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Abstract: 

The brain exhibits rich oscillatory dynamics that vary across tasks and states, such as the EEG oscillations that define sleep. 
These oscillations play critical roles in cognition and arousal, but the brainwide mechanisms underlying them are not yet 
described. Using simultaneous EEG and fast fMRI in subjects drifting between sleep and wakefulness, we developed a 
machine learning approach to investigate which brainwide fMRI dynamics predict alpha (8-12 Hz) and delta (1-4 Hz) 
rhythms. We predicted moment-by-moment EEG power from fMRI activity in held-out subjects, and found that 
information about alpha power was represented by a remarkably small set of regions, segregated in two distinct networks 
linked to arousal and visual systems. Conversely, delta rhythms were diffusely represented on a large spatial scale across 
the cortex. These results identify distributed networks that predict delta and alpha rhythms, and establish a computational 
framework for investigating fMRI brainwide dynamics underlying EEG oscillations. 

 

INTRODUCTION 
As the brain navigates tasks and states, neurons frequently fire in synchrony, generating rich oscillatory dynamics with 

various temporal and spatial distributions. These neural signals have been studied with scalp EEG for almost a century, 
and have formed a core aspect of modern neuroscience due to their links to specific cognitive computations. Oscillations 
are particularly fundamental to the study of sleep, which is defined by the appearance of distinct rhythmic EEG patterns 
with well-studied physiological outcomes. As the brain transitions between wakefulness and sleep stages, oscillations wax 
and wane, signaling distinct arousal states. Arousal-related oscillations are linked to diverse cognitive processes, including 
several forms of memory 1–9 and attention 10,11, along with basic physiological processes such as brain waste clearance 12. 
EEG oscillations during sleep thus have strong relationships to cognition and physiology 13; however, the large-scale brain 
network activity giving rise to these oscillations remains poorly understood. 

Two key oscillations with broad relevance for the study of brain arousal states are delta (1-4 Hz) and alpha (8-12 Hz) 
rhythms. Alpha (8-12 Hz; Fig. 1a), which is maximally detected during eyes-closed wakeful rest, is implicated in diverse 
aspects of cognition 11,14,15. Delta (1-4 Hz; Fig. 1a) is most prominent during slow wave sleep and strongly linked to its 
cognitive benefits 3,4,8,16. Extensive work has sought to identify the focal generators of these oscillations 17–25, but the 
brainwide states that they represent—which need not oscillate at the same frequency—are not established.  

Identifying the brainwide dynamics that underlie variations in EEG activity is technically difficult to investigate; scalp 
EEG suffers from low spatial resolution and is unable to resolve deep brain activity, while invasive methods such as 
electrocorticography have limited spatial coverage. A way to obtain greater spatial information is to simultaneously 
acquire EEG and functional magnetic resonance imaging (fMRI), which provides high spatial resolution and the ability to 
image deeper brain regions. Analyzing EEG-fMRI data, however, poses a significant challenge: the BOLD (blood-oxygen-
level-dependent) signal measured by fMRI is an indirect measure of brain activity, and while its relationship to the 
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underlying neural signal can be modeled using a hemodynamic response function (HRF), the true relationship is complex. 
The coupling between BOLD and the underlying neural activity varies across subjects and brain areas 26, and the HRF fails 
to account for many temporal properties of the fMRI signals 27–29. Alternative approaches that fit a more flexible HRF are 
susceptible to noise and may overfit the data. To avoid overfitting, cross-validation is essential, yet often neglected—even 
traditional correlation approaches using linear regression may overfit the data and not be generalizable to the greater 
population 30. Finally, standard methods primarily conduct univariate analyses that consider each region or voxel 
separately, which can identify individual regions correlated with EEG rhythms, but leave open the question of how joint 
activity across networks is linked to fluctuating EEG dynamics. Predictive methods have become a powerful approach in 
fMRI 31,32 as they overcome these limitations: they can learn network-level information with flexible data-driven functions, 
and they inherently involve cross-validation to ensure results are generalizable. These approaches have identified 
relationships between neural activity and fMRI signals 33, and can predict a vigilance index from fMRI 34,35. However, it is 
not yet known how brainwide dynamics are linked to specific EEG oscillations.  

To identify the brainwide fMRI dynamics underlying alpha and delta rhythms, we designed a novel machine learning 
framework to predict EEG oscillations from fMRI data. We leveraged two independent datasets of simultaneous EEG and 
fast fMRI (TR<400 ms), exploiting the high temporal sampling of fast fMRI data to identify the dynamics underlying EEG 
oscillatory states as subjects spontaneously drifted in and out of sleep. We first show that we can successfully predict EEG 
dynamics from fMRI on out-of-sample subjects. We then find that the distinct fMRI patterns that predict each rhythm are 
replicated across datasets, and that predictive information is present even at the single-region level. Finally, we develop 
predictive approaches that probe the joint fMRI information across brain regions, and use them to identify distinct 
networks patterns underlying each EEG rhythm. Importantly, rather than attempting to localize the generators of these 
oscillations, we characterized the underlying network states associated with these rhythms. By probing relationships 
involving multiple brain regions, we uncovered how fMRI information predictive of EEG power is spatially distributed 
across the brain—not just identifying which regions are individually predictive (i.e. as in a mass univariate approach), but 
also understanding how the information contained in these regions is organized in networks. We found a large, diffuse 
network of primarily cortical regions that predict variations in delta power, whereas alpha power was predicted by two 
separable networks primarily representing the distinct dynamics of the visual system and the subcortical arousal control. 

  

RESULTS  
EEG alpha and delta power were predicted from brainwide fMRI data in held-out subjects 

We first investigated whether it is possible to predict EEG oscillatory dynamics over time from simultaneously acquired 
fast fMRI data. Prior work successfully predicted EEG-based vigilance metrics (a ratio between two frequency bands) from 
simultaneous fMRI data and achieved a mean Pearson’s linear correlation value of r=0.31 between predictions and targets 
when training on the same subjects 35. However, predicting distinct oscillations is a more challenging task, as fluctuations 
in individual frequency bands are noisier and more complex than global variations in vigilance metrics, which collapse 
multiple distinct EEG properties into a single simplified metric. Additionally, our goal of generalizing to out-of-sample 
subjects could make predicting individual frequency bands particularly difficult as EEG power magnitudes exhibit strong 
individual differences. Thus, based on that prior work and the variability and noise of individual EEG frequency bands, we 
expected a ceiling in the range of r=0.3 (Pearson’s linear correlation between held-out subject data and ground truth) on 
predictive performance. We hypothesized that by designing a flexible predictive model and training with the rich high 
temporal resolution data provided by fast fMRI, we could predict individual EEG oscillations. 

