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Background: Observational studies have investigated the association between lipid-lowering drugs and breast cancer (BC) and 
endometrial cancer (EC), but some controversy remains.
Objective: This paper aims to explore the causal relationship between genetic proxies for lipid-lowering drugs and breast and 
endometrial cancers using drug-target Mendelian randomization (MR).
Methods: Analyses were mainly performed using inverse variance weighted (IVW), heterogeneity and horizontal pleiotropy tests, and 
sensitivity analysis to assess the robustness of the results and causal relationship.
Results: HMGCR, APOB, and NPC1L1 increased the risk of breast cancer, LPL increased the risk of endometrial cancer, and APOC3 
decreased the risk of breast and endometrial cancer. No heterogeneity or horizontal pleiotropy was detected, and nor was there any 
evidence of an association between other lipid-lowering drugs and breast and endometrial cancer.
Conclusion: Our study demonstrated genetically that HMGCR inhibition, APOB inhibition, and NPC1L1 inhibition decrease the risk 
of breast cancer, LPL agonist increases the risk of endometrial cancer, and APOC3 inhibition decreases the risk of breast cancer and 
endometrial cancer, and these findings provide genetic insights into the potential risks of lipid-lowering drug therapy.
Keywords: lipid-lowering drugs, breast cancer, endometrial cancer, drug-target Mendelian randomization

Introduction
Breast cancer (BC) is the most common malignancy among women worldwide and the annual incidence continues to 
increase.1 According to the 2020 estimates by International Agency for Research on Cancer (IARC), female breast cancer 
has surpassed lung cancer as the leading cause of cancer incidence worldwide, with approximately 2.3 million new cases, 
accounting for 11.7% of all cancer cases.2 Endometrial cancer (EC) is the seventh most common malignant disease in the 
world and the most common gynecological malignancy in developed countries.3 Although 75% of patients with EC can 
be diagnosed at an early stage, the prognosis of patients with advanced disease remains poor.4 Due to limited therapeutic 
measures (eg, surgery, radiotherapy, and hormonal therapy) and the poor prognosis of BC & EC,5,6 primary prevention 
may become the least costly strategy for controlling BC & EC, which can effectively reduce the burden of the disease.

Reprogramming of lipid metabolism is one of the hallmarks of cancer,7,8 and cholesterol, an important component of 
blood lipids, is thought to underlie the proliferation and survival of cancer cells.9 Several studies have shown a negative 
correlation between serum cholesterol levels and cancer risk.10 Cholesterol is thought to increase the risk of BC & EC 
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because it is a precursor for steroid hormone synthesis and endogenous steroid hormones, which are directly associated 
with BC risk.11,12 Dyslipidaemia is characterized by elevated levels of triglycerides (TG), small and dense low-density 
lipoprotein cholesterol (LDL-C), as well as reduced levels of high-density lipoprotein cholesterol (HDL-C).13 Higher 
levels of TG, HDL-C, and lower levels of LDL-C have been found to be associated with a reduced risk of BC, while 
higher levels of TG and HDL-C have been associated with an increased risk of EC.14–16 Recent studies17,18 have 
confirmed the close relationship between dyslipidaemia and BC & EC, and there is also increasing interest in the role of 
lipid-lowering drugs in BC & EC. Evidence from preclinical studies suggests that statins may have anticancer properties 
by inducing apoptosis and inhibiting tumour growth, angiogenesis and cancer metastasis.19,20 Observational studies have 
shown no evidence of the effect of statins on BC risk.21 These studies have produced inconsistent results, which may be 
due to the varying study populations, methodologies and outcome definitions, as well as unavoidable confounding 
factors. Therefore, further studies are needed to clarify whether there is a causal association between lipid-lowering drugs 
and BC & EC.

Mendelian randomization (MR) study uses single nucleotide polymorphisms (SNPs) as instrumental variables (IVs) 
to infer the causal relationships between exposure and outcome. Since alleles are subject to the law of “random 
assignment of parental alleles to offspring”, similar to the randomization process in clinical trials, confounding bias 
and reverse causation can be better avoided and the causal relationship can be effectively elucidated.22 Drug-target MR 
was developed based on classical MR, which uses genetic variants located within or near drug target genes as 
instrumental variables to infer causal relationships between drugs and diseases, and it can be used to predict drug 
development and repurposing prospects.23 Therefore, we used drug-target MR for the first time to assess the causal 
effects of lipid-lowering drugs on BC & EC based on the publicly available large-scale Genome-Wide Association Study 
(GWAS) database.

