

−0.0005 0.00050
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Δα

0
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0
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𝜇

21

Low Medium High
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0

0

1

𝜇

10.5

Low Medium High

Figure 11: A proposed fuzzy model for setting parameters α→ and C
→
.

Table 2: Applied fuzzy rules.

If (NFV is low) and ( α→ is low), then (∆α is ZE)
If (NFV is low) and ( α→ is medium), then (∆α is NE)
If (NFV is low) and ( α→ is high), then (∆α is NE)
If (NFV is medium) and ( α→ is low), then (∆α is PO)
If (NFV is medium) and ( α→ is medium), then (∆α is ZE)
If (NFV is medium) and ( α→ is high), then (∆α is NE)
If (NFV is high) and ( α→ is low), then (∆α is PO)
If (NFV is high) and ( α→ is medium), then (∆α is ZE)
If (NFV is high) and ( α→ is high), then (∆α is NE)
If (NFV is low) and (C

→
is low), then (∆C is PO)

If (NFV is low) and (C
→

is medium), then (∆C is PO)
If (NFV is low) and (C

→
is high), then (∆C is ZE)

If (NFV is medium) and (C
→

is low), then (∆C is PO)
If (NFV is medium) and (C

→
is medium), then (∆C is ZE)

If (NFV is medium) and (C
→

is high), then (∆C is NE)
If (NFV is high) and (C

→
is low), then (∆C is PO)

If (NFV is high) and (C
→

is medium), then (∆C is ZE)
If (NFV is high) and (C

→
is high), then (∆C is NE)
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Table 3: IEEE CEC-2017 benchmark test functions.

No. Functions Dim fmin

f1 Shifted and rotated bent cigar function 30 100
f2 Shifted and rotated sum of different power function 30 200
f3 Shifted and rotated Zakharov function 30 300
f4 Shifted and rotated Rosenbrock’s function 30 400
f5 Shifted and rotated Rastrigin’s function 30 500
f6 Shifted and rotated expanded Scaffer’s function 30 600
f7 Shifted and rotated Lunacek Bi_Rastrigin function 30 700
f8 Shifted and rotated noncontinuous Rastrigin’s function 30 800
f9 Shifted and rotated Lévy function 30 900
f10 Shifted and rotated Schwefel’s function 30 1000
f11 Hybrid function 1 (N � 3) 30 1100
f12 Hybrid function 2 (N � 3) 30 1200
f13 Hybrid function 3 (N � 3) 30 1300
f14 Hybrid function 4 (N � 4) 30 1400
f15 Hybrid function 5 (N � 4) 30 1500
f16 Hybrid function 6 (N � 4) 30 1600
f17 Hybrid function 6 (N � 5) 30 1700
f18 Hybrid function 6 (N � 5) 30 1800
f19 Hybrid function 6 (N � 5) 30 1900
f20 Hybrid function 6 (N � 6) 30 2000
f21 Composition function 1 (N � 3) 30 2100
f22 Composition function 2 (N � 3) 30 2200
f23 Composition function 3 (N � 4) 30 2300

Table 4: AVG and STD deviation of the best optimal solution for 40 independent runs on IEEE CEC-2017 benchmark test functions.

FUNC Algorithm
CVOA WOA FWOA ChOA PGO BWO

f1
AVG 1.08E+ 03 3.41E+ 11 3.91E+ 01 4.04E+ 02 1.24E+ 11 1.72E+ 11
STD 4.48E+ 04 6.06E+ 08 3.41E+ 02 4.34E+ 02 2.38E+ 10 2.83E+ 08

f2
AVG 3.01E+ 03 6.51E+ 08 3.20E+ 02 9.81E+ 04 6.76E+ 08 6.15E+ 08
STD 7.81E+ 04 9.04E+ 08 9.87E+ 01 7.77E+ 05 1.41E+ 08 2.82E+ 07

f3
AVG 2.40E+ 03 7.07E+ 03 6.96E+ 03 2.46E+ 03 7.08E+ 03 7.49E+ 05
STD 1.21E+ 03 8.96E+ 02 9.55E+ 04 7.71E+ 02 5.26E+ 04 1.32E+ 03

f4
AVG 4.79E+ 01 1.47E+ 03 5.13E+ 03 5.43E+ 01 1.70E+ 04 1.62E+ 04
STD 1.38E+ 02 1.96E+ 02 9.75E+ 01 3.38E+ 02 6.15E+ 03 2.48E+ 03
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Table 4: Continued.