We tested our models on held-out subjects—subjects which the model had never seen during training—to ensure 
overfitting did not inflate our performance estimates and to assess the generalizability of the model across subjects. We 
employed two separate datasets collected at different sites, to further confirm our methods and inferences were 
reproducible (dataset A: n=12, TR=0.378s; dataset B: n=9, TR=0.367s). For alpha analyses, spectrograms were first 
inspected to identify whether subjects had clear alpha rhythms since some individuals do not exhibit spontaneous alpha 
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(dataset A: n=11; dataset B: n=5). Each dataset used fast fMRI acquisitions to provide rich temporal information within 
short (~20 s, 60 TRs) time windows. We trained a linear machine learning model to predict EEG alpha and delta power, 
calculated in sliding 5-second windows from the same occipital electrodes (which are less susceptible to MR-induced 
noise), from simultaneously collected fMRI data, in subjects drifting in and out of sleep (Fig. 1b). The fMRI data was 
parcellated in 84 regions, consisting of 31 bilateral cortical regions, 7 bilateral subcortical regions, and 8 non-gray matter 
regions (white matter and ventricles).  

The model was trained on sliding windows (length of 60 TRs, ~20s) of the parcellated fMRI data, with each segment 
yielding a single-point prediction of normalized EEG power (at the temporal center of the window). We centered the 
window of fMRI predictors on the EEG point being predicted to allow the model to flexibly learn whichever fMRI temporal 
patterns were most relevant, rather than assuming a specific lag between EEG and fMRI. The model was thus trained on 
5,040 predictors (84 regions with 60 time points per region). Training was carried out separately for each dataset, 
iteratively on all of its subjects but one, with testing then performed on the held-out subject. The performance was 
compared to a shuffled control, with training and testing conducted using fMRI data circularly shifted in time (by 2000 
TRs) in relation to the EEG prior to training and testing, breaking the true relationship between the modalities. 

This whole-brain model successfully predicted EEG power in out-of-sample subjects for both alpha (‘all’ vs ‘control’, 
Fig. 1c, p<0.01) and delta (‘all’ vs ‘control’, Fig. 1e, p<0.001). Notably, our delta predictions surpassed our expected 
performance ceiling, displaying a mean correlation between predictions and ground truth of r=0.37, while our alpha 
predictions reached the expected performance ceiling at r=0.30, demonstrating robust prediction of dynamic fluctuations 
in EEG oscillations. Representative predictions obtained from these regional subsets demonstrate that the model 
successfully captured short- and long-timescale fluctuations in alpha and delta power (Fig. 1d, 1f).  
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Fig. 1: Machine learning can predict 
dynamic fluctuations in EEG 
oscillations using brainwide fast fMRI 
timeseries. a. Example of occipital 
alpha and delta EEG power fluctuating 
across sleep and wakefulness in one 
subject. b. EEG alpha and delta power 
were separately predicted from 
simultaneous fMRI data, collected while 
subjects rested inside the scanner with 
their eyes closed, drifting in and out of 
sleep. fMRI data was parcellated into 84 
cortical, subcortical, and non-gray 
matter regions. Each point in the EEG 
power series, interpolated to match TR 
times, was predicted by 60 TRs of 
parcellated fMRI data. c. Correlation 
between alpha predictions (on held-out 
subjects) and ground truth, 
demonstrating that predictions using 
brainwide fMRI data (‘all’) are 
significantly better than the ‘control’ 
condition, in which the true relationship 
between EEG and fMRI was broken with 
a 2000 TR circular shift. ** p<0.01, t-
test. Gray lines indicate held-out subject 
prediction performance. Error bars are 
SEM; N=16. d. Examples of alpha 
prediction in individual subjects, 
showing tracking of short- and long-
timescale alpha fluctuations. e. Delta 
prediction performance, across the 
same conditions as panel c, shows 
significantly above-chance delta 
prediction. N=21. *** p<0.001, t-test.  f. 
Examples of delta prediction in 
individual subjects. 
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Cortex, subcortex, and non-gray matter regions differentially predict alpha and delta power, with 
patterns replicated across datasets 

Given that we were able to predict EEG dynamics on out-of-sample subjects, we next explored how we could use this 
approach to identify which regions carry information about EEG power variations. Importantly, both neuronal and non-
neuronal signals (such as the blood and cerebrospinal fluid) carry information about general fluctuations in arousal state 
12. We therefore first examined whether this predictive information was specific to gray matter regions in cortex or 
subcortex, or whether it was also carried in non-neuronal regions such as the white matter and the ventricles. We trained 
and tested new models using three conditions: cortex only, subcortex only, and non-gray matter regions only. These 
conditions were then compared with the ‘all regions’ and ‘control’ (fMRI data circularly shifted to break the true 
relationship with EEG) conditions described above. We tested performance in each dataset independently in order to 
assess whether predictive patterns would be replicated, and we also display statistical results when combining held-out 
subject performance from both datasets. 

Alpha power (Fig. 2a) was most strongly predicted by the subcortex, with the subcortex-only model achieving 
significant prediction performance in each individual dataset (p=0.006, dataset A; p=0.02, dataset B). Combining the held-
out subject values from the two datasets (which were trained and tested independently) allowed the cortical condition 
(p=0.02) and the condition utilizing all regions (p=0.005) to reach statistical significance due to the greater number of 
subjects. Alpha was not predictable by non-gray matter regions on their own. These results demonstrated that subcortical 
fMRI signals were a strong predictor of alpha oscillations, despite the lower signal-to-noise ratio of these brain regions, 
and that these predictions were not attributable to non-neuronal sources. 

Delta power (Fig. 2b) was linked to a substantially different spatial pattern of fMRI signals. Delta was most strongly 
predicted by cortex, with significant predictive power in each dataset (p=0.006, dataset A; p<0.001, dataset B). Delta 
cortical predictions were on a similar level as predictions using the whole brain, suggesting that these cortical dynamics 
were sufficient to explain delta fluctuations on their own. Using subcortex-only, delta predictions reached statistical 
significance only when combined across datasets (p=0.007), demonstrating that information was also present in these 
regions. Interestingly, delta predictions using only the non-gray matter areas were also significantly better than control 
(p=0.019, dataset B; p=0.024, combined datasets), likely owing to the known coupling between delta power, cerebrospinal 
fluid flow (in the ventricles), and global BOLD 12.  