Material and Methods
Research Design
Our drug-target MR study was based on the GWAS database, and the study design is shown in Figure 1. Since lipid- 
lowering drugs mainly act on LDL-C, TG, and apolipoprotein B (ApoB),24 we utilized the association of the drug target 
genes with the above three to proxy for the drug-targeting effect (correlation hypothesis). The selected instrumental 
variables were not associated with other confounders (independence assumption) and did not influence the outcome 

Figure 1 Instrumental variable screening flow chart for drug-target MR analysis. 
Abbreviations: SNP, single nucleotide polymorphism; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride; ApoB, apolipoprotein B.
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through other pathways (exclusivity assumption). Subsequently, MR was applied and inverse variance weighted (IVW) 
was used as the main analytical method to determine causality, and Cochran’s Q-test and MR-Egger intercept test were 
adopted to assess the heterogeneity and horizontal multivariate validity so as to determine the robustness of the results. 
Since lipid-lowering drugs are commonly used to control dyslipidaemia and treat cardiovascular disease, we performed 
a positive control analysis using coronary artery disease in order to increase the confidence in the causal effect of genetic 
variants, where the existence of a significant causal association indicated that our instrumental variables and causal 
effects have a high level of confidence. It is worth noting that according to item 1 and 2 of Article 32 of “the Measures 
for Ethical Review of Life Science and Medical Research Involving Human Subjects”, this study is exempt from ethical 
review and approval.

Data Source
Pooled data for LDL-C and TG were obtained from a study by Willer CJ et al,25 which included 173,082 (LDL-C) and 
177,861 (TG) participants, respectively. Pooled data for ApoB were obtained from a study by Richardson TG et al, which 
included 439,214 participants.26 The SNPs of drug target genes for LDL-C, TG, and ApoB were obtained as instrumental 
variables to model the effects of lipid-lowering drugs. BC was used in the study by Michailidou K et al,27 which included 
139,274 participants. EC was used in the study by Sakaue S et al,28 which included 240,027 participants. It should be 
noted that none of the data included more detailed cohort data such as age and pathological stage grading to allow for 
further subgroup analyses, as detailed in Table 1. All GWAS pooled data are of European origin.

Instrumental Variable Selection
To replace lipid-lowering drugs, we identified information on pharmacologically active protein targets and their encoding 
genes in lipid-lowering drugs based on a previous study,29 including 4 LDL-C lowering drug targets: Apolipoprotein 
B (APOB), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), Niemann-Pick C1-Like 1 (NPC1L1) and 
Proprotein convertase subtilisin/kexin type 9 (PCSK9), 5 TG-lowering drug targets: Angiopoietin-like 3 (ANGPTL3), 
APOB, Apolipoprotein C3 (APOC3), Peroxisome Proliferator Activated Receptor Alpha (PPARA) and Lipoprotein 
Lipase (LPL), six drug targets that reduce ApoB: ANGPTL3, APOB, APOC3, LPL, PPARA, and PCSK9. Firstly, 
genome-wide significant SNPs (p-value < 5×10−8) associated with LDL-C, TG, and ApoB were selected, respectively. 
Second, a linkage disequilibrium (LD) screen was performed (r2 < 0.3). Finally, SNPs within a 100 kb window above and 
below the drug target gene were selected as instrumental variables for lipid-lowering drugs (minor allele frequency > 
1%). SNPs may be in low LD, so we estimated the F-value for each instrumental variable and excluded the weak 
instrumental variables with F < 10.30 The results of the screening of target genes and instrumental variables for lipid- 
lowering drugs are presented in Supplementary Excel 1.