FUNC Algorithm
CVOA WOA FWOA ChOA PGO BWO

f5
AVG 6.68E+ 03 8.91E+ 01 5.20E+ 01 5.66E+ 01 8.12E+ 03 8.10E+ 03
STD 2.68E+ 02 1.30E+ 02 1.80E+ 00 1.10E+ 02 2.83E+ 02 2.36E+ 02

f6
AVG 6.38E+ 03 6.78E+ 03 6.01E+ 01 6.01E+ 01 6.78E+ 03 6.55E+ 03
STD 5.21E+ 01 4.86E+ 01 5.32E− 02 3.11E− 02 6.23E+ 01 7.26E+ 01

f7
AVG 1.12E+ 04 1.36E+ 04 7.53E+ 01 8.30E+ 03 1.26E+ 02 1.44E+ 04
STD 7.55E+ 02 3.86E+ 02 9.37E+ 01 2.63E+ 00 7.17E+ 02 6.71E+ 02

f8
AVG 9.31E+ 03 1.13E+ 04 8.80E+ 01 8.71E+ 01 1.05E+ 04 1.12E+ 04
STD 2.27E+ 02 1.24E+ 02 2.52E+ 02 2.09E+ 02 2.53E+ 02 2.28E+ 02

f9
AVG 4.03E+ 04 9.02E+ 04 1.04E+ 04 1.08E+ 04 8.87E+ 02 9.18E+ 04
STD 8.67E+ 01 1.26E+ 02 3.21E+ 03 2.31E+ 01 1.02E+ 04 2.14E+ 04

f10
AVG 4.66E+ 04 8.43E+ 02 2.13E+ 04 2.01E+ 02 7.48E+ 04 8.35E+ 02
STD 5.35E+ 01 3.33E+ 01 5.94E+ 02 1.21E+ 04 7.92E+ 03 3.43E+ 01

f11
AVG 1.23E+ 04 6.92E+ 04 1.23E+ 04 1.24E+ 04 3.16E+ 04 3.17E+ 04
STD 2.87E+ 02 1.71E+ 01 1.55E+ 03 6.34E+ 02 1.12E+ 04 5.68E+ 03

f12
AVG 1.31E+ 07 6.21E+ 08 6.26E+ 02 5.68E+ 03 1.34E+ 08 1.28E+ 05
STD 7.82E+ 04 2.34E+ 08 4.55E+ 02 1.08E+ 06 9.70E+ 07 3.41E+ 07

f13
AVG 1.61E+ 03 3.36E+ 08 9.85E+ 04 1.59E+ 05 2.58E+ 09 3.81E+ 07
STD 1.13E+ 03 1.52E+ 08 9.45E+ 02 1.66E+ 06 2.04E+ 07 1.35E+ 07

f14
AVG 4.64E+ 04 1.65E+ 05 2.73E+ 03 2.49E+ 06 1.25E+ 08 2.22E+ 04
STD 3.56E+ 04 1.05E+ 07 2.35E+ 03 2.22E+ 05 6.77E+ 04 1.30E+ 04

f15
AVG 5.32E+ 04 1.02E+ 07 4.97E+ 04 1.49E+ 05 4.41E+ 07 6.90E+ 09
STD 4.33E+ 04 9.34E+ 06 4.60E+ 04 2.10E+ 03 4.11E+ 05 3.08E+ 08

f16
AVG 2.85E+ 02 6.03E+ 04 2.44E+ 04 2.41E+ 02 3.71E+ 04 3.66E+ 04
STD 3.03E+ 03 9.41E+ 03 2.94E+ 02 2.86E+ 01 4.47E+ 03 1.95E+ 03

f17
AVG 2.43E+ 02 4.11E+ 04 1.95E+ 02 1.97E+ 02 2.55E+ 04 2.65E+ 04
STD 2.76E+ 01 1.03E+ 02 9.28E+ 02 1.39E+ 03 2.53E+ 03 1.15E+ 03

f18
AVG 1.35E+ 07 1.27E+ 06 1.01E+ 07 1.01E+ 07 6.55E+ 05 4.47E+ 05
STD 1.35E+ 05 1.04E+ 06 5.08E+ 05 1.50E+ 07 3.44E+ 07 1.99E+ 05

f19
AVG 8.86E+ 04 9.87E+ 06 1.81E+ 03 1.81E+ 03 6.41E+ 05 1.13E+ 07
STD 6.38E+ 04 9.43E+ 06 6.26E+ 04 1.42E+ 05 3.01E+ 07 4.85E+ 06

f20
AVG 2.63E+ 04 2.78E+ 04 2.26E+ 02 2.26E+ 02 2.75E+ 02 2.77E+ 04
STD 2.01E+ 03 1.06E+ 03 2.22E+ 02 1.40E+ 01 1.99E+ 03 1.47E+ 03