This modeling approach therefore enabled identifying distinct spatial information linked to each EEG rhythm, which 
was replicated across datasets, with strong and statistically significant subcortical contributions to alpha power, and 
cortical dominance for delta power. 
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Fig. 2: Alpha and delta oscillations show distinct relationships to cortical, subcortical, and non-gray-matter fMRI 
signals. a. Subcortical regions alone provide significant prediction of alpha rhythms. Circles show mean correlation 
between alpha power ground truth and model predictions (on held-out subjects) in the two independent datasets, and 
when combining held-out subject performance. Model was trained and tested under five conditions: cortical regions only, 
subcortical regions only, non-gray matter regions (ventricles and global white matter) only, all regions, and a control 
condition using all regions but with a 2000 TR circular shift of the fMRI data, breaking the true relationship between EEG 
and fMRI. * p<0.05; ** p<0.01; *** p<0.001; Tukey’s HSD. Error bars are SEM. Gray lines indicate individual held-out subject 
prediction performance. b. Delta power is strongly predicted by cortical fMRI signals, but also by subcortex and non-gray 
matter regions, as shown by mean correlation between delta power ground truth and model predictions (on held-out 
subjects). 

Predictive fMRI information is detected in individual brain regions, with distinct spatial patterns for 
alpha and delta EEG power  

To next identify finer-scale information beyond the coarse anatomical divisions of cortex and subcortex, we tested the 
information contained within each region in isolation by training and testing the model on a single bilateral gray matter 
region at a time. This prediction approach allowed us to learn flexible temporal functions shared across subjects linking 
the EEG to each fMRI area, rather than assuming a fixed pre-specified relationship. We generated spatial maps of 
individual brain regions’ predictive performances for each EEG frequency band, to visualize the large-scale pattern of 
information content across the brain (Fig. 3). For visualization, the delta results combined the performance on held-out 
subjects for both datasets (n=21; model training was carried out independently in each dataset due to different imaging 
parameters). Alpha spatial maps included only Dataset A (n=11) as only 5 subjects in Dataset B displayed alpha rhythms, 
too few to assess prediction using only a single region. These maps demonstrated that single brain regions could be 
sufficient to achieve successful prediction of EEG oscillations (Fig. 3), but with substantially poorer performance than 
considering a larger network. A control analysis (Extended Data 1) confirmed the significance of the global predictive maps 
by comparing its patterns to shuffled data. 
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This individual-region analysis re-confirmed the predictive power of subcortical regions for alpha rhythms (Fig. 3a), 
revealing that alpha could be significantly predicted using only the thalamus (r=0.29, p<0.01), the dorsal striatum 
(separately as the putamen, r=0.28, p<0.01, and caudate, r=0.24, p<0.01), or the pallidum (r=0.27, p<0.01). This result 
highlighted that predictions can be successful even in individual deep brain regions with lower signal-to-noise ratio. The 
thalamus in particular, which plays key roles in both arousal control and sensory information flow, has consistently been 
associated with alpha power variations 17–21. We also found that the cuneus (V1) could predict alpha variations (Fig. 3a; 
r=0.20, p=0.018), consistent with alpha’s established role in the visual system 17–22. However, our method also identified 
novel subcortical regions linked to alpha power—the dorsal striatum and pallidum—likely reflecting the model’s ability to 
learn more flexible functions relating EEG and fMRI signals.  

When predicting delta, given that the model was able to predict EEG delta power from non-gray matter regions alone 
(Fig. 2), we included these regions in the delta prediction model in addition to each bilateral gray matter region. We then 
compared the prediction performance of this model to the model fit with only non-gray matter regions to identify gray 
matter regions which contained information about delta which was distinct from the non-neuronal components of the 
BOLD signal. In other words, this approach allowed us to identify predictive information that is likely to be specifically 
neural, to overcome a common challenge with analyses of the BOLD signal (which is heavily influenced by non-neuronal 
sources), thus providing an advantage over traditional correlation analyses. Only the putamen generated predictions 
significantly better than the non-gray matter regions by themselves (r=0.33, compared to non-gray matter r=0.21; 
p=0.017), indicating that, in isolation, it was the only region capable of offering information beyond what is contained in 
the ventricles and global white matter. We highlight that this finding does not mean that the putamen is the only region 
coupled to delta power, but rather that its activity possessed delta-predictive components that were substantially distinct 
from the non-neuronal signals. However, the poor predictions from individual cortical regions were in marked contrast to 
the coarse-grained analysis, which showed that the complete array of cortical regions generated superior delta predictions 
(Fig. 2). This suggests that a large integrated network of fMRI regions may be critical to accurately predict delta power 
variations—a question we sought to answer next. 

Distinct fMRI spatial network sizes are needed to predict alpha and delta rhythms 

Our individual-region approach demonstrated that unique predictive information capable of generalizing across 
subjects is present even on a single-region level, with distinct predictive maps for alpha and delta rhythms. However, 
oscillatory states likely reflect brainwide network dynamics spanning both the cortex and subcortex; thus, single-regions 

Fig. 3: Single-region predictions performance maps show which regions individually carry significant information 
about alpha and delta rhythms. a. Prediction performance (mean correlation between alpha predictions on held-out 
subjects and ground truth) when model was trained on single bilateral regions to predict alpha. Text-labeled regions 
yielded alpha predictions that were significantly better than control. b. Prediction performance for delta power. Model 
was trained on single bilateral regions combined with non-gray matter areas to predict delta. Text-labeled regions 
combined with non-gray matter regions yielded predictions that were significantly better than using non-gray matter 
alone.  
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predictive maps could miss larger-scale integrated networks that carry joint information about EEG oscillations. We 
therefore turned to network-level predictions, considering multiple brain regions in tandem to identify brainwide patterns 
that predict alpha and delta.  

We first sought to assess the size of fMRI networks required to predict each EEG rhythm: in other words, how many 
distinct fMRI regions are needed for optimal predictions? If many regions are required for optimal predictions, then that 
would imply that predictive information is widely distributed across the brain, with low redundancy between regions. On 
the other hand, if only a small subset of regions is required for optimal predictions, this would suggest that predictive 
information is less widespread, and/or many regions contain redundant information about EEG rhythms. Simply imposing 
sparsity on the weights of our model via L1 regularization in order to reduce the number of regions used for prediction 
did not yield good performance. Therefore, to identify the number of optimal regions, we designed an iterative procedure 
to remove redundant information across regions. We iteratively removed low-weight regions from the model (starting 
with all 84 regions) while tracking performance changes. Low-weight regions imply a lack of relevant unique information; 
while such regions may still be predictive in isolation, their pattern of activity does not contain information that is not 
already substantially present in other regions.  