Mendelian Randomization Analysis
Lipid-lowering drugs have been widely used in the treatment of coronary artery disease. Therefore, we used the GWAS 
pooled data for coronary artery disease as a positive control for the results to verify the validity of the instrumental 
variables. IVW31 was used as the primary analytical method to determine causality. The method involves weighting the 

Table 1 Description of Included Traits

Trait ID Number of SNPs Population Sample size Case/Control

LDL cholesterol Ieu-A-300 2,437,752 European 173,082 /

Triglycerides Ieu-A-302 2,439,433 European 177,861 /
Apolipoprotein B Ieu-b-108 12,321,875 European 439,214 /

Breast cancer Ebi-A-GCST004988 11,069,665 European 139,274 76,192/63,082

Endometrial cancer Ebi-A-GCST90018838 24,135,295 European 240,027 2188/237839
Coronary artery disease Ebi-A-GCST005195 7,934,254 European 547,261 122,733/424,528
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inverse of the variance of all instrumental variables as weights, provided that they are valid. The test efficacy is highest in 
the absence of heterogeneity and horizontal pleiotropy. MR Egger regression, weighted median method (WME), etc. 
were used as a supplement to IVW results. Heterogeneity was assessed using the p-value of Cochran’s Q-test,32 with p < 
0.05 representing the presence of heterogeneity, then potential outliers were assessed using the MR pleiotropy residual 
sum and outlier test (MR-PRESSO),33 which were eliminated and re-analyzed. The MR-Egger intercept was used to test 
for horizontal multiplicity to verify the reliability of the MR analysis results,34 and the “leave-one-out” (LOO) method to 
assess the robustness of the results.35 Considering multiple testing, the Bonferroni correction was used to modify the 
threshold for the significance level, with a p-value greater than the threshold and not exceeding 0.05 indicating 
a suggestive association.

Results
Genetic Instrument Selection
During the selection of IVs, PPARA had no suitable genetic surrogate and was excluded from the subsequent analyses. In 
addition, ANGPTL3, a target under TG and ApoB, and ApoB, a target under TG, were also excluded from the 
corresponding subsequent analyses because they were not statistically significant in the positive control analyses. The 
remaining genetic proxies for lipid-lowering drugs were associated with the risk of developing coronary artery disease, 
demonstrating the validity of these instrumental variables (Supplementary Excel 2). For LDL-C, we identified a total of 4 
pharmacological target genes and 42 SNPs, including 7 for HMGCR, 20 for APOB, 3 for NPC1L1, and 12 for PCSK9. 
For TG, a total of 2 pharmacological target genes and 34 SNPs were identified, including 10 for APOC3 and 24 for LPL. 
For ApoB, a total of 4 pharmacological target genes with 91 SNPs were identified, of which 16 were for APOC3, 37 for 
APOB, 11 for LPL, and 27 for PCSK9. The F-statistics of all these instrumental SNPs exceeded 10, indicating that weak 
instrumental bias is not expected to affect the results (Supplementary Excel 3).

Causal Effects of Lipid-Lowering Drugs on Breast Cancer
Since there was no heterogeneity and horizontal pleiotropy among the lipid-lowering drugs, the results of IVW analysis were 
used as the main reference index. As shown in Table 2, genetically predicted HMGCR (OR=1.20, 95% CI 1.08–1.33, 
P=5.12×10−4) was associated with an increased risk of BC, NPC1L1 (OR=1.39, 95% CI 1.11–1.74, P=4.55×10−3) was 
associated with an increased BC risk, APOB increased BC risk through LDL-C (OR=1.07, 95% CI 1.02–1.13, p = 8.59×10−3) 
and ApoB (OR=1.06, 95% CI 1.01–1.11, p = 1.00×10−2), and PCSK9 increased BC risk through LDL-C (OR=1.11, 95% CI 
1.03–1.19, p = 4.55×10−3), PCSK9 under ApoB had a suggestive association with BC risk (OR=1.11, 95% CI 1.01–1.21, p = 

Table 2 The Causal Effects of Genetic Proxies for Lipid- 
Lowering Drug Classes on Risk of BC