f21
AVG 2.43E+ 04 2.38E+ 04 2.36E+ 04 2.38E+ 04 2.62E+ 02 2.58E+ 04
STD 2.52E+ 02 6.12E+ 02 5.14E+ 03 3.33E+ 02 3.87E+ 02 1.68E+ 02

f22
AVG 5.53E+ 02 3.95E+ 04 4.31E+ 02 4.31E+ 02 8.76E+ 02 4.91E+ 05
STD 2.23E+ 02 3.34E+ 01 1.26E+ 02 2.13E+ 01 1.32E+ 04 1.95E+ 04

f23
AVG 3.14E+ 04 3.47E+ 04 2.73E+ 04 2.73E+ 02 3.22E+ 04 2.96E+ 02
STD 7.76E+ 02 2.33E+ 01 1.44E+ 03 2.61E+ 02 8.91E+ 02 2.72E+ 02

Dataset
10-fold cross-validation

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10
Iteration 1 Test Train Train Train Train Train Train Train Train Train
Iteration 2 Train Test Train Train Train Train Train Train Train Train
Iteration 3 Train Train Test Train Train Train Train Train Train Train
Iteration 4 Train Train Train Test Train Train Train Train Train Train
Iteration 5 Train Train Train Train Test Train Train Train Train Train
Iteration 6 Train Train Train Train Train Test Train Train Train Train
Iteration 7 Train Train Train Train Train Train Test Train Train Train
Iteration 8 Train Train Train Train Train Train Train Test Train Train
Iteration 9 Train Train Train Train Train Train Train Train Test Train
Iteration 10 Train Train Train Train Train Train Train Train Train Test

Figure 13: ,e 10-fold cross-validation.
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fundamental parameters and major values of various
benchmark methods. ,e classification rate to adjust the
population size of different algorithms for the data set is
obtained from parts 2 and 3.

,e classifiers’ performance is then tested for the clas-
sification rate, local minimum avoidance, and convergence
speed. Each method is run 40 times, and the classification
rate, mean, and standard deviation of the smallest error, the

A20-index [68], and the p value are listed in Tables 7 and 8.
,e mean and standard deviation of the smallest error, the
A20-index, and the p value all reflect how well the method
avoids local optimization.

Figures 14 and 16 show a comprehensive comparison of
the convergence speed and syntax and the classifiers’ final
error rate. Figures 15 and 17 show a receiver operating
characteristic for datasets.

Table 5: Classification rate (CR%) to adjust the population size of different algorithms for the data set is obtained from parts 2 and 3.

Algorithm WOA FWOA ChOA PGO CVOA BWO
Population size CR% Time (s) CR% Time (s) CR% Time (s) CR% Time (s) CR% Time (s) CR% Time (s)
60 31.28 0.314 35.67 0.246 31.00 0.254 22.14 0.377 33.16 0.733 27.42 0.411
80 37.98 0.377 42.11 0.299 35.11 3.008 29.06 0.408 38.93 986.4 34.73 1.819
100 46.85 0.461 59.61 3.113 45.31 0.355 35.02 0.483 48.70 1.075 43.04 2.167
120 59.98 0.522 64.78 3.785 56.21 0.477 48.60 0.567 61.58 1.306 53.89 2.483
140 71.25 0.608 75.00 0.407 67.18 0.519 63.75 0.658 73.77 1.668 66.82 3.150
160 82.65 0.820 88.25 0.485 81.99 0.686 80.09 0.633 84.35 1.761 78.50 3.445
180 91.42 0.791 94.97 0.531 90.66 0.794 88.62 0.715 92.73 1.809 89.15 4.173
190 92.02 1.087 94.99 1.010 91.10 0.819 89.22 1.764 92.98 2.060 89.83 4.890
200 92.64 1.964 95.00 1.973 92.00 0.921 91.45 3.234 93.07 2.364 90.13 5.789

Table 6: ,e initial parameters and primary values of the benchmark algorithms.

Algorithm Parameter Value

WOA a Linearly decreased from 2 to 0
Population size 180

FWOA a Tuning by fuzzy system
Population size 180

ChOA
a [1, 1]
f Linearly decreased from 2 to 0

Population size 180

PGO

DR 0.3
DRS 0.15
EDR 0.8

Population size 180

CVOA

P-die 0.05
P_isolation 0.8

P_superspreader 0.1
P_reinfection 0.02

Social_distancing 8
P_travel 0.1

Pandemic_duration 30
Population size 180

BWO

PP 0.6
CR 0.44
PM 0.4

Population size 180

Table 7: Results obtained from different algorithms for dataset reference [42].