We found that removing low-impact regions enabled us to achieve improved predictions of both alpha and delta power 
(r=0.49; Fig. 4a-d), substantially better than using all regions, demonstrating that we could achieve surprisingly robust 
prediction of EEG oscillations using a focal network of fMRI regions. A control analysis (Extended Data 2), in which 
randomly selected regions were dropped instead of uninformative regions, revealed no systematic improvements. This 
demonstrates that reducing the number of brain regions presented to the model is only beneficial if these brain regions 
had low weights associated with them. This performance increase eventually plateaued once the model reached a low 
number of regions, and subsequent reductions in region numbers caused performance to drop, reverting the benefits of 
feature selection. This turning point happened only at very low numbers for alpha predictions (Fig. 4a), indicating that 
unique alpha-predictive information is found in a remarkably small set of brain regions. Meanwhile, for delta predictions, 
the model plateaued at a much larger number of regions (Fig. 4d) with a more pronounced performance loss following 
the plateau, indicating that delta predictions benefit from a much larger spatial scale.  
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Fig. 4: Alpha rhythms can be predicted from a small spatial network, whereas delta requires information from a 
broader set of regions. Iteratively removing fMRI regions associated with low weights increased model performance up 
until a plateau, with different spatial scales associated with the best alpha and delta predictions. As dataset B only 
contained 5 subjects with clear alpha rhythms, it was not included in this analysis. a. Alpha prediction performance peaked 
at 10 regions. The lowest-weight fMRI regions at each iteration were removed from the model, and then training and 
testing were performed again for the next iteration. Gray lines represent individual subjects. The iteration with best 
performance is marked in green. Successive iterations with significant improvements (as compared to all regions) are 
indicated. b. P-values (from t-tests) of performance improvements relative to using all regions, showing that improvements 
cease to be significant when model contains 5 or fewer fMRI regions. c. Representative regions present in the best iteration 
of alpha predictions are displayed in green (collapsed across hemispheres for visualization), demonstrating alpha’s small 
spatial scale.  d. Delta prediction performance, calculated as in panel a, showing performance peaking between 24-30 
regions. The iteration with best performance is marked in pink. e. Delta p-values, calculated as in panel b, showing that 
performance ceases to be better than all regions when model contains 11 fMRI region for dataset A and 14 fMRI regions 
for dataset B. f. Regions shared by the two datasets in the mean of their best iterations of delta predictions are displayed 
in pink (collapsed across hemispheres for visualization), demonstrating delta’s large spatial scale. See Extended Data 3 for 
details. g. Mean alpha prediction performance when using ‘all’ regions vs. when using the regions display in panel c 
(‘optimal’) demonstrate significant improvements with feature selection. ** p<0.01. Error bars are SEM; gray lines are 
individual subjects. h. Delta prediction performance also demonstrates significant improvements with feature selection. ** 
p<0.01. 

This analysis demonstrated a distinct spatial scale for each EEG oscillation, with delta predictions relying on a large 
number of brain regions, whereas alpha rhythms could be optimally predicted by a much smaller set of regions. To further 
illustrate the variable tipping points at which reducing the number of regions causes a loss of relevant information, we 
conducted paired t-tests between the held-out correlation performance of feature selection in each iteration, compared 
to when all regions were present. The resulting pattern of p-values again demonstrated that alpha predictions only 
degraded at a very low number of regions (Fig. 4b; increase when the model contained 5 regions), while delta predictions 
degraded at a higher number (Fig. 4e; increase at 11 regions for dataset A and at 14 regions for dataset B). Visualizing the 
regions in the model with highest performance showed distinct networks of cortical and subcortical regions that optimally 
predicted alpha (Fig. 4c) and delta (Fig. 4f). Performance improvements in this optimal iteration in relation to using all 
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regions were significant for both alpha (Fig. 4g, r=0.49 vs. r=0.32, p<0.01) and delta (Fig. 4h, r=0.49 vs. r=0.37, p<0.01), 
with more dramatic improvements for alpha, likely owing to its smaller spatial scale more strongly benefitting from feature 
selection.  

Since the model is stochastic and many regions are highly correlated with each other, the regions present in the best 
iterations (Fig. 4c, 4f) are representative samples of specific predictive networks, rather than the only uniquely predictive 
regions; they are shown only to illustrate the distinct spatial scales of predictive information. As an example, the putamen, 
which was shown to be highly predictive of alpha (Fig. 3a), was not present in the best iteration of alpha predictions (Fig. 
4c); this is likely because its alpha-predictive information is largely redundant in relation to other regions that were 
preserved. This observation leads to the question of which larger networks are being represented by the subset of regions 
present in the best iteration; to answer this, we next developed a novel analysis to uncover networks of shared information 
that predict each EEG rhythm. 

Two distinct networks predict alpha, while delta information is diffuse  

To identify the specific network structure predictive of each oscillation, we developed a novel analysis to identify 
shared information across brain regions. We systematically assessed the predictive performance of each pairwise 
combination of bilateral brain regions in relation to the performance of its individual components, in order to evaluate 
whether regions contained distinct and complementary information (expressed as greater performance for the pair) or 
similar and redundant information (expressed as worse performance for the pair). In other words, we trained and tested 
the model on each pair of regions, and investigated the performance gains (or losses) of each pair of regions (each pair is 
shown in Extended Data 4), as compared to the individual regions within the pair (Fig. 3). As before, non-gray matter 
regions were also used when generating delta predictions, to enable us to identify fMRI information beyond that present 
in the white matter or ventricles. Next, we performed k-means clustering on these results, using the gap statistic to 
evaluate the optimal clustering solution (including the null model of no suitable clustering). By clustering the performance 
variations, we could identify the presence of different networks of information—groups of regions that share redundant 
information among themselves (resulting in performance losses when paired together), but which generate predictions 
better than the maximum of their pairs when paired with regions from other networks.  