Drug-Target Gene nSNP OR (95% CI) Pval

LDL-C

HMGCR 7 1.20 (1.08,1.33) 5.12×10−4

APOB 20 1.07 (1.02,1.13) 8.59×10−3

NPC1L1 3 1.39 (1.11,1.74) 4.55×10−3

PCSK9 12 1.11 (1.03,1.19) 4.55×10−3

TG
APOC3 8 0.91 (0.86,0.98) 9.40×10−3

LPL 24 0.93 (0.88,0.99) 2.00×10−2

ApoB

APOC3 15 0.74 (0.64,0.85) 2.35×10−5

APOB 37 1.06 (1.01,1.11) 1.00×10−2

LPL 11 0.91 (0.74,1.12) 3.80×10−1

PCSK9 29 1.11 (1.01,1.21) 2.00×10−2

Abbreviations: SNP, single nucleotide polymorphism; LDL-C, low-density 
lipoprotein cholesterol; TG, triglyceride; ApoB, apolipoprotein B.
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2.00×10−2), APOC3 reduced BC risk through both TG (OR = 0.91, 95% CI 0.86–0.98, p = 9.40×10−3) and ApoB (OR = 0.74, 
95% CI 0.64–0.85, p = 2.35×10−5), LPL at either TG (OR = 0.93, 95% CI 0.88–0.99, p = 2.00×10−2) or ApoB (OR = 0.91, 
95% CI 0.74–1.12, p = 3.80×10−1) was not causally associated with risk of BC, suggesting that there is no causal association 
between LPL and BC. The results of all MR analyses of lipid-lowering drugs are presented in Supplementary Excel 4. 
Cochran’s Q test showed that there was no heterogeneity in any of the SNPs, and horizontal pleiotropy test showed that the 
MR-Egger regression term intercepts were all less than 0.05 and p-values were all greater than 0.05, suggesting no horizontal 
pleiotropy. LOO analyses showed that reanalyzing the results after removing one SNP in turn had little effect on the results, 
indicating robust results, see Supplementary Excel 5 and Supplementary Figure 1.

Causal Effects of Lipid-Lowering Drugs on Endometrial Cancer
Since none of the lipid-lowering drugs were heterogeneous and horizontally pleiotropic, the results of the IVW analysis 
were used as the main reference index. As shown in Table 3, the genetic prediction of APOC3 reduced the risk of EC 
through TG (OR = 0.60, 95% CI 0.47–0.78, p = 1.16×10−4) and ApoB (OR = 0.30, 95% CI 0.18–0.52, p = 1.30×10−5), 
and LPL increased the risk of EC through TG (OR = 1.64, 95% CI 1.35–2.00, p = 8.77×10−7) and ApoB (OR = 6.24, 
95% CI 2.63–14.82, p = 3.29×10−5), and none of the remaining lipid-lowering drugs were causally associated with the 
risk of developing EC. The results of all MR analyses of lipid-lowering drugs are presented in Supplementary Excel 6. 
Cochran’s Q test showed that there was no heterogeneity in any of the SNPs, and the horizontal pleiotropy test showed 
that the MR- Egger regression term intercepts were all less than 0.05 and p-values were all greater than 0.05, suggesting 
the absence of horizontal pleiotropy. LOO analyses showed that reanalyzing the results after removing one SNP in turn 
had little effect on the results, indicating robust results, see Supplementary Excel 5 and Supplementary Figure 2.

Discussion
A comprehensive MR analysis of drug targets was performed to infer the potential pathogenic effects of lipid-lowering agents 
on BC & EC. The results showed that the genetic proxies for APOC3 were associated with lower risk of BC & EC, the genetic 
proxies for LPL were associated with higher risk of EC, and the genetic proxies for APOB, HMGCR, and NPC1L1 were 
associated with higher BC risk. In addition, LDL-C-mediated PCSK9 was associated with higher BC risk, and ApoB- 
mediated PCSK9 had suggestive causal associations with higher BC risk. Unlike previous observational studies, which are 
susceptible to multiple confounding factors such as genetics and immunity, as well as the disadvantage of being difficult to 
conduct a large number of RCTs in the clinic, MR analysis avoids the influence generated by racial factors, and minimizes the 

Table 3 The Causal Effects of Genetic Proxies for Lipid- 
Lowering Drug Classes on Risk of EC