Algorithm MSE (AVE± STD) p values A20 index AUC (%) Classification rate %
MLP-CVOA 0.1089± 0.1285 0.045 1 94.68 92.1283
MLP-WOA 0.1156± 0.1301 1.8534e-31 1 93.09 90.6422
MLP-FWOA 0.1002± 0.1154 0.027 1 97.71 93.0150
MLP-ChOA 0.1383± 0.1389 2.1464e-61 1 92.71 89.9476
MLP-PGO 0.1694± 0.1652 3.0081e-77 1 91.48 88.1115
MLP-BWO 0.1495± 0.1543 2.9813e-43 1 88.97 89.1014
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Table 8: Results obtained from different algorithms for datasets obtained in parts 2 and 3.

Algorithm MSE (AVE± STD) p values A20 index AUC (%) Classification rate %
MLP-CVOA 0.0857± 0.1021 0.009 1 94.32 92.8027
MLP-WOA 0.0908± 0.1622 0.042 1 93.05 91.3455
MLP-FWOA 0.0689± 0.1031 0.013 1 95.89 94.9801
MLP-ChOA 0.1090± 0.1076 1.0589e-34 1 92.76 90.2410
MLP-PGO 0.1596± 0.1167 3.0013e-11 1 90.66 88.1004
MLP-BWO 0.1194± 0.1622 2.9854e-64 1 84.25 89.0478
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Figure 14: Convergence diagram of different training algorithms for dataset reference [42].
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Figure 15: Receiver operating characteristic for dataset reference [42].
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,e simulation was conducted in MATLAB 2020a by
using a personal computer with a 2.3GHz processor and
5GB RAM.

As shown in Figures 14 and 16., among the benchmark
algorithms used for MLP training, FWOA has the highest
convergence speed. PGO has the lowest convergence speed
by adjusting control parameters by fuzzy inference, correctly

detecting the boundary between the exploration and ex-
traction phases. As shown in Tables 7 and 8, MLP-FWOA
has the highest classification rate, and MLP-PGO has the
lowest classification rate among the classifiers. ,e STD
values, shown in Tables 7 and 8, indicate that the MLP-
FWOA results rank first in the two datasets, confirming that
the FWOA performs better than other standard training
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Figure 16: Convergence diagram of different training algorithms for datasets obtained in parts 2 and 3.
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Figure 17: Receiver operating characteristic for datasets obtained in parts 2 and 3.
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algorithms and demonstrates the FWOA’s ability to avoid
getting caught up in local optimism. A p value of less than
0.05 indicates a significant difference between FWOA and
other algorithms. According to Tables 7 and 8, a20-index is 1
for all predictive classifiers. It confirms that all models can
provide good results for similar data as well.

Adding a subsystem to a metaheuristic algorithm
increases its complexity. However, a comparison of the
convergence curves in Figures 14 and 16 shows that the
FWOA achieved the global optimum faster than the other
algorithms used. Other algorithms were stuck in the local
optimum if they converged. In particular, by comparing
the WOA and FWOA in Figures 14 and 16, it can be seen
that using an auxiliary (fuzzy system) subsystem is nec-
essary to avoid getting caught up in the local optimum in
the WOA. In general, using a fuzzy system to improve
WOA increases complexity. However, the convergence
curves and better performance of FWOA than other al-
gorithms used show a reduction in computational cost.
,e reduced MSE of this method compared to other al-
gorithms employed is more indicative that despite in-
creased complexity, FWOA performance is improving.

6. Conclusions and Recommendations

In this paper, to classify marine mammals, a fuzzy model
of control parameters of the whale optimization algorithm
was designed to train an MLP-NN. CVOA, WOA, FWOA,
Ch0A, PGO, and BWO algorithms have been used for the
MLP-NN training stage. As the simulation results show,
FWOA has a powerful performance in identifying the
boundary between the exploration and extraction phases.
For this reason, it can identify the global optimal and
avoid local optimization. ,e results indicate that MLP-
FWOA, MLP-CVOA, MLP-WOA, MLP-ChOA,
MLPBWO, and MLP-PGO have better performance for
classifying the sound produced by marine mammals. ,e
convergence curve also shows that FWOA converges
faster than the other five benchmark algorithms in con-
vergence speed.

Due to the complex environment of the sea and various
unwanted signals such as reverberation, clutter, and types of
noise in the seabed, lack of access to data sets with a specific
signal-to-noise ratio is one of the main limitations of the
research.

For future research directions, we recommend the fol-
lowing list of topics:

(i) MLP-NN training using other metaheuristic algo-
rithms for the classification of marine mammals

(ii) Using other artificial neural networks and using
deep learning for the classification of marine
mammals

(iii) Direct use of metaheuristic algorithms as classifiers
for classification of marine mammals.
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