We found that alpha pairwise performance variations were optimally clustered in two groups (Extended Data 5), 
identifying two separate networks with distinct information content for predicting alpha power (Fig. 5a). This clustering 
behavior implies that regions were separable based on commonality of shared information: as a result, pairs of within-
cluster regions yielded no performance benefits in relation to the maximum of their individual components (Fig. 5b; 
average of r=-0.0163 across all regions), while pairs of between-cluster regions yielded performance benefits (Fig. 5b; 
average of r=0.0265 across all regions; p<.001). Every region saw an increase in alpha-predictive performance when 
comparing between the mean of its within-cluster pairings and the mean of its between-cluster pairing (Fig. 5b).  
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Fig. 5: Clustering analysis on alpha pairwise performance variations reveal two distinct networks of alpha-predictive 
fMRI information, while delta-predictive information is not segregated in clusters. Pairwise performance (correlation 
between predictions on held-out subjects and ground truth) variations were calculated as the performance gain or loss of 
a pair in relation to the maximum performance of its individual components; see Fig. 3 for individual performance values. 
a. Identified clusters (represented in yellow and red) and all pairwise performance variations for alpha. b. Mean alpha-
predictive performance of each region based on its pair category. When regions were paired with others within the same 
clusters, they consistently underperformed in relation to when they were instead paired with regions from the other cluster. 
c. The clustering analysis revealed that delta did not possess a suitable clustering solution, as evidenced by no systematic 
pairwise performance variations following a 2-cluster fitting. d. Mean delta-predictive performance of each region based 
on its pair category. 

The smaller of the two clusters of alpha information (Fig. 5a, yellow), included visual cortex (both the ventral and dorsal 
visual streams), prefrontal regions associated with visual cognition, and three subcortical regions that are responsive to 
contents of visual information (the accumbens, amygdala and hippocampus). Alpha rhythms have previously been 
proposed to be involved in visual information flow from lower-level perceptual areas to higher-order cognitive regions 
15,36; this cluster we identified includes key regions linked to visual information transfer.  

The larger cluster of alpha information (Fig. 5a, red) included the thalamus, the dorsal striatum (putamen and caudate) 
and the pallidum—which were also the four significantly predictive subcortical regions from the single-region analysis (Fig. 
3a). These regions are involved in arousal control 37, and the dorsal striatum projects to the pallidum, which in turn projects 
to the thalamus 38, suggesting that these regions work in tandem to mediate alpha activity. Finally, several cortical regions 
fell into this same cluster: given that the subcortical regions outlined above are implicated in arousal, and that arousal 
variations influence the fMRI signal and are detected to some degree across all brain regions 39,40, this red cluster could 
reflect arousal fluctuations. Finally, we emphasize that, while information is shared within each network, it is not shared 
equally—some regions express this information more strongly than others, as highlighted by our single-region analysis 
(Fig. 3a).  

In contrast, the gap statistic revealed that delta results did not present a suitable clustering solution (Extended Data 
5). The lack of a suitable clustering solution for delta predictions highlights its diffuse spatial property, with no separable 
groups that share distinct information from each other. To further demonstrate this, we performed a two-cluster analysis 
on the pairwise delta predictions (Fig. 5c), showing that this forced clustering solution did not exhibit the systematic cluster 
differences present on the two-cluster alpha analysis (Fig. 5b, 5d). Delta-predictive information, therefore, was not 
expressed as separable networks; instead, it was represented as a large, distributed network, with predictive performance 
benefiting from a greater number of regions (see Fig. 4). It is likely that subtle differences in fMRI cortical activity come 
together to predict variations in EEG delta power—as highlighted both by the coarse-grained analysis (Fig. 2b), which 
showed the conjunction of cortical areas to be highly predictive of delta power, and by the spatial scales analyses (Fig. 4f), 
where the regions preserved by the model were primarily cortical. Finally, this distributed nature of delta-predictive 
information, along with our finding that this information has a significant non-gray matter component, may explain why 
traditional univariate correlations between fMRI activity and continuous delta power have not previously been reported. 
This highlights our method’s ability to make inferences about relationships involving multiple brain regions, including 
accounting for non-neural contributions.  

 

DISCUSSION 
While delta and alpha rhythms are reliable indicators of brain arousal states with established relationships to cognition, 

the brainwide activity underlying their variations has been unclear. We used machine learning to predict continuous 
fluctuations in EEG power in the alpha and delta bands from fMRI data, and achieved robust performance in held-out 
subjects, with a mean correlation value of r=0.49 between predictions (on held-out subjects) and ground truth following 
feature selection (Fig. 4g-h). This prediction-based approach demonstrated reproducibility across datasets, and was able 
to uncover EEG-predictive information in individual fMRI regions. We discovered that distinct network patterns were 
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coupled to each rhythm, with strikingly differentiated spatial scales: two focused, separable networks predicted alpha 
rhythms from moment to moment, whereas a highly diffuse network of primarily cortical regions provided information 
about delta oscillations.  

Alpha rhythms have been widely studied in the EEG-fMRI literature, with focus on identifying its specific generators by 
using mass-univariate approaches to correlate individual fMRI regions to EEG oscillations. Our findings replicate prior 
univariate relationships between the thalamus/V1 and alpha power 17–24, and owing to our predictive approach 
unconstrained by a pre-defined HRF, we also identified novel relationships between alpha power and fMRI activity in the 
dorsal striatum and pallidum. Given that alpha is not only tied to arousal states but also to shifts in high-level cognition 
11,15, a key question was not which focal regions generate alpha directly, but instead which broader networks underlie the 
dynamic variations in alpha power. Our results demonstrate that separable networks are involved with alpha variations, 
suggesting they may reflect two distinct potential mechanisms of occipital alpha power expression: the dynamics within 
the visual system itself, versus the control from the subcortical arousal system. The thalamus has often been viewed as 
the primary orchestrator of alpha rhythms 18–20,24, and our results indicate that this thalamic control is likely part of a circuit 
involving other key subcortical regions: the dorsal striatum and the pallidum. Meanwhile, the separable alpha-predictive 
information identified in the visual system points to a distinct and dissociable mechanism of alpha expression, which may 
reflect that cortical neurons can intrinsically fire in the alpha range 41 independent of thalamic input.  

We found a distinct network pattern linked to delta power, which indexes several sleep oscillatory dynamics, including 
slow oscillations and slow waves. While EEG-fMRI studies have identified fMRI activity locked to individual slow wave 
events 42–44, the power variations in the delta band we examine here represent distinct information, as they index the 
frequency and amplitude of a continuous spectrum of oscillatory dynamics, and are a metric of brain state. However, past 
work that analyzed univariate correlations between delta power and fMRI activity had failed to identify significant 
relationships 21. Our work explains this null result by showing that delta power predictions rely on combined information 
across a large number of fMRI regions; this can be contrasted with alpha, which is readily predicted by a small network, 
and unlike delta displays a large number of significant univariate relationships (see Fig. 3). 