Drug-target Gene nSNP OR (95% CI) Pval

LDL-C

HMGCR 7 1.15 (0.77, 1.72) 4.90×10−1

APOB 20 0.85 (0.68, 1.06) 1.50×10−1

NPC1L1 3 2.38 (0.56, 10.03) 2.40×10−1

PCSK9 12 1.03 (0.78, 1.34) 8.50×10−1

TG
APOC3 10 0.60 (0.47, 0.78) 1.16×10−4

LPL 24 1.64 (1.35, 2.00) 8.77×10−7

ApoB

APOC3 18 0.30 (0.18, 0.52) 1.30×10−5

APOB 36 0.87 (0.70, 1.07) 1.90×10−1

LPL 11 6.24 (2.63, 14.82) 3.29×10−5

PCSK9 29 0.80 (0.56, 1.13) 2.10×10−1

Abbreviations: SNP, single nucleotide polymorphism; LDL-C, low-density 
lipoprotein cholesterol; TG, triglyceride; ApoB, apolipoprotein B.
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inherent bias caused by confounding factors or reverse causality. Moreover, the heterogeneity test, horizontal pleiotropy test, 
and sensitivity analysis ensured the credibility of the study.

Although the exact etiology of BC has still not been fully understood, there are several risk factors that may simultaneously 
contribute to the initiation and/or promotion of BC. Among these risk factors, elevated LDL-C and very low-density 
lipoprotein cholesterol (VLDL-C) have been confirmed to be directly associated with the development of BC.36,37 

HMGCR (target of statins), NPC1L1 (target of ezetimibe), and PCSK9 are LDL-C-lowering cholesterol drugs were found 
to be common targets for the prevention of cardiovascular disease.38 However, statins are liver-specific because cholesterol is 
mainly produced in the liver, whereas less than 5% of some statins taken orally reach the peripheral circulation.39 Thus, even if 
statins are beneficial in experimental models, their effects may not be applicable to humans. In addition, estradiol has been 
shown to counteract the antiproliferative effects of statins in vitro.40 Therefore, the hormonal environment of the mammary 
gland may also counteract the beneficial effects of statins if they reach the breast tissue.

Cholesterol is the initiating biosynthetic precursor for steroidogenesis and synthesises 17 β-estradiol, an estrogen 
receptor agonist, which activates multiple signalling pathways in hormone-dependent BC. Ezetimibe inhibits exogenous 
cholesterol uptake.41 The inhibition of NPC1L1, a target of ezetimibe, promotes the uptake of exogenous cholesterol, 
thereby promoting angiogenesis in breast tumors. As a result of altered cholesterol acquisition, efflux, and/or transport 
in BC cells, cholesterol levels are increased in BC cells compared to normal human mammary epithelial cells, many of 
which overexpress PCSK9.42 Circulating PCSK9 prevents the recirculation of this receptor by binding to LDL and 
targets the receptor in the lysosomal compartment, leading to its degradation, increasing cholesterol levels, and 
promoting angiogenesis in breast tumors.43 Targeting HMGCR expression reduces cellular cholesterol and lipid synth-
esis, which leads to the decrease of autocrine hormone production within the tumor and promotes BC cell apoptosis by 
inducing nitric oxide synthase expression.44,45 Thus, the inhibition of HMGCR protein expression enhances the risk 
of BC development. Studies have demonstrated that elevated triglyceride-glucose (TyG) indices are associated with an 
increased risk of breast cancer, which may be related to stimulating signaling pathways (Ras/MAPK and PI3K/Akt/ 
mTOR) and gene transcription of cancer-related genes.46 It also inhibits the synthesis of hepatic sex hormone-binding 
globulin, leading to elevated estrogen bioactivity, which promotes BC progression.47 It is worth mentioning that studies 
have found that the incidence of female breast cancer decreases with increased intake of polyunsaturated fatty acids48. 

This is because that polyunsaturated fatty acids often act synergistically with B vitamins,49 leading to a reduction in 
oestrogen-stimulated cell growth, which consequently affects the process of oestrogen metabolism50 and decreases the 
incidence of hormone-dependent cancers such as BC & EC. Future studies may consider focusing on the role of 
B vitamins and polyunsaturated fatty acids in the metabolic pathways related to BC & EC.