Delta predictions not only relied on a large network, but represented an accumulation of diffuse and unified activity 
distributed throughout the cortex. What dynamics within this broad cortical fMRI network could be predicting delta 
power? Prior work has shown that arousal fluctuations are associated with cortical infra-slow propagating fMRI activity 40, 
and that infra-slow fMRI is coupled to delta power 45; it is therefore possible that this propagating infra-slow fMRI activity—
which is global in nature—was core to the delta predictions. The varying phase across brain regions may explain why delta-
predictive information required a large number of regions, yet was not separable in different networks. In addition, delta 
power itself exhibits complex propagating spatiotemporal dynamics 46, and can be both local and global in nature 4,47, 
suggesting that this diffuse fMRI predictive network may also represent a collection of diverse local slow wave dynamics. 
Future work could explore these questions by identifying traveling wave events in simultaneous EEG-fMRI and 
investigating whether distinct spatiotemporal features of infra-slow fMRI oscillations predict local or global delta power.  

The strong role of the putamen in predicting variations in delta power was unexpected: it was the only region which 
contained enough unique predictive information by itself to surpass non-gray matter regions. What aspect of its activity 
is contributing to delta predictions? Activity in the putamen is linked to memory consolidation, which is facilitated by slow 
waves 3,48. Past work has identified experience-dependent activity in putamen during sleep 49 and increased putamen 
activity during spindle-slow wave complexes 50, which play a causal role in memory consolidation 1,6–8. While slow waves 
have well-established direct cortical generators 51,52, the subcortex still exerts a role in controlling or initiating cortical slow 
waves 53–55. Our results point to a potentially unique involvement of the putamen in slow wave activity that warrants 
future investigation as neuroscientists continue to decipher the network activity that underlies slow waves.  

Past EEG-fMRI analyses of alpha and delta rhythms have primarily relied on univariate correlations, considering each 
brain region or voxel separately 17–21,23, yet fMRI activity is strongly characterized by network-level activity, with variations 
in multiple brain regions coming together to generate distinct spatiotemporal patterns 56,57. The differences between our 
single-region analysis and our multi-region analyses highlight that distinct patterns can be discovered when going beyond 
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univariate correlations: as an example, had our work been focused exclusively on univariate relationships, we would have 
concluded that the putamen is the only region predictive of delta variations (Fig. 3b), but our network-level analyses 
revealed the importance of a large array of cortical regions for capturing delta variations (Fig. 2b, Fig. 4d-f). 

Predictive machine learning has supported neuroscientific insights in event-related classification analyses across a 
range of neuroimaging modalities 58–61. Our method aimed to extend this framework to a challenging task: achieving 
continuous, dynamic predictions in the absence of external stimuli and task conditions. Our approach can be generalized 
to other continuous crossmodal analyses in neuroimaging data, to identify how spontaneous brain dynamics are coupled 
in a broad range of questions. It has several advantages, such as correcting for non-neuronal effects (by including data 
from the white matter and ventricles as predictors) without requiring regression that can introduce errors 62–64, ensuring 
that effects are generalizable across subjects through cross-validation, and allowing for the identification of multi-region 
relationships that represent network-scale information. This approach could be broadly useful for identifying distributed 
dynamics underlying brain rhythms and states.  

In conclusion, we identified the fMRI network correlates of EEG delta and alpha rhythms across sleep and wakefulness, 
going beyond mass univariate relationships by extending a predictive approach to continuous cross-modal data. We 
surpassed our expected performance ceiling, successfully predicting alpha and delta fluctuations on held-out subjects. 
Alpha and delta were captured by distinct fMRI components, with alpha predictions being driven by two separable 
networks—one weighted heavily toward the visual system, and the other by arousal-regulatory subcortical regions—and 
delta being represented by a diffuse array of primarily cortical regions with unique contributions from the putamen. Our 
work expands our understanding of networks involved with human arousal states, identifying the large-scale activity 
patterns underlying the EEG oscillations that define sleep and wakefulness. Furthermore, this approach establishes a 
framework for predictive analyses of EEG-fMRI data that could be broadly employed to identify brainwide network states 
linked to neuronal oscillatory dynamics. 
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METHODS 
EEG-fMRI acquisition 

Both datasets analyzed in this work were collected as part of other studies. Collection for Dataset A was ongoing while 
our analyses were conducted; the reported number of subjects for this dataset is the number that had been collected at 
the time our analyses began. Subsequently collected subjects were not counted or considered for the purposes of this 
study. Dataset B is from a previously published study 12.  

Dataset A 
We obtained written informed consent from 15 healthy young adults; 12 were analyzed for the purposes of this study. 

Subject inclusion was based on sufficient EEG data quality to track continuous power throughout the scan (as determined 
by visual examination of EEG spectrograms). The protocol was approved by the Boston University Charles River Campus 
Institutional Review Board. Subjects were scanned on a 3T Siemens Prisma scanner with a 64-channel head and neck coil. 
Anatomical references were acquired using a 1 mm isotropic T1-weighted multi-echo MPRAGE 65. Functional runs were 
acquired using TR = 0.378 s, TE = 31 ms, 2.5 mm isotropic voxels, 40 slices, Multiband factor=8, blipped CAIPI shift = FOV/4, 
flip angle=37°, no in-plane acceleration. Three successive runs of 25 minutes each were obtained per subject.  
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EEG was acquired using MR-compatible 32-channel EEG caps fitted with 4 carbon wire loops (BrainProducts GmbH, 
Germany) at a sampling rate of 5000 Hz. EEG acquisition was synchronized to the scanner 10 MHz clock to reduce aliasing 
of high-frequency gradient artifacts. Additional sensors were used to record systemic physiology: respiration was 
measured simultaneously using an MRI-safe pneumatic respiration transducer belt around the abdomen and pulse was 
measured with a photoplethysmogram (PPG) transducer (BIOPAC Systems, Inc., Goleta, CA, USA). Physiological signals 
were acquired at 2000 Hz using Acqknowledge software and were aligned with MRI data using triggers sent by the MRI 
scanner. 

Dataset B 
We used a previously published dataset which had collected data from 13 healthy young adults; 9 were analyzed for 

the purposes of this study. Subject inclusion was based on sufficient EEG data quality to track continuous power 
throughout the scan (as determined by visual examination of EEG spectrograms). The protocol was approved by the 
Massachusetts General Hospital Institutional Review Board. Subjects were scanned on a 3T Siemens Prisma scanner with 
a 64-channel head-and-neck coil. Anatomical references were acquired using a 1 mm isotropic T1-weighted multi-echo 
MPRAGE 65. Functional runs acquired 40 interleaved BOLD-weighted EPI slices with 2.5 mm3 isotropic voxels. fMRI 
protocols consisted of a single-shot gradient echo SMS-EPI 66 with MultiBand factor=8, matrix=92×92, blipped CAIPI 
shift=FOV/4, TR=367 ms, TE=30-32 ms (changed midway through the study due to a software upgrade) nominal echo-
spacing=0.53 ms, flip angle=32-37°, and no in-plane acceleration. VERSE factor was set between 1 and 1.5 depending on 
individual subject SAR constraints.  Individual runs could last up to 2 hours. If runs ended earlier, subsequent runs would 
be started up to a maximum total scan duration of 2.5 hours as long as subjects were still comfortable and sleeping. 

EEG was acquired using MR-compatible 256-channel geodesic nets and a NA410 amplifier (Electrical Geodesics, Inc., 
Eugene, OR USA) at a sampling rate of 1000 Hz. EEG acquisition was synchronized to the scanner 10 MHz clock to reduce 
aliasing of high-frequency gradient artifacts. The scanner cryopump was temporarily shut off during EEG acquisition to 
reduce vibrational artifact. To acquire reference signals to be used for EEG noise removal 67, subjects wore a reference 
layer cap composed of an isolating vinyl layer and conductive satin layer on the head, with grommets inserted to allow 
electrodes to pass through and make contact with the scalp, while other electrodes remained isolated from the scalp and 
recorded the noise, resulting in a total of 30–36 EEG electrodes per subject. Physiological signals were simultaneously 
acquired using a Physio16 device (Electrical Geodesics, Inc., Eugene, OR USA). ECG was measured through two disposable 
electrodes placed on the chest diagonally across the heart, with an MR-compatible lead (InVivo Corp, Philips). Respiration 
was measured through a piezoelectrical belt (UFI systems, Morro Bay, CA USA) around the chest. 

EEG pre-processing 

Dataset A 
Gradient artifacts were removed using average artifact subtraction 68, with moving average of the previous 20 TRs. 

Ballistocardiogram artifacts were removed from each EEG channel using signals from the 4 carbon wire loops using the 
sliding Hanning window regression method from the EEGlab CWL toolbox 69 with the following parameters: window = 25 
s and a lag = 0.09 ms. Clean EEG signals were re-referenced to the average of EEG channels.  

Dataset B 
Gradient artifacts were removed using average artifact subtraction 68, with moving average of the previous 20 TRs. 

Electrodes were then re-referenced to the common average, computing this separately for electrodes contacting the 
head, and those placed on the reference layer. Channels on the cheeks and borders of the reference cap were excluded 
from the common average. Ballistocardiogram artifacts were removed using regression of reference signals from the 
isolated EEG electrodes 70. Since there was a larger number of noise electrodes than signal electrodes, the regression was 
performed after subsampling the noise electrodes, using only every fourth isolated electrode. Because the position of and 
physiological noise influences on the electrodes can vary over the long recording times used here, we implemented a 
dynamic time-varying regression of the reference signals. Beta coefficients for the best-fit regression within 30 s sliding 
time windows were fit using least-squares; these beta values were then linearly interpolated over the nonoverlapping 
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windows. The resulting interpolated beta value at every time point was then used for a local subtraction of the reference 
signals from the modeled EEG recording. This regression was performed individually for each EEG channel. 

fMRI pre-processing 

The cortical surface was reconstructed from the MEMPRAGE volume using Freesurfer version 6 71. All functional runs 
were slice-time corrected using FSL version 6 (slicetimer; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) 72 and motion corrected to 
the middle frame using AFNI (3dvolreg; https://afni.nimh.nih.gov/). Each motion-corrected run was then registered to the 
anatomical data using boundary-based registration (bbregister) 73.  

For Dataset A, physiological noise was removed using HRAN, open-source software implementing a statistical model 
of harmonic regression with autoregressive noise 74.  

For Dataset B, Physiological noise removal was performed using dynamic regression based on the concept of 
RETROICOR 75 and adapted for fast fMRI as follows. The respiratory trace was bandpass filtered between 0.16–0.4 Hz using 
a finite impulse response filter and the instantaneous phase was computed as the angle of the Hilbert transform. The 
cardiac peaks were detected automatically using the FASST toolbox 
(http://www.montefiore.ulg.ac.be/~phillips/FASST.html) and the phase was modeled as varying linearly between each 
identified peak. Sine and cosine basis functions using the phase of the signal and its second harmonic were generated as 
regressors for physiological noise. This regression was performed over 1000 s windows sliding every 400 s to enable high-
quality physiological noise removal as the heart rate and respiratory rate varied throughout the scan. No spatial smoothing 
was applied. 

Data preparation 

Data preparation, model training, and statistical analyses were conducted in MATLAB unless noted otherwise. EEG 
power was extracted from occipital electrodes via the multitaper spectrogram method 76,77. Spectrograms were obtained 
using a 5 second window, sliding every 0.1 s. The power time series was then extracted for the frequencies of interest: 
1.1-4 Hz for delta (chosen to minimize contamination from low-frequency artifacts in EEG-fMRI) and 8.5-12 Hz for alpha 
(chosen to minimize contamination from theta and spindle power while still covering subject variations in alpha range). 
Power in the 40-52 Hz range was also extracted for the purpose of artifact detection (see below). 

For dataset A, power was extracted from three occipital electrodes (O1, O2, and Oz) and then averaged. For dataset B, 
which used a reference layer and therefore did not have identical channel layouts across subjects, power was extracted 
from the single occipital electrode closest to Oz which had good data quality based on visual inspection of the spectrogram. 
Power time series were then interpolated to match fMRI TR timings. 

fMRI segmentation was performed in FreeSurfer based on the Desikan-Killiany atlas 78. The following regions were 
obtained: 31 bilateral cortical regions (the entire cortex minus the temporal pole, frontal pole, and entorhinal regions, 
which were not covered by the acquisition volume in all subjects), 7 bilateral subcortical regions (thalamus, pallidum, 
amygdala, caudate, putamen, accumbens, hippocampus), and 8 non-grey matter regions (left- and right- total white 
matter as an index of global blood flow, left- and right- lateral and inferior lateral ventricles, third ventricle, and fourth 
ventricle). Anatomical labels were interpolated to functional space, and functional voxels with 70% or above of overlap 
with the label were averaged to generate the mean region time series. The first 20 TRs of each run were discarded, and 
the fMRI timeseries of each region (separately for each subject) was z-scored. 