Abnormalities in lipid metabolism are closely associated with the development and progression of EC, and elevated 
TG levels increase the risk of death from EC by 1.19-fold.51 High levels of TG accumulate in adipocytes and produce 
large amounts of aromatase, which converts androstenedione to estradiol.52 At the same time, high levels of TG also 
inhibit the production of sex hormone-binding globulin, which reduces the binding status of estrogen. Elevated estrogen 
levels not only promote EC cell proliferation and angiogenesis, but also inhibit their apoptosis, which ultimately leads 
to BC and EC progression.53–55 The inhibition of APOC3, a commonly used target for the regulation of lipid home-
ostasis, can significantly reduce TG levels in patients and thus decrease the risk of BC & EC.56,57 LPL activity favors TG 
accumulation in adipose tissue,58 thereby raising the risk of EC.

Our study is different from previous studies in several aspects. For example, in a population-based prospective cohort 
study involving men,59 we found that ApoB was positively associated with cancer risk, whereas breast cancer risk in 
women was negatively associated with ApoB. This discrepancy highlights the importance of considering cancer type, 
patient demographics, and potential confounders in analyses. The observation of opposite effects of the same target 
depending on cancer subtype and patient gender suggests that hormonal and tissue-specific factors may be involved in 
modulation, whereas MR analyses cannot address specific biological mechanisms. Therefore, in practical studies, detailed 
grouping according to gender, age, and different subtypes of BC & EC is recommended to further validate our findings. 
Undeniably, our study has some advantages in genetic epidemiology and clinical practice. For genetic epidemiology, it 
demonstrates the utility of Mendelian randomization in elucidating the causality of complex diseases, overcomes the 
limitations of observational studies, and highlights the need for subtype-specific analyses. In addition, our findings identify 
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potential therapeutic targets for BC & EC, offering the prospect of personalized medicine. Future directions include 
evaluating drug efficacy and safety by targeting these proteins, conducting prospective cohort studies to assess risk 
prediction and intervention outcomes, enabling risk stratification and prevention strategies, and ultimately informing public 
health policies to reduce BC & EC morbidity and mortality through novel prevention and treatment approaches.

At the same time, there are some limitations to our study: (1) The efficacy of lipid-lowering drugs may vary by 
subgroup. However, as the data we obtained did not have more detailed cohort data such as age and gender, further subgroup 
analyses could not be performed. (2) Human behaviour is complex, and although understanding the genetic risk of a disease 
can help prevent its occurrence to some extent, environmental factors themselves also play a role in the development of the 
disease, and MR can only eliminate the interference of confounding factors such as the environment to a certain extent. (3) 
Our findings are primarily related to the incidence of BC & EC, rather than the potential of these drug targets to mitigate the 
progression of BC & EC in cases. (4) The data used in the study came from a European population and, given the 
differences in the emergence of particular characteristics in different racial and ethnic groups, caution should be exercised 
in generalising the results to other populations with different lifestyles and cultural backgrounds.

Conclusions
This study provides evidence for a causal relationship between lipid-lowering drugs, BC, and EC. These findings suggest 
a correlation between genetically predicted levels of lipid profiles (elevated LDL-C, TG, or ApoB, or decreased HDL-C) and BC, 
EC, and identify three lipid-modulating drug targets that may decrease the risk of BC development (HMGCR inhibition, APOB 
inhibition, and NPC1L1 inhibition), a lipid-modulating drug target that increases the risk of EC development (LPL agonist), and 
a lipid-modulating drug target that increases the risk of BC and EC development (APOC3 inhibition). Our study provides a useful 
lipid-modulating drug regimen for clinical practice in patients with BC, and EC, but further studies are still needed to test the 
observed relationships due to the co-existence of drug-target genes that increase and decrease the risk of morbidity.

Abbreviations
MR, Mendelian randomization; BC, breast cancer; EC, endometrial cancer; SNPs, single nucleotide polymorphisms; IVs, 
instrumental variables; GWAS, genome wide association study; TG, triglyceride; LDL-C, low density lipoprotein 
cholesterol; HDL-C, high density lipoprotein cholesterol; LD, linkage disequilibrium; IVW, inverse variance weighted; 
WME, weighted median; LOO, leave-one-out.
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