To mark data points unsuitable for analyses, the following criteria were used: 1) TRs with motion above 0.3 mm; 2) z-
scored EEG power in the 40-52Hz range with a value above 1 (adjusted to be lower for runs with particularly noisy data); 
3) detected local outliers (distance larger than 6 local scaled median absolute deviation (MAD)) within a sliding window of 
1000 TRs (for dataset B, a threshold of 3 MAD was used instead due to noisier data; thresholds were also stricter for 
subjects with particularly noisy data). The outlier detection method was applied to delta power and power in the 40-52Hz 
range (but not to alpha power, as its naturally fast fluctuations would be erroneously detected as outliers; however, three 
subjects with noisy data underwent alpha band outlier removal based on a smaller window). Datapoints that fulfilled any 
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of these criteria were then removed, and the remaining data was saved as separate segments to avoid creation of spurious 
continuities (segments below 60 TRs were discarded, as 60 TRs of continuous fMRI are required to predict each EEG point). 
EEG data for each subject was then rescaled to 0-1. 

Model training and testing 

Following the above, fMRI data was split into overlapping 60-TR sections, with the goal of predicting the EEG point at 
the center (equivalent to the position of the 30th fMRI point). Given that no fMRI points would be available for EEG points 
at the edges of the data segments following artifact removal, the first 29 and the last 30 EEG points of each segment were 
discarded. 

At each training fold, all data for one subject was held-out as test data. The model was then trained on the remaining 
subjects using the Matlab fitrlinear function. The function fits a weight value for each input feature (each TR of each input 
fMRI region), along with a bias value, and a lambda regularization term. The regularization term multiples the sum of 
squares of all model weights to penalize large weights and prevent the model from overfitting (L2 regularization). During 
training, the model adjusts its weights and bias using stochastic gradient descent.  

In each fold, the lambda regularization term was adjusted through Bayesian hyperparameter optimization by 
partitioning the training data (i.e. the held-out subject was not used) in 5 folds over 50 iterations, with repartitioning at 
every iteration. The best lambda value was then selected, and the model was trained on all training data at once. While 
the model frequently chose very similar lambda values in each held-out subject fold, this additional computational effort 
resulted in a strict training regimen where no data from the held-out subject was ever used to tune the model. In earlier 
explorations of the model, the Bayesian hyperparameter optimization was also allowed to select between L1 and L2 
regularization, but given that L2 consistently outperformed L1, we fixed L2 as the regularization option to reduce 
computational processing time. 

Once the optimal lambda value was determined and the weights and biases were fit on the training data, the model 
was fixed and used to generate predictions on the held-out subject. We highlight that normalization (see ‘Data 
preparation’ above) was done separately within each subject so that at no point did the held-out subject data affect 
training data. A Pearson’s linear correlation coefficient was then calculated between the predictions made for the held-
out subject and the ground truth. 

Statistical analyses 

Major Anatomical groups analysis 
The model underwent the training and testing routine described above using different groups of fMRI regions as input: 

only the subcortical regions, only the cortical regions, only the non-gray matter regions, and all of them together. Finally, 
the model also went through the same training routine using all the regions as input, but with a 2000 TR circular shift of 
the EEG in relation to the fMRI (as a control condition). Once the correlation performance was obtained for all subjects 
and conditions, an ANOVA was conducted, with subject ID as a random variable, and condition as a fixed variable. 
Correction for multiple comparisons was performed with Tukey’s HSD (honest significant difference). Multiple comparison 
correction was done within each dataset (A/B/combined) and analyses type (alpha/delta) only. 

Bootstrapping for single-region analysis 
To assess whether prediction performance differences between individual regions were not the result of the ordering 

of random noise, we shuffled the region labels within each subject, then averaged across the shuffled regions, ordered 
the means, and fit a line to the ordered means. This was repeated 1000 times; the resulting lines were then averaged, and 
a 95% confidence interval was calculated. Verification that the line fit to the real (non-shuffled) data was outside these 
bounds was taken to mean that region differences (i.e. spatial pattern of predictive performance across fMRI regions) 
were significant and not due to ordering of random noise. Following this analysis, paired t-tests were conducted to assess 
at which point the best-performing regions were no longer superior to control (or to non-gray matter regions in the case 
of the delta analyses). 
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Spatial scales analysis 
After training and testing of the model using all 84 parcellated regions, the model’s beta weights were extracted, and 

weights (across all TRs) for each region were squared and summed. The regions that displayed weights whose sum of 
squares were below the bottom 10% (as distribution percentiles) were then removed from the model, which was then 
once again trained and tested. This was repeated up until 5 regions were left in the model (or 9 plus the non-gray matter 
regions, for the delta analysis where non-gray matter regions were ineligible to be removed). 

Given the large number of regions present in the delta model at its peak performance, and our access to two datasets, 
we examined which regions (regardless of hemisphere) were commonly shared by the model’s peak iteration across the 
two datasets. The model peaked at a similar number of regions (33 for dataset A and 27 for dataset B, for a mean of 30, 
not counting the 8 non-gray matter regions which were ineligible to be dropped). Observing the iteration with 30 regions 
of the model for each dataset, dataset A displayed 22 unique regions (collapsing across hemispheres), while dataset B 
displayed 28. Within these, 18 regions were shared between the two datasets (with A being the ceiling at 22; this amounts 
to 82% of them being shared). 

Clustering of pairwise performance 
The model was trained and tested on each pair of gray matter regions. For delta, the non-gray matter regions were 

also added to each gray matter pair. For each pair, the performance values from the single-region analysis (correlation 
between predictions and ground truth) were noted, and the highest performance was subtracted from the pair’s 
performance. This value represented the performance gain (or loss) of the pair in relation to its best individual component. 
These values were then used for clustering. 

To assess the optimal clustering solution (including the null hypothesis of no suitable clustering), we used the gap 
statistic 79. The gap value is defined as the difference between the within-cluster dispersion obtained by Monte Carlo 
sampling from a reference distribution (generated from a uniform distribution over a box aligned with the principal 
components of the data) and the actual within-cluster dispersion obtained by clustering the real data. The ideal number 
of clusters is defined as the smallest number of clusters that satisfies Gap(k)≥GAPMAX−SE(GAPMAX), where Gap(k) is the 
gap value for the k-clusters solution, GAPMAX is the largest gap value, and SE(GAPMAX) is the corresponding standard 
error. 
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